mirror of
https://github.com/opencv/opencv.git
synced 2024-11-23 18:50:21 +08:00
dnn: add the CANN backend (#22634)
* cann backend impl v1 * cann backend impl v2: use opencv parsers to build models for cann * adjust fc according to the new transA and transB * put cann net in cann backend node and reuse forwardLayer * use fork() to create a child process and compile cann model * remove legacy code * remove debug code * fall bcak to CPU backend if there is one layer not supoorted by CANN backend * fix netInput forward
This commit is contained in:
parent
a08c98cdfb
commit
a2b3acfc6e
@ -468,6 +468,9 @@ OCV_OPTION(WITH_TIMVX "Include Tim-VX support" OFF
|
||||
OCV_OPTION(WITH_OBSENSOR "Include obsensor support (Orbbec RGB-D modules: Astra+/Femto)" ON
|
||||
VISIBLE_IF (WIN32 AND NOT ARM AND NOT WINRT) OR ( UNIX AND NOT APPLE AND NOT ANDROID)
|
||||
VERIFY HAVE_OBSENSOR)
|
||||
OCV_OPTION(WITH_CANN "Include CANN support" OFF
|
||||
VISIBLE_IF TRUE
|
||||
VERIFY HAVE_CANN)
|
||||
|
||||
# OpenCV build components
|
||||
# ===================================================
|
||||
@ -753,6 +756,9 @@ endif()
|
||||
if(WITH_TIMVX)
|
||||
include(cmake/OpenCVFindTIMVX.cmake)
|
||||
endif()
|
||||
if(WITH_CANN)
|
||||
include(cmake/OpenCVFindCANN.cmake)
|
||||
endif()
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Detect other 3rd-party libraries/tools
|
||||
@ -1736,6 +1742,15 @@ if(WITH_ONNX OR HAVE_ONNX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(WITH_CANN)
|
||||
status("")
|
||||
status(" CANN:" HAVE_CANN THEN "YES" ELSE "NO")
|
||||
if(HAVE_CANN)
|
||||
status(" Include path" CANN_INCLUDE_DIRS THEN "${CANN_INCLUDE_DIRS}" ELSE "NO")
|
||||
status(" Link libraries:" CANN_LIBRARIES THEN "${CANN_LIBRARIES}" ELSE "NO")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# ========================== python ==========================
|
||||
if(BUILD_opencv_python2)
|
||||
status("")
|
||||
|
109
cmake/OpenCVFindCANN.cmake
Normal file
109
cmake/OpenCVFindCANN.cmake
Normal file
@ -0,0 +1,109 @@
|
||||
ocv_check_environment_variables(CANN_INSTALL_DIR)
|
||||
|
||||
if("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
|
||||
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
|
||||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
if(CANN_INSTALL_DIR)
|
||||
# Supported platforms: x86-64, arm64
|
||||
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
|
||||
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
|
||||
else()
|
||||
set(HAVE_CANN OFF)
|
||||
message(STATUS "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}. Turning off HAVE_CANN")
|
||||
return()
|
||||
endif()
|
||||
|
||||
# Supported OS: linux (because of we need fork() to build models in child process)
|
||||
# done via checks in cann.cpp
|
||||
# FIXME: remove the check if a better model building solution is found
|
||||
|
||||
# include
|
||||
set(incs_cann "${CANN_INSTALL_DIR}/include")
|
||||
list(APPEND incs_cann "${CANN_INSTALL_DIR}/opp")
|
||||
|
||||
# libs
|
||||
# * libascendcl.so
|
||||
set(lib_ascendcl "${CANN_INSTALL_DIR}/acllib/lib64")
|
||||
find_library(found_lib_ascendcl NAMES ascendcl PATHS ${lib_ascendcl} NO_DEFAULT_PATH)
|
||||
if(found_lib_ascendcl)
|
||||
set(lib_ascendcl ${found_lib_ascendcl})
|
||||
message(STATUS "CANN: libascendcl.so is found at ${lib_ascendcl}")
|
||||
else()
|
||||
message(STATUS "CANN: Missing libascendcl.so. Turning off HAVE_CANN")
|
||||
set(HAVE_CANN OFF)
|
||||
return()
|
||||
endif()
|
||||
# * libgraph.so
|
||||
set(lib_graph "${CANN_INSTALL_DIR}/compiler/lib64")
|
||||
find_library(found_lib_graph NAMES graph PATHS ${lib_graph} NO_DEFAULT_PATH)
|
||||
if(found_lib_graph)
|
||||
set(lib_graph ${found_lib_graph})
|
||||
message(STATUS "CANN: libgraph.so is found at ${lib_graph}")
|
||||
else()
|
||||
message(STATUS "CANN: Missing libgraph.so. Turning off HAVE_CANN")
|
||||
set(HAVE_CANN OFF)
|
||||
return()
|
||||
endif()
|
||||
# * libge_compiler.so
|
||||
set(lib_ge_compiler "${CANN_INSTALL_DIR}/compiler/lib64")
|
||||
find_library(found_lib_ge_compiler NAMES ge_compiler PATHS ${lib_ge_compiler} NO_DEFAULT_PATH)
|
||||
if(found_lib_ge_compiler)
|
||||
set(lib_ge_compiler ${found_lib_ge_compiler})
|
||||
message(STATUS "CANN: libge_compiler.so is found at ${lib_ge_compiler}")
|
||||
else()
|
||||
message(STATUS "CANN: Missing libge_compiler.so. Turning off HAVE_CANN")
|
||||
set(HAVE_CANN OFF)
|
||||
return()
|
||||
endif()
|
||||
# * libopsproto.so
|
||||
set(lib_opsproto "${CANN_INSTALL_DIR}/opp/op_proto/built-in")
|
||||
find_library(found_lib_opsproto NAMES opsproto PATHS ${lib_opsproto} NO_DEFAULT_PATH)
|
||||
if(found_lib_opsproto)
|
||||
set(lib_opsproto ${found_lib_opsproto})
|
||||
message(STATUS "CANN: libopsproto.so is found at ${lib_opsproto}")
|
||||
else()
|
||||
message(STATUS "CANN: Missing libopsproto.so. Turning off HAVE_CANN")
|
||||
set(HAVE_CANN OFF)
|
||||
return()
|
||||
endif()
|
||||
|
||||
|
||||
set(libs_cann "")
|
||||
list(APPEND libs_cann ${lib_ascendcl})
|
||||
list(APPEND libs_cann ${lib_opsproto})
|
||||
list(APPEND libs_cann ${lib_graph})
|
||||
list(APPEND libs_cann ${lib_ge_compiler})
|
||||
|
||||
try_compile(VALID_ASCENDCL
|
||||
"${OpenCV_BINARY_DIR}"
|
||||
"${OpenCV_SOURCE_DIR}/cmake/checks/cann.cpp"
|
||||
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES:STRING=${incs_cann}"
|
||||
"-DLINK_LIBRARIES:STRING=${libs_cann}"
|
||||
OUTPUT_VARIABLE ASCEND_TRY_OUT)
|
||||
|
||||
if(NOT ${VALID_ASCENDCL})
|
||||
message(WARNING "Cannot use CANN")
|
||||
set(HAVE_CANN OFF)
|
||||
return()
|
||||
endif()
|
||||
|
||||
set(HAVE_CANN ON)
|
||||
endif()
|
||||
|
||||
if(HAVE_CANN)
|
||||
set(CANN_INCLUDE_DIRS ${incs_cann})
|
||||
set(CANN_LIBRARIES ${libs_cann})
|
||||
ocv_add_external_target(cann "${CANN_INCLUDE_DIRS}" "${CANN_LIBRARIES}" "HAVE_CANN")
|
||||
ocv_warnings_disable(CMAKE_C_FLAGS -Wignored-qualifiers)
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wignored-qualifiers)
|
||||
endif()
|
||||
|
||||
MARK_AS_ADVANCED(
|
||||
incs_cann
|
||||
libs_cann
|
||||
lib_ascendcl
|
||||
lib_graph
|
||||
lib_ge_compiler
|
||||
)
|
20
cmake/checks/cann.cpp
Normal file
20
cmake/checks/cann.cpp
Normal file
@ -0,0 +1,20 @@
|
||||
#include <acl/acl.h>
|
||||
#include <unistd.h> // fork()
|
||||
#include <iostream>
|
||||
|
||||
int main(int /*argc*/, char** /*argv*/)
|
||||
{
|
||||
int ret = aclInit(NULL);
|
||||
if (ret != 0)
|
||||
{
|
||||
std::cerr << "Failed to initialize Ascend, ret = " << ret;
|
||||
}
|
||||
|
||||
ret = aclFinalize();
|
||||
if (ret != 0)
|
||||
{
|
||||
std::cerr << "Failed to de-initialize Ascend, ret = " << ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -31,6 +31,10 @@ if(HAVE_TIMVX)
|
||||
ocv_target_compile_definitions(${the_module} PRIVATE "HAVE_TIMVX=1")
|
||||
endif()
|
||||
|
||||
if(HAVE_CANN)
|
||||
ocv_target_compile_definitions(${the_module} PRIVATE "HAVE_CANN=1")
|
||||
endif()
|
||||
|
||||
ocv_option(OPENCV_DNN_CUDA "Build with CUDA support"
|
||||
HAVE_CUDA
|
||||
AND HAVE_CUBLAS
|
||||
@ -162,6 +166,11 @@ if(HAVE_TIMVX)
|
||||
list(APPEND libs -Wl,--whole-archive ${TIMVX_LIBRARY} -Wl,--no-whole-archive)
|
||||
endif()
|
||||
|
||||
if(HAVE_CANN)
|
||||
list(APPEND include_dirs ${CANN_INCLUDE_DIRS})
|
||||
list(APPEND libs -Wl,--whole-archive ${CANN_LIBRARIES} -Wl,--no-whole-archive)
|
||||
endif()
|
||||
|
||||
set(webnn_srcs "")
|
||||
if(NOT EMSCRIPTEN)
|
||||
if(HAVE_WEBNN)
|
||||
@ -264,3 +273,10 @@ if(TARGET ocv.3rdparty.openvino AND OPENCV_TEST_DNN_OPENVINO)
|
||||
ocv_target_link_libraries(opencv_test_dnn ocv.3rdparty.openvino)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
ocv_option(OPENCV_TEST_DNN_CANN "Build test with CANN" (TARGET ocv.3rdparty.cann))
|
||||
if(TARGET ocv.3rdparty.cann AND OPENCV_TEST_DNN_CANN)
|
||||
if(TARGET opencv_test_dnn)
|
||||
ocv_target_link_libraries(opencv_test_dnn ocv.3rdparty.cann)
|
||||
endif()
|
||||
endif()
|
||||
|
@ -81,6 +81,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
DNN_BACKEND_CUDA,
|
||||
DNN_BACKEND_WEBNN,
|
||||
DNN_BACKEND_TIMVX,
|
||||
DNN_BACKEND_CANN,
|
||||
#if defined(__OPENCV_BUILD) || defined(BUILD_PLUGIN)
|
||||
#if !defined(OPENCV_BINDING_PARSER)
|
||||
DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
|
||||
@ -343,6 +344,15 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
|
||||
bool isLast);
|
||||
|
||||
/**
|
||||
* @brief Returns a CANN backend node
|
||||
*
|
||||
* @param inputsWrapper layer inputs
|
||||
* @param index layer id for op name
|
||||
* @param nodes inputs of this node
|
||||
*/
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes);
|
||||
|
||||
/**
|
||||
* @brief Automatic Halide scheduling based on layer hyper-parameters.
|
||||
* @param[in] node Backend node with Halide functions.
|
||||
|
@ -84,6 +84,12 @@ Ptr<BackendNode> Layer::initTimVX(void* timVxInfo,
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
Ptr<BackendNode> Layer::initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "CANN pipeline of " + type + " layers is not defined.");
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
|
||||
{
|
||||
return Ptr<BackendNode>();
|
||||
|
@ -16,6 +16,7 @@ Implementation of Batch Normalization layer.
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
@ -40,6 +41,7 @@ public:
|
||||
Mat weights_, bias_;
|
||||
UMat umat_weight, umat_bias;
|
||||
mutable int dims;
|
||||
float momentum;
|
||||
|
||||
|
||||
BatchNormLayerImpl(const LayerParams& params)
|
||||
@ -55,6 +57,9 @@ public:
|
||||
hasWeights = hasBias = true;
|
||||
epsilon = params.get<float>("eps", 1E-5);
|
||||
|
||||
// std::cout << params.get<float>("momentum", 0.9) << std::endl;
|
||||
momentum = params.get<float>("momentum", 0.9);
|
||||
|
||||
size_t n = blobs[0].total();
|
||||
CV_Assert(blobs[1].total() == n &&
|
||||
blobs[0].isContinuous() && blobs[1].isContinuous() &&
|
||||
@ -177,7 +182,8 @@ public:
|
||||
return (backendId == DNN_BACKEND_OPENCV) ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide()) ||
|
||||
backendId == DNN_BACKEND_WEBNN;
|
||||
backendId == DNN_BACKEND_WEBNN ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -385,6 +391,66 @@ public:
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(nodes.size() == 1);
|
||||
CV_Assert(blobs.size() == 4); // must have scale, offset, mean and variance
|
||||
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto channel = x->host->size[1];
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("bn_%d", index);
|
||||
auto op = std::make_shared<ge::op::BatchNorm>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_epsilon(epsilon);
|
||||
op->set_attr_data_format("NCHW");
|
||||
op->set_attr_is_training(false);
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : scale (blobs[2])
|
||||
std::vector<int> shape_{channel};
|
||||
auto op_const_scale = std::make_shared<CannConstOp>(blobs[2].data, blobs[2].type(), shape_, cv::format("%s_scale", op_name.c_str()));
|
||||
op->set_input_scale(*(op_const_scale->getOp()));
|
||||
op->update_input_desc_scale(*(op_const_scale->getTensorDesc()));
|
||||
// set inputs : offset (blobs[3])
|
||||
auto op_const_offset = std::make_shared<CannConstOp>(blobs[3].data, blobs[3].type(), shape_, cv::format("%s_offset", op_name.c_str()));
|
||||
op->set_input_offset(*(op_const_offset->getOp()));
|
||||
op->update_input_desc_offset(*(op_const_offset->getTensorDesc()));
|
||||
// set inputs : mean (blobs[0])
|
||||
auto op_const_mean = std::make_shared<CannConstOp>(blobs[0].data, blobs[0].type(), shape_, cv::format("%s_mean", op_name.c_str()));
|
||||
op->set_input_mean(*(op_const_mean->getOp()));
|
||||
op->update_input_desc_mean(*(op_const_mean->getTensorDesc()));
|
||||
// set inputs : variance (blobs[1])
|
||||
auto op_const_var = std::make_shared<CannConstOp>(blobs[1].data, blobs[1].type(), shape_, cv::format("%s_var", op_name.c_str()));
|
||||
op->set_input_variance(*(op_const_var->getOp()));
|
||||
op->update_input_desc_variance(*(op_const_var->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
auto output_bm_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_batch_mean(*output_bm_desc);
|
||||
auto output_bv_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_batch_variance(*output_bv_desc);
|
||||
auto output_rs1_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_reserve_space_1(*output_rs1_desc);
|
||||
auto output_rs2_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_reserve_space_2(*output_rs2_desc);
|
||||
auto output_rs3_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_reserve_space_3(*output_rs3_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
|
@ -43,6 +43,7 @@
|
||||
#include "../op_cuda.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include "../cuda4dnn/primitives/reshape.hpp"
|
||||
@ -68,7 +69,8 @@ public:
|
||||
return true;
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA;
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -118,6 +120,28 @@ public:
|
||||
inputs[i].copyTo(outputs[i]);
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto x_desc = x->getTensorDesc();
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("identity_%d", index);
|
||||
auto op = std::make_shared<ge::op::Identity>(op_name);
|
||||
|
||||
// set inputs
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
// set output
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -49,6 +49,7 @@
|
||||
#include "../op_vkcom.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_timvx.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
#include "opencl_kernels_dnn.hpp"
|
||||
@ -140,7 +141,8 @@ public:
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding) || // By channels
|
||||
(backendId == DNN_BACKEND_WEBNN && !padding) ||
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && !padding);
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && !padding) ||
|
||||
(backendId == DNN_BACKEND_CANN && !padding);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
@ -364,6 +366,38 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputsWrapper.size() == nodes.size());
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("concat_%d", index);
|
||||
auto op = std::make_shared<ge::op::ConcatD>(op_name);
|
||||
|
||||
// set attributes
|
||||
int N = inputsWrapper.size();
|
||||
op->set_attr_concat_dim(axis);
|
||||
op->set_attr_N(N);
|
||||
|
||||
// set inputs : x (dynamic)
|
||||
op->create_dynamic_input_x(N);
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
auto x_i = inputsWrapper[i].dynamicCast<CannBackendWrapper>();
|
||||
auto x_i_desc = x_i->getTensorDesc();
|
||||
auto op_x_i = nodes[i].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_dynamic_input_x(i, *op_x_i, "y");
|
||||
op->update_dynamic_input_desc_x(i, *x_i_desc);
|
||||
}
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -11,6 +11,9 @@
|
||||
#include "layers_common.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
#include "opencl_kernels_dnn.hpp"
|
||||
@ -40,7 +43,8 @@ public:
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_WEBNN ||
|
||||
backendId == DNN_BACKEND_CUDA;
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -79,6 +83,40 @@ public:
|
||||
blobs[0].copyTo(outputs[0]);
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto mat_shape = shape(blobs[0]);
|
||||
std::vector<int64_t> mat_shape_{mat_shape.begin(), mat_shape.end()};
|
||||
|
||||
auto ge_shape = ge::Shape(mat_shape_);
|
||||
auto ge_dtype = ge::DT_FLOAT;
|
||||
switch (blobs[0].type())
|
||||
{
|
||||
case CV_32F: break;
|
||||
case CV_32S: ge_dtype = ge::DT_INT32; break;
|
||||
default: CV_Error(Error::StsNotImplemented, "Unsuppported data type");
|
||||
}
|
||||
auto size_of_type = sizeof(float);
|
||||
switch (blobs[0].type())
|
||||
{
|
||||
case CV_32F: break;
|
||||
case CV_32S: size_of_type = sizeof(int); break;
|
||||
default: CV_Error(Error::StsNotImplemented, "Unsuppported data type");
|
||||
}
|
||||
|
||||
auto desc = std::make_shared<ge::TensorDesc>(ge_shape, ge::FORMAT_NCHW, ge_dtype);
|
||||
auto ge_tensor = std::make_shared<ge::Tensor>();
|
||||
ge_tensor->SetTensorDesc(*desc);
|
||||
ge_tensor->SetData(blobs[0].data, ge_shape.GetShapeSize() * size_of_type);
|
||||
|
||||
std::string op_name = cv::format("const_%d", index);
|
||||
auto op = std::make_shared<ge::op::Const>(op_name);
|
||||
op->set_attr_value(*ge_tensor);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -48,6 +48,7 @@
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_vkcom.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/core/utils/configuration.private.hpp>
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
@ -369,6 +370,17 @@ public:
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_CANN
|
||||
if (backendId == DNN_BACKEND_CANN)
|
||||
{
|
||||
if (ksize != 2)
|
||||
{
|
||||
CV_LOG_WARNING(NULL, "CANN supports Conv2D for now");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -768,6 +780,68 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(!blobs.empty());
|
||||
CV_Assert(inputsWrapper.size() == 1);
|
||||
CV_Assert(nodes.size() == 1);
|
||||
|
||||
bool has_bias = hasBias() || fusedBias;
|
||||
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
const int x_in_channel = x->host->size[1];
|
||||
const int filter_out_channel = blobs[0].size[1];
|
||||
const int groups = x_in_channel / filter_out_channel;
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("conv2d_%d", index);
|
||||
auto op = std::make_shared<ge::op::Conv2D>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_strides(ge::Operator::OpListInt(
|
||||
{1, 1, (int64_t)strides[0], (int64_t)strides[1]}
|
||||
));
|
||||
op->set_attr_pads(ge::Operator::OpListInt(
|
||||
{(int64_t)pads_begin[1], (int64_t)pads_end[1], (int64_t)pads_begin[0], (int64_t)pads_end[0]}
|
||||
));
|
||||
op->set_attr_dilations(ge::Operator::OpListInt(
|
||||
{1, 1, (int64_t)dilations[0], (int64_t)dilations[1]}
|
||||
));
|
||||
op->set_attr_groups(groups);
|
||||
op->set_attr_data_format("NCHW");
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : weight
|
||||
const Mat& w_mat = blobs[0];
|
||||
auto op_const_weight = std::make_shared<CannConstOp>(w_mat.data, w_mat.type(), shape(w_mat), cv::format("%s_w", op_name.c_str()));
|
||||
op->set_input_filter(*(op_const_weight->getOp()));
|
||||
op->update_input_desc_filter(*(op_const_weight->getTensorDesc()));
|
||||
// set inputs : bias
|
||||
if (has_bias)
|
||||
{
|
||||
int out_channel = blobs[0].size[0];
|
||||
Mat b_mat({out_channel}, CV_32F, &biasvec[0]);
|
||||
|
||||
std::vector<int> bias_shape{out_channel};
|
||||
auto op_const_bias = std::make_shared<CannConstOp>(b_mat.data, b_mat.type(), bias_shape, cv::format("%s_b", op_name.c_str()));
|
||||
op->set_input_bias(*(op_const_bias->getOp()));
|
||||
op->update_input_desc_bias(*(op_const_bias->getTensorDesc()));
|
||||
}
|
||||
|
||||
// set outputs
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
||||
|
@ -48,6 +48,7 @@
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_vkcom.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
#include <iostream>
|
||||
@ -186,6 +187,12 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
return func.initCannOp(inputsWrapper, index, nodes);
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
@ -350,7 +357,8 @@ struct ReLUFunctor : public BaseFunctor
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_VKCOM;
|
||||
backendId == DNN_BACKEND_VKCOM ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
|
||||
@ -450,6 +458,42 @@ struct ReLUFunctor : public BaseFunctor
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x_desc = x->getTensorDesc();
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
if (slope)
|
||||
{
|
||||
std::string op_name = cv::format("leakyrelu_%d", index);
|
||||
auto op = std::make_shared<ge::op::LeakyRelu>(op_name);
|
||||
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
op->set_attr_negative_slope(slope);
|
||||
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
|
||||
std::string op_name = cv::format("relu_%d", index);
|
||||
auto op = std::make_shared<ge::op::Relu>(op_name); // FIXIT: Relu6?
|
||||
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
{
|
||||
@ -525,7 +569,8 @@ struct ReLU6Functor : public BaseFunctor
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_WEBNN;
|
||||
backendId == DNN_BACKEND_WEBNN ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
|
||||
@ -607,6 +652,37 @@ struct ReLU6Functor : public BaseFunctor
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("clip_%d", index);
|
||||
auto op = std::make_shared<ge::op::ClipByValue>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
Mat min_value_mat(1, 1, CV_32F, Scalar(minValue));
|
||||
std::vector<int> shape_{1};
|
||||
auto op_const_minv = std::make_shared<CannConstOp>(min_value_mat.data, min_value_mat.type(), shape_, cv::format("%s_min_value", op_name.c_str()));
|
||||
op->set_input_clip_value_min(*(op_const_minv->getOp()));
|
||||
op->update_input_desc_clip_value_min(*(op_const_minv->getTensorDesc()));
|
||||
|
||||
Mat max_value_mat(1, 1, CV_32F, Scalar(maxValue));
|
||||
auto op_const_maxv = std::make_shared<CannConstOp>(max_value_mat.data, max_value_mat.type(), shape_, cv::format("%s_max_value", op_name.c_str()));
|
||||
op->set_input_clip_value_min(*(op_const_maxv->getOp()));
|
||||
op->update_input_desc_clip_value_min(*(op_const_maxv->getTensorDesc()));
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
@ -728,6 +804,12 @@ struct BaseDefaultFunctor : public BaseFunctor
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "");
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
@ -767,7 +849,8 @@ struct TanHFunctor : public BaseDefaultFunctor<TanHFunctor>
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -790,6 +873,26 @@ struct TanHFunctor : public BaseDefaultFunctor<TanHFunctor>
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("tanh_%d", index);
|
||||
auto op = std::make_shared<ge::op::Tanh>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
{
|
||||
@ -811,7 +914,9 @@ struct SwishFunctor : public BaseDefaultFunctor<SwishFunctor>
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -834,6 +939,28 @@ struct SwishFunctor : public BaseDefaultFunctor<SwishFunctor>
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("swish_%d", index);
|
||||
auto op = std::make_shared<ge::op::Swish>(op_name);
|
||||
|
||||
op->set_attr_scale(1.0f);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
{
|
||||
@ -856,7 +983,9 @@ struct MishFunctor : public BaseDefaultFunctor<MishFunctor>
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -887,6 +1016,26 @@ struct MishFunctor : public BaseDefaultFunctor<MishFunctor>
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("mish_%d", index);
|
||||
auto op = std::make_shared<ge::op::Mish>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
{
|
||||
@ -918,7 +1067,8 @@ struct SigmoidFunctor : public BaseDefaultFunctor<SigmoidFunctor>
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -941,6 +1091,25 @@ struct SigmoidFunctor : public BaseDefaultFunctor<SigmoidFunctor>
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("sigmoid_%d", index);
|
||||
auto op = std::make_shared<ge::op::Sigmoid>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
@ -970,7 +1139,8 @@ struct ELUFunctor : public BaseDefaultFunctor<ELUFunctor>
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -998,6 +1168,28 @@ struct ELUFunctor : public BaseDefaultFunctor<ELUFunctor>
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("elu_%d", index);
|
||||
auto op = std::make_shared<ge::op::Elu>(op_name);
|
||||
|
||||
op->set_attr_alpha(alpha);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
{
|
||||
@ -1023,7 +1215,8 @@ struct AbsValFunctor : public BaseDefaultFunctor<AbsValFunctor>
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -1046,6 +1239,25 @@ struct AbsValFunctor : public BaseDefaultFunctor<AbsValFunctor>
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("abs_%d", index);
|
||||
auto op = std::make_shared<ge::op::Abs>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
@ -1071,7 +1283,8 @@ struct BNLLFunctor : public BaseDefaultFunctor<BNLLFunctor>
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE;
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -1087,6 +1300,26 @@ struct BNLLFunctor : public BaseDefaultFunctor<BNLLFunctor>
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("bnll_%d", index);
|
||||
auto op = std::make_shared<ge::op::BNLL>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_HALIDE
|
||||
void attachHalide(const Halide::Expr& input, Halide::Func& top)
|
||||
{
|
||||
@ -1123,6 +1356,26 @@ struct CeilFunctor : public BaseDefaultFunctor<CeilFunctor>
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("bnll_%d", index);
|
||||
auto op = std::make_shared<ge::op::BNLL>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_HALIDE
|
||||
void attachHalide(const Halide::Expr& input, Halide::Func& top)
|
||||
{
|
||||
@ -1143,7 +1396,10 @@ struct FloorFunctor : public BaseDefaultFunctor<FloorFunctor>
|
||||
|
||||
bool supportBackend(int backendId, int)
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
inline float calculate(float x) const
|
||||
@ -1158,6 +1414,26 @@ struct FloorFunctor : public BaseDefaultFunctor<FloorFunctor>
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
std::string op_name = cv::format("floor_%d", index);
|
||||
auto op = std::make_shared<ge::op::Floor>(op_name);
|
||||
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_HALIDE
|
||||
void attachHalide(const Halide::Expr& input, Halide::Func& top)
|
||||
{
|
||||
@ -1992,6 +2268,12 @@ struct PowerFunctor : public BaseFunctor
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "");
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
@ -2240,6 +2522,31 @@ struct ChannelsPReLUFunctor : public BaseFunctor
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
Ptr<BackendNode> initCannOp(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes)
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x_desc = x->getTensorDesc();
|
||||
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
std::string op_name = cv::format("prelu_%d", index);
|
||||
auto op = std::make_shared<ge::op::PRelu>(op_name);
|
||||
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
std::vector<int> shape_{scale.size[0]}; // scale should be a 1d of shape [n] tensor, and it is a 2d mat of shape [n, 1] in opencv
|
||||
auto op_const_slope = std::make_shared<CannConstOp>(scale.data, scale.type(), shape_, cv::format("%s_weight", op_name.c_str()));
|
||||
op->set_input_weight(*(op_const_slope->getOp()));
|
||||
op->update_input_desc_weight(*(op_const_slope->getTensorDesc()));
|
||||
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
std::shared_ptr<ngraph::Node> initNgraphAPI(const std::shared_ptr<ngraph::Node>& node)
|
||||
|
@ -46,6 +46,8 @@
|
||||
#include "../op_halide.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -169,6 +171,11 @@ public:
|
||||
return channelsMode == ELTWISE_CHANNNELS_SAME;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
if (backendId == DNN_BACKEND_CANN)
|
||||
return channelsMode == ELTWISE_CHANNNELS_SAME && coeffs.empty();
|
||||
#endif
|
||||
|
||||
if (backendId == DNN_BACKEND_CUDA)
|
||||
{
|
||||
if(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 || channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
|
||||
@ -841,6 +848,47 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputsWrapper.size() == 2);
|
||||
CV_Assert(nodes.size() == 2);
|
||||
|
||||
auto op_x1 = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x1 = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto x1_desc = x1->getTensorDesc();
|
||||
auto op_x2 = nodes[1].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x2 = inputsWrapper[1].dynamicCast<CannBackendWrapper>();
|
||||
auto x2_desc = x2->getTensorDesc();
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
std::shared_ptr<ge::Operator> eltwise_operator = nullptr;
|
||||
// add, mul, div, max, min
|
||||
switch (op)
|
||||
{
|
||||
#define BUILD_CANN_ELTWISE_OP(op_type, class_name, op_name) \
|
||||
case op_type: { \
|
||||
auto eltwise_op = \
|
||||
std::make_shared<ge::op::class_name>(op_name); \
|
||||
eltwise_op->set_input_x1_by_name(*op_x1, "y"); \
|
||||
eltwise_op->set_input_x2_by_name(*op_x2, "y"); \
|
||||
eltwise_op->update_input_desc_x1(*x1_desc); \
|
||||
eltwise_op->update_input_desc_x2(*x2_desc); \
|
||||
eltwise_op->update_output_desc_y(*output_desc); \
|
||||
eltwise_operator = eltwise_op; \
|
||||
} break;
|
||||
BUILD_CANN_ELTWISE_OP(SUM, Add, cv::format("add_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(PROD, Mul, cv::format("mul_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(DIV, Xdivy, cv::format("div_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(MAX, Maximum, cv::format("max_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(MIN, Minimum, cv::format("min_%d", index));
|
||||
#undef BUILD_CANN_ELTWISE_OP
|
||||
default: CV_Error(Error::StsNotImplemented, "Unsupported eltwise operation");
|
||||
}
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(eltwise_operator));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -45,6 +45,7 @@
|
||||
#include "../op_cuda.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <float.h>
|
||||
#include <algorithm>
|
||||
@ -77,7 +78,8 @@ public:
|
||||
return true;
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA;
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -173,6 +175,33 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto x_desc = x->getTensorDesc();
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
std::string op_name = cv::format("flatten_%d", index);
|
||||
auto op = std::make_shared<ge::op::FlattenV2>(op_name);
|
||||
|
||||
// set attributes
|
||||
int num_axes = x->host->dims;
|
||||
int start_axis = normalize_axis(_startAxis, num_axes);
|
||||
int end_axis = normalize_axis(_endAxis, num_axes);
|
||||
op->set_attr_axis(start_axis);
|
||||
op->set_attr_end_axis(end_axis);
|
||||
|
||||
// set inputs
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set outputs
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -47,6 +47,7 @@
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
@ -184,7 +185,8 @@ public:
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
(backendId == DNN_BACKEND_CUDA && !tranAorB) ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !tranAorB) ||
|
||||
(backendId == DNN_BACKEND_WEBNN && axis == 1 && !tranAorB);
|
||||
(backendId == DNN_BACKEND_WEBNN && axis == 1 && !tranAorB) ||
|
||||
backendId == DNN_BACKEND_CANN;;
|
||||
}
|
||||
|
||||
virtual bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
||||
@ -660,6 +662,65 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x1 = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto x1_desc = x1->getTensorDesc();
|
||||
auto op_x1 = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
std::string op_name = cv::format("matmul_%d", index);
|
||||
auto op = std::make_shared<ge::op::MatMulV2>(op_name);
|
||||
|
||||
if (!blobs.empty()) // if B is const
|
||||
{
|
||||
// set attributes
|
||||
op->set_attr_transpose_x1(false);
|
||||
// weightMat always needs to be transposed, since CPU backend
|
||||
// implementation is input * weight.im2row
|
||||
op->set_attr_transpose_x2(true);
|
||||
|
||||
// set inputs
|
||||
// set inputs : x2 (weight)
|
||||
auto op_const_weight = std::make_shared<CannConstOp>(weightsMat.data, weightsMat.type(), shape(weightsMat), cv::format("%s_w", op_name.c_str()));
|
||||
op->set_input_x2_by_name(*(op_const_weight->getOp()), "y");
|
||||
op->update_input_desc_x2(*(op_const_weight->getTensorDesc()));
|
||||
}
|
||||
else
|
||||
{
|
||||
// A and B are variable inputs; non-const bias is not considered
|
||||
CV_Assert(inputsWrapper.size() == 2);
|
||||
CV_Assert(nodes.size() == 2);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_transpose_x1(transA);
|
||||
op->set_attr_transpose_x2(transB);
|
||||
|
||||
// set inputs : x2 (weight)
|
||||
auto op_x2 = nodes[1].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x2_desc = inputsWrapper[1].dynamicCast<CannBackendWrapper>()->getTensorDesc();
|
||||
op->set_input_x2_by_name(*op_x2, "y");
|
||||
op->update_input_desc_x2(*x2_desc);
|
||||
}
|
||||
|
||||
// set inputs
|
||||
// set inputs : x1 (input)
|
||||
op->set_input_x1_by_name(*op_x1, "y");
|
||||
op->update_input_desc_x1(*x1_desc);
|
||||
// set inputs : bias (bias)
|
||||
auto bias_mat = bias ? biasMat : Mat::zeros(1, weightsMat.size[0], weightsMat.type());
|
||||
std::vector<int> bias_shape{weightsMat.size[0]};
|
||||
auto op_const_bias = std::make_shared<CannConstOp>(bias_mat.data, bias_mat.type(), bias_shape, cv::format("%s_b", op_name.c_str()));
|
||||
op->set_input_bias(*(op_const_bias->getOp()));
|
||||
op->update_input_desc_bias(*(op_const_bias->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -47,6 +47,7 @@
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_vkcom.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/dnn/shape_utils.hpp"
|
||||
@ -106,7 +107,8 @@ public:
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && (size % 2 == 1) && (type == CHANNEL_NRM));
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && (size % 2 == 1) && (type == CHANNEL_NRM)) ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -442,6 +444,38 @@ public:
|
||||
#endif // HAVE_HALIDE
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("lrn_%d", index);
|
||||
auto op = std::make_shared<ge::op::LRN>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_depth_radius(size);
|
||||
op->set_attr_bias(bias);
|
||||
op->set_attr_alpha(alpha);
|
||||
op->set_attr_beta(beta);
|
||||
op->set_attr_norm_region("ACROSS_CHANNELS");
|
||||
if (type == SPATIAL_NRM)
|
||||
op->set_attr_norm_region("WITHIN_CHANNEL");
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
|
@ -5,6 +5,8 @@
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
#include "../op_cuda.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
@ -97,6 +99,11 @@ public:
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_CANN
|
||||
if (backendId == DNN_BACKEND_CANN)
|
||||
return op == OPERATION::ADD || op == OPERATION::PROD || op == OPERATION::DIV ||
|
||||
op == OPERATION::DIV || op == OPERATION::MAX || op == OPERATION::MIN;
|
||||
#endif
|
||||
if (op == OPERATION::MAX || op == OPERATION::MIN || op == OPERATION::SUM ||
|
||||
op == OPERATION::PROD || op == OPERATION::DIV)
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
|
||||
@ -682,6 +689,48 @@ public:
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputsWrapper.size() == 2);
|
||||
CV_Assert(nodes.size() == 2);
|
||||
|
||||
auto op_x1 = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x1 = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto x1_desc = x1->getTensorDesc();
|
||||
auto op_x2 = nodes[1].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x2 = inputsWrapper[1].dynamicCast<CannBackendWrapper>();
|
||||
auto x2_desc = x2->getTensorDesc();
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
std::shared_ptr<ge::Operator> eltwise_operator = nullptr;
|
||||
// add, mul, div, max, min
|
||||
switch (op)
|
||||
{
|
||||
#define BUILD_CANN_ELTWISE_OP(op_type, class_name, op_name) \
|
||||
case op_type: { \
|
||||
auto eltwise_op = \
|
||||
std::make_shared<ge::op::class_name>(op_name); \
|
||||
eltwise_op->set_input_x1_by_name(*op_x1, "y"); \
|
||||
eltwise_op->set_input_x2_by_name(*op_x2, "y"); \
|
||||
eltwise_op->update_input_desc_x1(*x1_desc); \
|
||||
eltwise_op->update_input_desc_x2(*x2_desc); \
|
||||
eltwise_op->update_output_desc_y(*output_desc); \
|
||||
eltwise_operator = eltwise_op; \
|
||||
} break;
|
||||
BUILD_CANN_ELTWISE_OP(OPERATION::ADD, Add, cv::format("add_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(OPERATION::PROD, Mul, cv::format("mul_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(OPERATION::DIV, Xdivy, cv::format("div_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(OPERATION::MAX, Maximum, cv::format("max_%d", index));
|
||||
BUILD_CANN_ELTWISE_OP(OPERATION::MIN, Minimum, cv::format("min_%d", index));
|
||||
#undef BUILD_CANN_ELTWISE_OP
|
||||
default: CV_Error(Error::StsNotImplemented, "Unsupported eltwise operation");
|
||||
}
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(eltwise_operator));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
||||
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
||||
{
|
||||
|
@ -15,6 +15,7 @@ Implementation of padding layer, which adds paddings to input blob.
|
||||
#include "../op_halide.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
@ -113,7 +114,8 @@ public:
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && dstRanges.size() == 4);
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && dstRanges.size() == 4) ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
@ -219,6 +221,50 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("pad_%d", index);
|
||||
auto op = std::make_shared<ge::op::PadV3>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_mode(paddingType.c_str());
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : paddings
|
||||
std::vector<int> pads;
|
||||
for (int i = 0; i < paddings.size(); i++)
|
||||
{
|
||||
pads.push_back(paddings[i].first);
|
||||
pads.push_back(paddings[i].second);
|
||||
}
|
||||
std::vector<int> pads_shape{(int)pads.size()};
|
||||
Mat paddings_mat(pads_shape, CV_32S, &pads[0]);
|
||||
auto op_const_paddings = std::make_shared<CannConstOp>(paddings_mat.data, paddings_mat.type(), pads_shape, cv::format("%s_paddings", op_name.c_str()));
|
||||
op->set_input_paddings(*(op_const_paddings->getOp()));
|
||||
op->update_input_desc_paddings(*(op_const_paddings->getTensorDesc()));
|
||||
// set inputs : constant_values
|
||||
std::vector<int> constant_values_shape{1};
|
||||
Mat constant_values_mat(1, 1, CV_32F, Scalar(paddingValue));
|
||||
auto op_const_constant_values = std::make_shared<CannConstOp>(constant_values_mat.data, constant_values_mat.type(), constant_values_shape, cv::format("%s_constant_values", op_name.c_str()));
|
||||
op->set_input_constant_values(*(op_const_constant_values->getOp()));
|
||||
op->update_input_desc_constant_values(*(op_const_constant_values->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -48,6 +48,7 @@
|
||||
#include "../op_vkcom.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_timvx.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <float.h>
|
||||
#include <algorithm>
|
||||
@ -143,7 +144,8 @@ public:
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_WEBNN ||
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan());
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan()) ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -438,6 +440,34 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("permute_%d", index);
|
||||
auto op = std::make_shared<ge::op::Permute>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_order(ge::Operator::OpListInt(
|
||||
_order.begin(), _order.end()
|
||||
));
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -47,6 +47,7 @@
|
||||
#include "../op_halide.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
#include "../ie_ngraph.hpp"
|
||||
@ -199,6 +200,12 @@ public:
|
||||
{
|
||||
return type == MAX || type == AVE || type == ROI;
|
||||
}
|
||||
#ifdef HAVE_CANN
|
||||
if (backendId == DNN_BACKEND_CANN)
|
||||
{
|
||||
return type == MAX || type == AVE;
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
@ -540,6 +547,82 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto x_desc = x->getTensorDesc();
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
std::string op_name_base = cv::format("pooling_%d", index);
|
||||
if (type == MAX)
|
||||
{
|
||||
std::string op_name = cv::format("max_%s", op_name_base.c_str());
|
||||
auto op = std::make_shared<ge::op::MaxPoolV3>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_ksize(ge::Operator::OpListInt(
|
||||
{1, 1, (int64_t)kernel_size[0], (int64_t)kernel_size[1]}
|
||||
));
|
||||
op->set_attr_strides(ge::Operator::OpListInt(
|
||||
{1, 1, (int64_t)strides[0], (int64_t)strides[1]}
|
||||
));
|
||||
std::string cann_pad_mode{"CALCULATED"};
|
||||
if (padMode == "SAME" || padMode == "VALID")
|
||||
cann_pad_mode = padMode;
|
||||
op->set_attr_padding_mode(cann_pad_mode.c_str());
|
||||
op->set_attr_pads(ge::Operator::OpListInt(
|
||||
{(int64_t)pads_begin[0], (int64_t)pads_end[0], (int64_t)pads_begin[1], (int64_t)pads_end[1]}
|
||||
));
|
||||
op->set_attr_data_format("NCHW");
|
||||
op->set_attr_global_pooling(globalPooling);
|
||||
op->set_attr_ceil_mode(ceilMode);
|
||||
|
||||
// set inputs
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set outputs
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
else if (type == AVE)
|
||||
{
|
||||
std::string op_name = cv::format("avg_%s", op_name_base.c_str());
|
||||
auto op = std::make_shared<ge::op::AvgPoolV2>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_ksize(ge::Operator::OpListInt(
|
||||
{1, 1, (int64_t)kernel_size[0], (int64_t)kernel_size[1]}
|
||||
));
|
||||
op->set_attr_strides(ge::Operator::OpListInt(
|
||||
{1, 1, (int64_t)strides[0], (int64_t)strides[1]}
|
||||
));
|
||||
std::string cann_pad_mode{"CALCULATED"};
|
||||
if (padMode == "SAME" || padMode == "VALID")
|
||||
cann_pad_mode = padMode;
|
||||
op->set_attr_padding_mode(cann_pad_mode.c_str());
|
||||
op->set_attr_pads(ge::Operator::OpListInt(
|
||||
{(int64_t)pads_begin[0], (int64_t)pads_end[0], (int64_t)pads_begin[1], (int64_t)pads_end[1]}
|
||||
));
|
||||
op->set_attr_global_pooling(globalPooling);
|
||||
op->set_attr_ceil_mode(ceilMode);
|
||||
auto cann_exclusive = !avePoolPaddedArea;
|
||||
op->set_attr_exclusive(cann_exclusive);
|
||||
|
||||
// set inputs
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set outputs
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported pooling type");
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -47,6 +47,7 @@
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_timvx.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
@ -163,8 +164,8 @@ public:
|
||||
ReshapeLayerImpl(const LayerParams& params)
|
||||
{
|
||||
setParamsFrom(params);
|
||||
int axis = params.get<int>("axis", 0);
|
||||
int numAxes = params.get<int>("num_axes", -1);
|
||||
axis = params.get<int>("axis", 0);
|
||||
numAxes = params.get<int>("num_axes", -1);
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
|
||||
@ -224,7 +225,8 @@ public:
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
backendId == DNN_BACKEND_WEBNN;
|
||||
backendId == DNN_BACKEND_WEBNN ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -324,6 +326,39 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("reshape_%d", index);
|
||||
auto op = std::make_shared<ge::op::Reshape>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_axis(axis);
|
||||
op->set_attr_num_axes(numAxes);
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : shape
|
||||
std::vector<int> shape_of_shape{(int)newShapeDesc.size()};
|
||||
Mat shape_mat(shape_of_shape, CV_32S, newShapeDesc.data());
|
||||
auto op_const_shape = std::make_shared<CannConstOp>(shape_mat.data, shape_mat.type(), shape_of_shape, cv::format("%s_shape", op_name.c_str()));
|
||||
op->set_input_shape(*(op_const_shape->getOp()));
|
||||
op->update_input_desc_shape(*(op_const_shape->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
@ -464,6 +499,8 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
int axis;
|
||||
int numAxes;
|
||||
std::vector<MatShape> outShapes;
|
||||
std::vector<int> dynamicShapes; // Which axes shapes are dynamic and require reinitialization with new input
|
||||
std::vector<int> inputIndices; // Which axes from input are needed to compute correct output shape
|
||||
|
@ -8,6 +8,7 @@
|
||||
#include "layers_common.hpp"
|
||||
#include "../op_cuda.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
#include <opencv2/imgproc.hpp>
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
@ -77,6 +78,9 @@ public:
|
||||
if (backendId == DNN_BACKEND_CUDA)
|
||||
return interpolation == "nearest" || interpolation == "bilinear" || interpolation == "opencv_linear";
|
||||
|
||||
if (backendId == DNN_BACKEND_CANN)
|
||||
return interpolation == "nearest" || interpolation == "bilinear" || interpolation == "opencv_linear";
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
@ -307,6 +311,67 @@ public:
|
||||
CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation);
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
auto x_desc = x->getTensorDesc();
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("resize_%d", index);
|
||||
|
||||
if (interpolation == "nearest")
|
||||
{
|
||||
auto op = std::make_shared<ge::op::ResizeNearestNeighborV2>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_align_corners(alignCorners);
|
||||
op->set_attr_half_pixel_centers(halfPixelCenters);
|
||||
|
||||
// set inputs : x
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : size
|
||||
std::vector<int> shape_of_size_mat{2};
|
||||
Mat size_mat(2, 1, CV_32S, Scalar(outHeight, outWidth));
|
||||
auto op_const_size = std::make_shared<CannConstOp>(size_mat.data, size_mat.type(), shape_of_size_mat, cv::format("%s_size", op_name.c_str()));
|
||||
op->set_input_size(*(op_const_size->getOp()));
|
||||
op->update_input_desc_size(*(op_const_size->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
else if (interpolation == "opencv_linear" || interpolation == "bilinear")
|
||||
{
|
||||
auto op = std::make_shared<ge::op::ResizeBilinearV2>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_align_corners(alignCorners);
|
||||
op->set_attr_half_pixel_centers(halfPixelCenters);
|
||||
|
||||
// set inputs : x
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : size
|
||||
std::vector<int> shape_of_size_mat{2};
|
||||
Mat size_mat(2, 1, CV_32S, Scalar(outHeight, outWidth));
|
||||
auto op_const_size = std::make_shared<CannConstOp>(size_mat.data, size_mat.type(), shape_of_size_mat, cv::format("%s_size", op_name.c_str()));
|
||||
op->set_input_size(*(op_const_size->getOp()));
|
||||
op->update_input_desc_size(*(op_const_size->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported interpolation by CANN backend: " + interpolation);
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -44,6 +44,7 @@
|
||||
#include "../op_cuda.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include "layers_common.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
@ -198,7 +199,7 @@ public:
|
||||
if (backendId == DNN_BACKEND_CUDA)
|
||||
return !hasSteps;
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV;
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -589,6 +590,66 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(sliceRanges.size() == 1);
|
||||
CV_Assert(sliceSteps.size() == 1);
|
||||
CV_Assert(sliceRanges[0].size() == sliceSteps[0].size());
|
||||
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
const int dims = x->host->dims;
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("slice_%d", index);
|
||||
auto op = std::make_shared<ge::op::StridedSliceV2>(op_name);
|
||||
|
||||
// retrieve begins, ends, axes and steps
|
||||
std::vector<int> begins, ends, axes, steps;
|
||||
for (int i = 0; i < sliceRanges[0].size(); i++)
|
||||
{
|
||||
begins.push_back(sliceRanges[0][i].start);
|
||||
ends.push_back(sliceRanges[0][i].end);
|
||||
axes.push_back(i);
|
||||
steps.push_back(sliceSteps[0][i]);
|
||||
}
|
||||
std::vector<int> shape_{dims};
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
// set inputs : begin
|
||||
Mat begin_mat(shape_, CV_32S, &begins[0]);
|
||||
auto op_const_begin = std::make_shared<CannConstOp>(begin_mat.data, begin_mat.type(), shape_, cv::format("%s_begin", op_name.c_str()));
|
||||
op->set_input_begin(*(op_const_begin->getOp()));
|
||||
op->update_input_desc_begin(*(op_const_begin->getTensorDesc()));
|
||||
// set inputs : end
|
||||
Mat end_mat(shape_, CV_32S, &ends[0]);
|
||||
auto op_const_end = std::make_shared<CannConstOp>(end_mat.data, end_mat.type(), shape_, cv::format("%s_end", op_name.c_str()));
|
||||
op->set_input_end(*(op_const_end->getOp()));
|
||||
op->update_input_desc_end(*(op_const_end->getTensorDesc()));
|
||||
// set inputs : axes
|
||||
Mat axes_mat(shape_, CV_32S, &axes[0]);
|
||||
auto op_const_axes = std::make_shared<CannConstOp>(axes_mat.data, axes_mat.type(), shape_, cv::format("%s_axes", op_name.c_str()));
|
||||
op->set_input_axes(*(op_const_axes->getOp()));
|
||||
op->update_input_desc_axes(*(op_const_axes->getTensorDesc()));
|
||||
// set inputs : strides
|
||||
Mat strides_mat(shape_, CV_32S, &steps[0]);
|
||||
auto op_const_strides = std::make_shared<CannConstOp>(strides_mat.data, strides_mat.type(), shape_, cv::format("%s_strides", op_name.c_str()));
|
||||
op->set_input_strides(*(op_const_strides->getOp()));
|
||||
op->update_input_desc_strides(*(op_const_strides->getTensorDesc()));
|
||||
|
||||
// set outputs
|
||||
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -48,6 +48,7 @@
|
||||
#include "../ie_ngraph.hpp"
|
||||
#include "../op_vkcom.hpp"
|
||||
#include "../op_webnn.hpp"
|
||||
#include "../op_cann.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <stdlib.h>
|
||||
@ -116,7 +117,8 @@ public:
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_CUDA ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1) ||
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan());
|
||||
(backendId == DNN_BACKEND_VKCOM && haveVulkan()) ||
|
||||
backendId == DNN_BACKEND_CANN;
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -362,6 +364,34 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputsWrapper, const int index, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
auto x = inputsWrapper[0].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// create operator
|
||||
std::string op_name = cv::format("softmax_%d", index);
|
||||
auto op = std::make_shared<ge::op::SoftmaxV2>(op_name);
|
||||
|
||||
// set attributes
|
||||
op->set_attr_axes(ge::Operator::OpListInt(
|
||||
{(int64_t)axisRaw}
|
||||
));
|
||||
|
||||
// set inputs
|
||||
// set inputs : x
|
||||
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
||||
op->set_input_x_by_name(*op_x, "y");
|
||||
auto x_desc = x->getTensorDesc();
|
||||
op->update_input_desc_x(*x_desc);
|
||||
|
||||
// set outputs
|
||||
auto output_y_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
op->update_output_desc_y(*output_y_desc);
|
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(op));
|
||||
}
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
||||
|
@ -13,6 +13,7 @@
|
||||
#include "op_cuda.hpp"
|
||||
#include "op_webnn.hpp"
|
||||
#include "op_timvx.hpp"
|
||||
#include "op_cann.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace dnn {
|
||||
@ -115,6 +116,10 @@ Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m)
|
||||
return Ptr<BackendWrapper>(new TimVXBackendWrapper(m));
|
||||
#endif // HAVE_TIMVX
|
||||
}
|
||||
else if (backendId == DNN_BACKEND_CANN)
|
||||
{
|
||||
CV_Assert(0 && "Internal error: DNN_BACKEND_CANN must be implemented through inheritance");
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
||||
return Ptr<BackendWrapper>(); // TODO Error?
|
||||
|
348
modules/dnn/src/net_cann.cpp
Normal file
348
modules/dnn/src/net_cann.cpp
Normal file
@ -0,0 +1,348 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
#include "net_impl.hpp"
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
CV__DNN_INLINE_NS_BEGIN
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
|
||||
static std::shared_ptr<ge::ModelBufferData> compileCannGraph(std::shared_ptr<ge::Graph> graph);
|
||||
|
||||
class NetImplCann CV_FINAL : public Net::Impl
|
||||
{
|
||||
public:
|
||||
typedef Net::Impl Base;
|
||||
|
||||
bool newWasSupported, netWasConverted;
|
||||
|
||||
explicit NetImplCann(const Ptr<Net::Impl>& basePtr)
|
||||
: Net::Impl()
|
||||
{
|
||||
CV_LOG_INFO(NULL, "Initializing NetImplCann");
|
||||
basePtr_ = basePtr;
|
||||
newWasSupported = true;
|
||||
netWasConverted = false;
|
||||
|
||||
init();
|
||||
|
||||
CV_LOG_INFO(NULL, "Finished initializing NetImplCann");
|
||||
}
|
||||
|
||||
void init()
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_Assert(basePtr_);
|
||||
Net::Impl& base = *basePtr_;
|
||||
CV_Assert(!base.netWasAllocated);
|
||||
CV_Assert(!base.netWasQuantized); // does not support quantized net for now
|
||||
netInputLayer = base.netInputLayer;
|
||||
blobsToKeep = base.blobsToKeep;
|
||||
layers = base.layers;
|
||||
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
|
||||
{
|
||||
LayerData& ld = it->second;
|
||||
ld.resetAllocation();
|
||||
}
|
||||
layerNameToId = base.layerNameToId;
|
||||
outputNameToId = base.outputNameToId;
|
||||
preferableBackend = DNN_BACKEND_CANN;
|
||||
preferableTarget = DNN_TARGET_NPU; // force using NPU
|
||||
hasDynamicShapes = base.hasDynamicShapes;
|
||||
CV_Assert(base.backendWrappers.empty()); //backendWrappers = base.backendWrappers;
|
||||
lastLayerId = base.lastLayerId;
|
||||
netWasAllocated = base.netWasAllocated;
|
||||
netWasQuantized = base.netWasQuantized;
|
||||
fusion = base.fusion;
|
||||
}
|
||||
|
||||
bool empty() const override
|
||||
{
|
||||
return Base::empty();
|
||||
}
|
||||
|
||||
void setPreferableBackend(Net& net, int backendId) override
|
||||
{
|
||||
if (backendId == preferableBackend)
|
||||
return; // no-op
|
||||
else
|
||||
CV_Error(Error::StsError, "DNN: Can't switch backend from CANN to other");
|
||||
Ptr<Net::Impl>& impl_ptr_ref = accessor::DnnNetAccessor::getImplPtrRef(net);
|
||||
impl_ptr_ref = basePtr_;
|
||||
basePtr_->setPreferableBackend(net, backendId);
|
||||
}
|
||||
|
||||
void setPreferableTarget(int targetId) override
|
||||
{
|
||||
if (targetId != preferableTarget)
|
||||
{
|
||||
CV_Error(Error::StsError, "DNN: Can't switch target from NPU to other");
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<BackendWrapper> wrap(Mat& host) override
|
||||
{
|
||||
return Ptr<BackendWrapper>(new CannBackendWrapper(host));
|
||||
}
|
||||
|
||||
// void fuseLayers(const std::vector<LayerPin>& blobsToKeep_); // fusion is done in the CANN graph engine
|
||||
|
||||
void initBackend(const std::vector<LayerPin>& blobsToKeep_) override;
|
||||
|
||||
void forwardLayer(LayerData& ld) override;
|
||||
};
|
||||
|
||||
void NetImplCann::initBackend(const std::vector<LayerPin>& blobsToKeep_)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_CheckEQ(preferableBackend, DNN_BACKEND_CANN, "");
|
||||
|
||||
// netWasAllocated turns to false if requested output is changed or input shape changes
|
||||
if (netWasConverted && netWasAllocated)
|
||||
return;
|
||||
|
||||
if (!netWasConverted)
|
||||
{
|
||||
newWasSupported = true;
|
||||
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
|
||||
{
|
||||
auto& ld = it->second;
|
||||
auto layer = ld.layerInstance;
|
||||
if (ld.id != 0 && !layer->supportBackend(preferableBackend))
|
||||
{
|
||||
newWasSupported = false;
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: layer (name=" << ld.name << ", type=" << ld.type << ") is not supported by CANN backend. Going back to CPU backend");
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!newWasSupported)
|
||||
return ;
|
||||
|
||||
// convert layers to CANN operators,
|
||||
// collect graph input and output operators,
|
||||
// collect and input and output wrappers
|
||||
int firstOutputLayerId = -1;
|
||||
std::vector<Ptr<BackendNode> > netInputNodes;
|
||||
std::vector<ge::Operator> graphInputOps, graphOutputOps;
|
||||
std::vector<Ptr<BackendWrapper>> graphInputWrappers, graphOutputWrappers;
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: converting layers to CANN operators");
|
||||
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
|
||||
{
|
||||
LayerData& ld = it->second;
|
||||
auto layer = ld.layerInstance;
|
||||
|
||||
if (ld.id == 0)
|
||||
{
|
||||
for (int i = 0; i < ld.outputBlobsWrappers.size(); i++)
|
||||
{
|
||||
std::string inputName = netInputLayer->outNames.empty() ? cv::format("%s_%d", ld.name.c_str(), i) : netInputLayer->outNames[i];
|
||||
auto inputOp = std::make_shared<ge::op::Data>(inputName);
|
||||
|
||||
// retrieve tensor description
|
||||
auto wrapper = ld.outputBlobsWrappers[i];
|
||||
graphInputWrappers.push_back(wrapper);
|
||||
auto cannWrapper = wrapper.dynamicCast<CannBackendWrapper>();
|
||||
CV_Assert(!cannWrapper.empty());
|
||||
|
||||
inputOp->update_input_desc_x(*(cannWrapper->desc_));
|
||||
inputOp->update_output_desc_y(*(cannWrapper->desc_));
|
||||
|
||||
graphInputOps.push_back(*inputOp);
|
||||
netInputNodes.push_back(Ptr<BackendNode>(new CannBackendNode(inputOp)));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
ld.skip = true; // skip all cann operators
|
||||
|
||||
std::vector<Ptr<BackendNode> > layerInputNodes;
|
||||
for (int i = 0; i < ld.inputBlobsId.size(); i++)
|
||||
{
|
||||
int layerInputLid = ld.inputBlobsId[i].lid;
|
||||
int layerInputOid = ld.inputBlobsId[i].oid;
|
||||
if (layerInputLid == 0)
|
||||
{
|
||||
layerInputNodes.push_back(netInputNodes[layerInputOid]);
|
||||
}
|
||||
else // here we do not consider an op with multiple outputs
|
||||
{
|
||||
layerInputNodes.push_back(layers[layerInputLid].backendNodes[preferableBackend]);
|
||||
}
|
||||
}
|
||||
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: converting layer " << ld.name << "@" << ld.type << "@" << ld.id << " to CANN operator");
|
||||
auto backendNode = layer->initCann(ld.inputBlobsWrappers, ld.id, layerInputNodes);
|
||||
|
||||
// collect outputs
|
||||
bool isOutputNode = ld.consumers.size() == 0 ? true : false;
|
||||
if (isOutputNode)
|
||||
{
|
||||
if (firstOutputLayerId < 0)
|
||||
firstOutputLayerId = ld.id;
|
||||
auto cannNode = backendNode.dynamicCast<CannBackendNode>();
|
||||
graphOutputOps.push_back(*(cannNode->getOp()));
|
||||
// assume cann graph outputs and dnn net outputs have the same order
|
||||
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
|
||||
{
|
||||
graphOutputWrappers.push_back(ld.outputBlobsWrappers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
ld.backendNodes[preferableBackend] = backendNode;
|
||||
}
|
||||
}
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: done converting layers to CANN operators");
|
||||
|
||||
// build graph from collected graph inputs and outputs
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: building ge::Graph");
|
||||
std::string graphName = cv::format("graph_%d", 0);
|
||||
std::shared_ptr<ge::Graph> graph = std::make_shared<ge::Graph>(graphName.c_str());
|
||||
(void)graph->SetInputs(graphInputOps);
|
||||
(void)graph->SetOutputs(graphOutputOps);
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: done building ge::Graph");
|
||||
|
||||
// convert ge::Graph to OM buffer
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: converting ge::Graph to OM buffer");
|
||||
std::shared_ptr<ge::ModelBufferData> modelBuffer = compileCannGraph(graph);
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: OM buffer size = " << modelBuffer->length);
|
||||
CV_LOG_INFO(NULL, "DNN/CANN: done building ge::Graph to OM buffer");
|
||||
|
||||
// keep net in the first output node and mark the node runnable
|
||||
auto& ld = layers[firstOutputLayerId];
|
||||
auto cannNode = ld.backendNodes[preferableBackend].dynamicCast<CannBackendNode>();
|
||||
std::shared_ptr<CannNet> net = std::shared_ptr<CannNet>(new CannNet());
|
||||
net->loadModelBuffer(modelBuffer);
|
||||
net->bindInputWrappers(graphInputWrappers);
|
||||
net->bindOutputWrappers(graphOutputWrappers);
|
||||
cannNode->net = net;
|
||||
ld.skip = false;
|
||||
|
||||
netWasConverted = true;
|
||||
}
|
||||
|
||||
void NetImplCann::forwardLayer(LayerData& ld)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
auto layer = ld.layerInstance;
|
||||
|
||||
if (!ld.skip)
|
||||
{
|
||||
auto it = ld.backendNodes.find(preferableBackend);
|
||||
if (ld.id == 0 || it == ld.backendNodes.end()) // input layer
|
||||
{
|
||||
return Base::forwardLayer(ld);
|
||||
}
|
||||
|
||||
CV_Assert(it != ld.backendNodes.end());
|
||||
const Ptr<BackendNode>& node = it->second;
|
||||
CV_Assert(!node.empty());
|
||||
auto cannNode = node.dynamicCast<CannBackendNode>();
|
||||
CV_Assert(!cannNode.empty());
|
||||
CV_Assert(cannNode->net);
|
||||
|
||||
TickMeter tm;
|
||||
tm.start();
|
||||
|
||||
cannNode->net->forward();
|
||||
|
||||
tm.stop();
|
||||
int64_t t = tm.getTimeTicks();
|
||||
layersTimings[ld.id] = (t > 0) ? t : 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
layersTimings[ld.id] = 0;
|
||||
}
|
||||
|
||||
ld.flag = 1;
|
||||
}
|
||||
|
||||
std::shared_ptr<ge::ModelBufferData> compileCannGraph(std::shared_ptr<ge::Graph> graph)
|
||||
{
|
||||
const size_t hdrsize = 32;
|
||||
std::shared_ptr<ge::ModelBufferData> out_buffer = std::make_shared<ge::ModelBufferData>();
|
||||
size_t buf_size = (1 << 27), model_size; // default buf_size 128 MB
|
||||
for (int iter = 0; iter < 2; ++iter)
|
||||
{
|
||||
size_t* shared_buf = (size_t*)mmap(NULL, buf_size + hdrsize, PROT_READ|PROT_WRITE,
|
||||
MAP_SHARED|MAP_ANONYMOUS, -1, 0);
|
||||
uint8_t* model_data = (uint8_t*)(shared_buf + 1);
|
||||
pid_t child;
|
||||
int childstate = 0;
|
||||
bool ok;
|
||||
if ((child=fork()) == 0)
|
||||
{
|
||||
// initialize engine
|
||||
std::map<ge::AscendString, ge::AscendString> options = {
|
||||
{ge::AscendString(ge::ir_option::SOC_VERSION), ge::AscendString("Ascend310")},
|
||||
};
|
||||
ACL_CHECK_GRAPH_RET(ge::aclgrphBuildInitialize(options));
|
||||
|
||||
// build
|
||||
std::shared_ptr<ge::ModelBufferData> om_model = std::make_shared<ge::ModelBufferData>();
|
||||
std::map<ge::AscendString, ge::AscendString> build_options;
|
||||
ACL_CHECK_GRAPH_RET(aclgrphBuildModel(*graph, build_options, *om_model));
|
||||
|
||||
#if 0
|
||||
// (optional). Dump model
|
||||
AscendString graph_name;
|
||||
graph.GetName(graph_name);
|
||||
aclgrphDumpGraph(graph, graph_name.GetString(), 7);
|
||||
// (optional). Save model
|
||||
aclgrphSaveModel(graph_name.GetString(), *om_model);
|
||||
#endif
|
||||
|
||||
// finalize engine
|
||||
ge::aclgrphBuildFinalize();
|
||||
|
||||
// send model from child to parent
|
||||
size_t model_size = om_model->length;
|
||||
*shared_buf = model_size;
|
||||
if (model_size > buf_size)
|
||||
{
|
||||
exit(1);
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy(model_data, om_model->data.get(), model_size);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
waitpid (child, &childstate, 0);
|
||||
model_size = *shared_buf;
|
||||
ok = WIFEXITED(childstate) && WEXITSTATUS(childstate) == 0;
|
||||
if (ok)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "Compile success, model size = " << model_size);
|
||||
out_buffer->data = std::shared_ptr<uint8_t>(new uint8_t[model_size]);
|
||||
memcpy(out_buffer->data.get(), model_data, model_size);
|
||||
out_buffer->length = model_size;
|
||||
}
|
||||
munmap(shared_buf, buf_size + hdrsize);
|
||||
if (ok) break;
|
||||
buf_size = model_size;
|
||||
}
|
||||
return out_buffer;
|
||||
}
|
||||
|
||||
void switchToCannBackend(Net& net)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
Ptr<Net::Impl>& impl_ptr_ref = accessor::DnnNetAccessor::getImplPtrRef(net);
|
||||
CV_Assert(impl_ptr_ref);
|
||||
CV_LOG_INFO(NULL, "DNN: switching to CANN backend... (networkID=" << impl_ptr_ref->networkId << ")");
|
||||
Ptr<NetImplCann> impl_ptr_cann = makePtr<NetImplCann>(impl_ptr_ref);
|
||||
impl_ptr_ref = impl_ptr_cann;
|
||||
}
|
||||
|
||||
#endif // HAVE_CANN
|
||||
|
||||
CV__DNN_INLINE_NS_END
|
||||
}} // namespace cv::dnn
|
@ -518,8 +518,8 @@ void Net::Impl::allocateLayer(int lid, const LayersShapesMap& layersShapes)
|
||||
for (int i = 0; i < ld.outputBlobs.size(); ++i)
|
||||
ld.outputBlobsWrappers[i] = wrap(ld.outputBlobs[i]);
|
||||
|
||||
/* CUDA backend has its own system for internal blobs; we don't need these */
|
||||
ld.internalBlobsWrappers.resize((preferableBackend == DNN_BACKEND_CUDA || preferableBackend == DNN_BACKEND_TIMVX) ? 0 : ld.internals.size());
|
||||
/* CUDA & CANN backend has its own system for internal blobs; we don't need these */
|
||||
ld.internalBlobsWrappers.resize((preferableBackend == DNN_BACKEND_CUDA || preferableBackend == DNN_BACKEND_TIMVX || preferableBackend == DNN_BACKEND_CANN) ? 0 : ld.internals.size());
|
||||
for (int i = 0; i < ld.internalBlobsWrappers.size(); ++i)
|
||||
ld.internalBlobsWrappers[i] = wrap(ld.internals[i]);
|
||||
|
||||
@ -1566,6 +1566,7 @@ string Net::Impl::dump(bool forceAllocation) const
|
||||
case DNN_BACKEND_CUDA: backend = "CUDA/"; break;
|
||||
case DNN_BACKEND_WEBNN: backend = "WEBNN/"; break;
|
||||
case DNN_BACKEND_TIMVX: backend = "TIMVX/"; break;
|
||||
case DNN_BACKEND_CANN: backend = "CANN/"; break;
|
||||
// don't use default:
|
||||
}
|
||||
out << "digraph G {\n";
|
||||
|
@ -12,6 +12,7 @@
|
||||
#include "op_cuda.hpp"
|
||||
#include "op_webnn.hpp"
|
||||
#include "op_timvx.hpp"
|
||||
#include "op_cann.hpp"
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
|
@ -85,6 +85,10 @@ Ptr<BackendWrapper> Net::Impl::wrap(Mat& host)
|
||||
return Ptr<BackendWrapper>(new TimVXBackendWrapper(baseBuffer, host));
|
||||
#endif
|
||||
}
|
||||
else if (preferableBackend == DNN_BACKEND_CANN)
|
||||
{
|
||||
CV_Assert(0 && "Internal error: DNN_BACKEND_CANN must be implemented through inheritance");
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
||||
}
|
||||
@ -146,6 +150,10 @@ void Net::Impl::initBackend(const std::vector<LayerPin>& blobsToKeep_)
|
||||
CV_Error(Error::StsNotImplemented, "This OpenCV version is built without support of TimVX");
|
||||
#endif
|
||||
}
|
||||
else if (preferableBackend == DNN_BACKEND_CANN)
|
||||
{
|
||||
CV_Assert(0 && "Internal error: DNN_BACKEND_CANN must be implemented through inheritance");
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, cv::format("Unknown backend identifier: %d", preferableBackend));
|
||||
@ -179,6 +187,14 @@ void Net::Impl::setPreferableBackend(Net& net, int backendId)
|
||||
networkBackend.switchBackend(net);
|
||||
#else
|
||||
CV_Error(Error::StsNotImplemented, "OpenVINO backend is not available in the current OpenCV build");
|
||||
#endif
|
||||
}
|
||||
else if (backendId == DNN_BACKEND_CANN)
|
||||
{
|
||||
#ifdef HAVE_CANN
|
||||
switchToCannBackend(net);
|
||||
#else
|
||||
CV_Error(Error::StsNotImplemented, "CANN backend is not availlable in the current OpenCV build");
|
||||
#endif
|
||||
}
|
||||
else
|
||||
|
329
modules/dnn/src/op_cann.cpp
Normal file
329
modules/dnn/src/op_cann.cpp
Normal file
@ -0,0 +1,329 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "op_cann.hpp"
|
||||
|
||||
#include <mutex>
|
||||
#include <map>
|
||||
#include <cstring> // memcpy
|
||||
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
|
||||
std::shared_ptr<AclEnvGuard> AclEnvGuard::global_acl_env_ = nullptr;
|
||||
std::mutex AclEnvGuard::global_acl_env_mutex_;
|
||||
|
||||
AclEnvGuard::AclEnvGuard()
|
||||
{
|
||||
CV_LOG_INFO(NULL, "Start to initialize CANN");
|
||||
ACL_CHECK_RET(aclInit(NULL));
|
||||
CV_LOG_INFO(NULL, "[Success] initialized CANN");
|
||||
}
|
||||
|
||||
AclEnvGuard::~AclEnvGuard()
|
||||
{
|
||||
CV_LOG_INFO(NULL, "Start to finalize CANN");
|
||||
ACL_CHECK_RET(aclFinalize());
|
||||
CV_LOG_INFO(NULL, "[Success] finalized CANN");
|
||||
}
|
||||
|
||||
std::shared_ptr<AclEnvGuard> AclEnvGuard::GetAclEnv()
|
||||
{
|
||||
std::shared_ptr<AclEnvGuard> acl_env;
|
||||
|
||||
std::lock_guard<std::mutex> lock(global_acl_env_mutex_);
|
||||
acl_env = global_acl_env_;
|
||||
if (acl_env != nullptr)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "CANN has been initialized. Skipping...");
|
||||
}
|
||||
else
|
||||
{
|
||||
acl_env = std::make_shared<AclEnvGuard>();
|
||||
global_acl_env_ = acl_env;
|
||||
}
|
||||
return acl_env;
|
||||
}
|
||||
|
||||
CannConstOp::CannConstOp(const uint8_t* data, const int dtype, const std::vector<int>& shape, const std::string& name)
|
||||
{
|
||||
std::vector<int64_t> shape_{shape.begin(), shape.end()};
|
||||
|
||||
auto ge_shape = ge::Shape(shape_);
|
||||
auto ge_dtype = ge::DT_FLOAT;
|
||||
switch (dtype)
|
||||
{
|
||||
case CV_32F: break;
|
||||
case CV_32S: ge_dtype = ge::DT_INT32; break;
|
||||
default: CV_Error(Error::StsNotImplemented, "Unsupported data type");
|
||||
}
|
||||
auto size_of_type = sizeof(float);
|
||||
switch (dtype)
|
||||
{
|
||||
case CV_32F: break;
|
||||
case CV_32S: size_of_type = sizeof(int); break;
|
||||
default: CV_Error(Error::StsNotImplemented, "Unsupported data type");
|
||||
}
|
||||
desc_ = std::make_shared<ge::TensorDesc>(ge_shape, ge::FORMAT_NCHW, ge_dtype);
|
||||
auto ge_tensor = std::make_shared<ge::Tensor>();
|
||||
ge_tensor->SetTensorDesc(*desc_);
|
||||
ge_tensor->SetData(data, ge_shape.GetShapeSize() * size_of_type);
|
||||
op_ = std::make_shared<ge::op::Const>(name);
|
||||
op_->set_attr_value(*ge_tensor);
|
||||
}
|
||||
|
||||
CannBackendNode::CannBackendNode(const std::shared_ptr<ge::Operator>& op)
|
||||
: BackendNode(DNN_BACKEND_CANN), op_(op) { }
|
||||
|
||||
std::shared_ptr<ge::Operator> CannBackendNode::getOp() { return op_; }
|
||||
|
||||
CannBackendWrapper::CannBackendWrapper(const Mat& m)
|
||||
: BackendWrapper(DNN_BACKEND_CANN, DNN_TARGET_NPU), host((Mat*)&m)
|
||||
{
|
||||
auto mat_shape = shape(*host);
|
||||
std::vector<int64_t> shape_{mat_shape.begin(), mat_shape.end()};
|
||||
|
||||
auto ge_shape = ge::Shape(shape_);
|
||||
desc_ = std::make_shared<ge::TensorDesc>(ge_shape, ge::FORMAT_NCHW, ge::DT_FLOAT);
|
||||
}
|
||||
|
||||
void CannBackendWrapper::copyToHost()
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, "Not implemented");
|
||||
}
|
||||
|
||||
void CannBackendWrapper::setHostDirty()
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, "Not implemented");
|
||||
}
|
||||
|
||||
CannNet::~CannNet()
|
||||
{
|
||||
CV_LOG_INFO(NULL, "In ~CannNet, inputs = " << inputs << ", outputs = " << outputs);
|
||||
if (!model_desc)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "[Failed] Tried to deconstruct CannNet but model is not loaded");
|
||||
return;
|
||||
}
|
||||
// free datasets: inputs, outputs
|
||||
if (inputs)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "In ~CannNet: destroy inputs");
|
||||
destroyDataset(&inputs);
|
||||
}
|
||||
if (outputs)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "In ~CannNet: destroy outputs");
|
||||
destroyDataset(&outputs);
|
||||
}
|
||||
// unload model
|
||||
ACL_CHECK_RET(aclmdlUnload(model_id));
|
||||
// destroy model_desc
|
||||
ACL_CHECK_RET(aclmdlDestroyDesc(model_desc));
|
||||
model_desc = nullptr;
|
||||
CV_LOG_INFO(NULL, "[Success] Unloaded model (id=" << model_id << ")");
|
||||
|
||||
// destroy context
|
||||
if (context != nullptr)
|
||||
{
|
||||
ACL_CHECK_RET(aclrtDestroyContext(context));
|
||||
context = nullptr;
|
||||
}
|
||||
// reset device
|
||||
if (context == nullptr)
|
||||
{
|
||||
ACL_CHECK_RET(aclrtResetDevice(device_id));
|
||||
}
|
||||
}
|
||||
|
||||
bool CannNet::empty() const
|
||||
{
|
||||
return (model_desc == nullptr);
|
||||
}
|
||||
|
||||
void CannNet::loadModelBuffer(std::shared_ptr<ge::ModelBufferData> modelBuffer)
|
||||
{
|
||||
model.clear();
|
||||
model.resize(modelBuffer->length);
|
||||
std::memcpy(reinterpret_cast<void*>(model.data()),
|
||||
reinterpret_cast<void*>(modelBuffer->data.get()),
|
||||
modelBuffer->length);
|
||||
loadToDevice();
|
||||
}
|
||||
|
||||
void CannNet::bindInputWrappers(const std::vector<Ptr<BackendWrapper>>& inputWrappers)
|
||||
{
|
||||
CV_Assert(inputWrappers.size() == getInputNum());
|
||||
for (size_t i = 0; i < inputWrappers.size(); ++i)
|
||||
{
|
||||
auto wrapper = inputWrappers[i].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// verify size
|
||||
aclmdlIODims model_dims;
|
||||
ACL_CHECK_RET(aclmdlGetInputDims(model_desc, i, &model_dims));
|
||||
CV_CheckEQ((int)model_dims.dimCount, wrapper->host->dims, "Dimension of input does not match with model's requirement");
|
||||
for (size_t j = 0; j < model_dims.dimCount; ++j)
|
||||
CV_CheckEQ((int)model_dims.dims[j], wrapper->host->size[j], "Size of input does not match with model's requirement");
|
||||
|
||||
input_wrappers.push_back(wrapper);
|
||||
}
|
||||
}
|
||||
|
||||
void CannNet::bindOutputWrappers(const std::vector<Ptr<BackendWrapper>>& outputWrappers)
|
||||
{
|
||||
CV_Assert(outputWrappers.size() == getOutputNum());
|
||||
for (int i = 0; i < outputWrappers.size(); ++i)
|
||||
{
|
||||
auto wrapper = outputWrappers[i].dynamicCast<CannBackendWrapper>();
|
||||
|
||||
// verify size
|
||||
aclmdlIODims model_dims;
|
||||
ACL_CHECK_RET(aclmdlGetOutputDims(model_desc, i, &model_dims));
|
||||
CV_CheckEQ((int)model_dims.dimCount, wrapper->host->dims, "Dimension of input does not match with model's requirement");
|
||||
for (size_t j = 0; j < model_dims.dimCount; ++j)
|
||||
CV_CheckEQ((int)model_dims.dims[j], wrapper->host->size[j], "Size of input does not match with model's requirement");
|
||||
|
||||
output_wrappers.push_back(wrapper);
|
||||
}
|
||||
}
|
||||
|
||||
void CannNet::forward()
|
||||
{
|
||||
// send inputs from host to device
|
||||
CV_LOG_DEBUG(NULL, "DNN/CANN: start sending inputs to device");
|
||||
for (size_t i = 0; i < input_wrappers.size(); ++i)
|
||||
{
|
||||
const void* p_host = (const void*)input_wrappers[i]->host->data;
|
||||
|
||||
auto db = aclmdlGetDatasetBuffer(inputs, i);
|
||||
auto p_device = aclGetDataBufferAddr(db);
|
||||
auto db_size = aclGetDataBufferSizeV2(db);
|
||||
|
||||
ACL_CHECK_RET(aclrtMemcpy(p_device, db_size, p_host, db_size, ACL_MEMCPY_HOST_TO_DEVICE));
|
||||
}
|
||||
CV_LOG_DEBUG(NULL, "DNN/CANN: finished sending inputs to device");
|
||||
|
||||
// forward
|
||||
CV_LOG_DEBUG(NULL, "DNN/CANN: start network forward");
|
||||
ACL_CHECK_RET(aclrtSetCurrentContext(context));
|
||||
ACL_CHECK_RET(aclmdlExecute(model_id, inputs, outputs));
|
||||
CV_LOG_DEBUG(NULL, "DNN/CANN: finished network forward");
|
||||
|
||||
// fetch ouputs from device to host
|
||||
CV_LOG_DEBUG(NULL, "DNN/CANN: start fetching outputs to host");
|
||||
for (size_t i = 0; i < output_wrappers.size(); ++i)
|
||||
{
|
||||
void* p_host = (void*)output_wrappers[i]->host->data;
|
||||
|
||||
auto db = aclmdlGetDatasetBuffer(outputs, i);
|
||||
auto p_device = aclGetDataBufferAddr(db);
|
||||
auto db_size = aclGetDataBufferSizeV2(db);
|
||||
|
||||
ACL_CHECK_RET(aclrtMemcpy(p_host, db_size, p_device, db_size, ACL_MEMCPY_DEVICE_TO_HOST));
|
||||
}
|
||||
CV_LOG_DEBUG(NULL, "DNN/CANN: finish fetching outputs to host");
|
||||
}
|
||||
|
||||
size_t CannNet::getInputNum() const
|
||||
{
|
||||
return aclmdlGetNumInputs(model_desc);
|
||||
}
|
||||
|
||||
size_t CannNet::getOutputNum() const
|
||||
{
|
||||
return aclmdlGetNumOutputs(model_desc);
|
||||
}
|
||||
|
||||
void CannNet::init()
|
||||
{
|
||||
ACL_CHECK_RET(aclrtSetDevice(device_id));
|
||||
ACL_CHECK_RET(aclrtCreateContext(&context, device_id));
|
||||
}
|
||||
|
||||
void CannNet::loadToDevice()
|
||||
{
|
||||
if (model_desc != nullptr)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "Model has been loaded to device. Skipping ...");
|
||||
return;
|
||||
}
|
||||
|
||||
CV_LOG_INFO(NULL, "Load model to NPU memory");
|
||||
ACL_CHECK_RET(aclmdlLoadFromMem(reinterpret_cast<const void*>(model.data()), model.size(), &model_id));
|
||||
|
||||
CV_LOG_INFO(NULL, "Create model description");
|
||||
model_desc = aclmdlCreateDesc();
|
||||
ACL_CHECK_RET(aclmdlGetDesc(model_desc, model_id));
|
||||
|
||||
createInputDataset();
|
||||
createOutputDataset();
|
||||
}
|
||||
|
||||
void CannNet::createInputDataset()
|
||||
{
|
||||
inputs = aclmdlCreateDataset();
|
||||
size_t n_inputs = aclmdlGetNumInputs(model_desc);
|
||||
size_t length;
|
||||
for (size_t i = 0; i < n_inputs; i++)
|
||||
{
|
||||
length = aclmdlGetInputSizeByIndex(model_desc, i);
|
||||
CV_LOG_INFO(NULL, "length = " << length);
|
||||
void* p_device = nullptr;
|
||||
ACL_CHECK_RET(aclrtMalloc(&p_device, length, ACL_MEM_MALLOC_NORMAL_ONLY));
|
||||
auto p_data_buffer = aclCreateDataBuffer(p_device, length);
|
||||
ACL_CHECK_RET(aclmdlAddDatasetBuffer(inputs, p_data_buffer));
|
||||
}
|
||||
}
|
||||
|
||||
void CannNet::createOutputDataset()
|
||||
{
|
||||
outputs = aclmdlCreateDataset();
|
||||
size_t n_outputs = aclmdlGetNumOutputs(model_desc);
|
||||
size_t length;
|
||||
for (size_t i = 0; i < n_outputs; i++)
|
||||
{
|
||||
length = aclmdlGetOutputSizeByIndex(model_desc, i);
|
||||
void* p_device = nullptr;
|
||||
ACL_CHECK_RET(aclrtMalloc(&p_device, length, ACL_MEM_MALLOC_NORMAL_ONLY));
|
||||
auto p_data_buffer = aclCreateDataBuffer(p_device, length);
|
||||
ACL_CHECK_RET(aclmdlAddDatasetBuffer(outputs, p_data_buffer));
|
||||
}
|
||||
}
|
||||
|
||||
void CannNet::destroyDataset(aclmdlDataset** dataset)
|
||||
{
|
||||
if (!dataset)
|
||||
{
|
||||
CV_LOG_INFO(NULL, "CANN dataset is not initialized");
|
||||
return;
|
||||
}
|
||||
auto buffer_count = aclmdlGetDatasetNumBuffers(*dataset);
|
||||
CV_LOG_INFO(NULL, "buffer_count = " << buffer_count);
|
||||
for (auto i = 0; i < buffer_count; i++)
|
||||
{
|
||||
auto data_buffer = aclmdlGetDatasetBuffer(*dataset, i);
|
||||
auto p_device = aclGetDataBufferAddr(data_buffer);
|
||||
if (p_device)
|
||||
{
|
||||
ACL_CHECK_RET(aclrtFree(p_device)); // 107000?
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_LOG_INFO(NULL, "Data buffer (i=" << i << ") from ACL dataset is invalid");
|
||||
}
|
||||
ACL_CHECK_RET(aclDestroyDataBuffer(data_buffer));
|
||||
}
|
||||
ACL_CHECK_RET(aclmdlDestroyDataset(*dataset));
|
||||
*dataset = nullptr;
|
||||
CV_LOG_INFO(NULL, "[Success] Destroyed dataset");
|
||||
}
|
||||
|
||||
#endif // HAVE_CANN
|
||||
|
||||
}} // namespace cv::dnn
|
164
modules/dnn/src/op_cann.hpp
Normal file
164
modules/dnn/src/op_cann.hpp
Normal file
@ -0,0 +1,164 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_OP_CANN_HPP
|
||||
#define OPENCV_DNN_OP_CANN_HPP
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
#include "acl/acl.h" // acl* functions
|
||||
#include "graph/graph.h" // ge::Graph; ge::Operator from operator.h
|
||||
#include "graph/ge_error_codes.h" // GRAPH_SUCCESS, ...
|
||||
|
||||
#include "op_proto/built-in/inc/all_ops.h" // ge::Conv2D, ...
|
||||
#include "graph/tensor.h" // ge::Shape, ge::Tensor, ge::TensorDesc
|
||||
#include "graph/types.h" // DT_FLOAT, ... ; FORMAT_NCHW, ...
|
||||
|
||||
#include "ge/ge_api_types.h" // ge::ir_option::SOC_VERSION
|
||||
#include "ge/ge_ir_build.h" // build graph
|
||||
|
||||
// for fork()
|
||||
#include <stdlib.h>
|
||||
#include <sys/mman.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/wait.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#endif // HAVE_CANN
|
||||
|
||||
#include <vector>
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
#define ACL_CHECK_RET(f) \
|
||||
{ \
|
||||
if (f != ACL_SUCCESS) \
|
||||
{ \
|
||||
CV_LOG_ERROR(NULL, "CANN check failed, ret = " << f); \
|
||||
CV_Error(Error::StsError, "CANN check failed"); \
|
||||
} \
|
||||
}
|
||||
#define ACL_CHECK_GRAPH_RET(f) \
|
||||
{ \
|
||||
if (f != ge::GRAPH_SUCCESS) \
|
||||
{ \
|
||||
CV_LOG_ERROR(NULL, "CANN graph check failed, ret = " << f); \
|
||||
CV_Error(Error::StsError, "CANN graph check failed"); \
|
||||
} \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
|
||||
CV__DNN_INLINE_NS_BEGIN
|
||||
|
||||
void switchToCannBackend(Net& net);
|
||||
|
||||
CV__DNN_INLINE_NS_END
|
||||
|
||||
class CannNet;
|
||||
|
||||
class AclEnvGuard {
|
||||
public:
|
||||
explicit AclEnvGuard();
|
||||
~AclEnvGuard();
|
||||
static std::shared_ptr<AclEnvGuard> GetAclEnv();
|
||||
|
||||
private:
|
||||
static std::shared_ptr<AclEnvGuard> global_acl_env_;
|
||||
static std::mutex global_acl_env_mutex_;
|
||||
};
|
||||
|
||||
class CannConstOp
|
||||
{
|
||||
public:
|
||||
CannConstOp(const uint8_t* data, const int dtype, const std::vector<int>& shape, const std::string& name);
|
||||
std::shared_ptr<ge::op::Const> getOp() { return op_; }
|
||||
std::shared_ptr<ge::TensorDesc> getTensorDesc() { return desc_; }
|
||||
private:
|
||||
std::shared_ptr<ge::op::Const> op_;
|
||||
std::shared_ptr<ge::TensorDesc> desc_;
|
||||
};
|
||||
|
||||
class CannBackendNode : public BackendNode
|
||||
{
|
||||
public:
|
||||
CannBackendNode(const std::shared_ptr<ge::Operator>& op);
|
||||
std::shared_ptr<ge::Operator> getOp();
|
||||
std::shared_ptr<CannNet> net;
|
||||
private:
|
||||
std::shared_ptr<ge::Operator> op_;
|
||||
};
|
||||
|
||||
class CannBackendWrapper : public BackendWrapper
|
||||
{
|
||||
public:
|
||||
CannBackendWrapper(const Mat& m);
|
||||
~CannBackendWrapper() { }
|
||||
|
||||
std::shared_ptr<ge::TensorDesc> getTensorDesc() { return desc_; }
|
||||
|
||||
virtual void copyToHost() CV_OVERRIDE;
|
||||
|
||||
virtual void setHostDirty() CV_OVERRIDE;
|
||||
|
||||
Mat* host;
|
||||
std::shared_ptr<ge::TensorDesc> desc_;
|
||||
};
|
||||
|
||||
class CannNet
|
||||
{
|
||||
public:
|
||||
explicit CannNet(int deviceId = 0)
|
||||
: device_id(deviceId)
|
||||
{
|
||||
init();
|
||||
acl_env = AclEnvGuard::GetAclEnv();
|
||||
}
|
||||
~CannNet(); // release private members
|
||||
|
||||
bool empty() const;
|
||||
|
||||
void loadModelBuffer(std::shared_ptr<ge::ModelBufferData> modelBuffer);
|
||||
|
||||
void bindInputWrappers(const std::vector<Ptr<BackendWrapper>>& inputWrappers);
|
||||
void bindOutputWrappers(const std::vector<Ptr<BackendWrapper>>& outputWrappers);
|
||||
|
||||
void forward();
|
||||
|
||||
size_t getInputNum() const;
|
||||
size_t getOutputNum() const;
|
||||
|
||||
private:
|
||||
void init();
|
||||
|
||||
void loadToDevice(); // call aclInit before this API is called
|
||||
void createInputDataset();
|
||||
void createOutputDataset();
|
||||
|
||||
int getOutputIndexByName(const std::string& name);
|
||||
|
||||
void destroyDataset(aclmdlDataset** dataset);
|
||||
|
||||
std::shared_ptr<AclEnvGuard> acl_env;
|
||||
|
||||
std::vector<Ptr<CannBackendWrapper>> input_wrappers;
|
||||
std::vector<Ptr<CannBackendWrapper>> output_wrappers;
|
||||
|
||||
uint32_t model_id{0};
|
||||
aclmdlDesc* model_desc{nullptr};
|
||||
std::vector<uint8_t> model;
|
||||
aclmdlDataset* inputs{nullptr};
|
||||
aclmdlDataset* outputs{nullptr};
|
||||
|
||||
int device_id{0};
|
||||
aclrtContext context{nullptr};
|
||||
};
|
||||
|
||||
#endif // HAVE_CANN
|
||||
|
||||
}} // namespace cv::dnn
|
||||
|
||||
#endif // OPENCV_DNN_OP_CANN_HPP
|
@ -11,6 +11,7 @@
|
||||
#include "op_cuda.hpp"
|
||||
#include "op_webnn.hpp"
|
||||
#include "op_timvx.hpp"
|
||||
#include "op_cann.hpp"
|
||||
|
||||
#include "halide_scheduler.hpp"
|
||||
|
||||
@ -122,6 +123,10 @@ private:
|
||||
backends.push_back(std::make_pair(DNN_BACKEND_TIMVX, DNN_TARGET_NPU));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
backends.push_back(std::make_pair(DNN_BACKEND_CANN, DNN_TARGET_NPU));
|
||||
#endif
|
||||
}
|
||||
|
||||
BackendsList backends;
|
||||
|
@ -49,6 +49,7 @@
|
||||
#define CV_TEST_TAG_DNN_SKIP_PARSER "dnn_skip_parser"
|
||||
|
||||
#define CV_TEST_TAG_DNN_SKIP_TIMVX "dnn_skip_timvx"
|
||||
#define CV_TEST_TAG_DNN_SKIP_CANN "dnn_skip_cann"
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
||||
@ -139,7 +140,8 @@ testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTarget
|
||||
bool withVkCom = true,
|
||||
bool withCUDA = true,
|
||||
bool withNgraph = true,
|
||||
bool withWebnn = true
|
||||
bool withWebnn = true,
|
||||
bool withCann = true
|
||||
);
|
||||
|
||||
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE();
|
||||
|
@ -31,6 +31,7 @@ void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
|
||||
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return;
|
||||
case DNN_BACKEND_WEBNN: *os << "WEBNN"; return;
|
||||
case DNN_BACKEND_TIMVX: *os << "TIMVX"; return;
|
||||
case DNN_BACKEND_CANN: *os << "CANN"; return;
|
||||
} // don't use "default:" to emit compiler warnings
|
||||
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
|
||||
}
|
||||
@ -251,7 +252,8 @@ testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTarget
|
||||
bool withVkCom /*= true*/,
|
||||
bool withCUDA /*= true*/,
|
||||
bool withNgraph /*= true*/,
|
||||
bool withWebnn /*= false*/
|
||||
bool withWebnn /*= false*/,
|
||||
bool withCann /*= true*/
|
||||
)
|
||||
{
|
||||
bool withVPU = validateVPUType();
|
||||
@ -311,6 +313,16 @@ testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTarget
|
||||
CV_UNUSED(withWebnn);
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_CANN
|
||||
if (withCann)
|
||||
{
|
||||
for (auto target : getAvailableTargets(DNN_BACKEND_CANN))
|
||||
targets.push_back(make_tuple(DNN_BACKEND_CANN, target));
|
||||
}
|
||||
#else
|
||||
CV_UNUSED(withCann);
|
||||
#endif // HAVE_CANN
|
||||
|
||||
{
|
||||
available = getAvailableTargets(DNN_BACKEND_OPENCV);
|
||||
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
|
||||
@ -477,6 +489,11 @@ void initDNNTests()
|
||||
registerGlobalSkipTag(
|
||||
CV_TEST_TAG_DNN_SKIP_TIMVX
|
||||
);
|
||||
#endif
|
||||
#ifdef HAVE_CANN
|
||||
registerGlobalSkipTag(
|
||||
CV_TEST_TAG_DNN_SKIP_CANN
|
||||
);
|
||||
#endif
|
||||
registerGlobalSkipTag(
|
||||
CV_TEST_TAG_DNN_SKIP_ONNX_CONFORMANCE,
|
||||
|
Loading…
Reference in New Issue
Block a user