mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
shape: force column-based vector
This commit is contained in:
parent
a8e5d1d9fd
commit
a2b6b595c2
23
modules/python/test/test_shape.py
Normal file
23
modules/python/test/test_shape.py
Normal file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class shape_test(NewOpenCVTests):
|
||||
|
||||
def test_computeDistance(self):
|
||||
|
||||
a = self.get_sample('samples/data/shape_sample/1.png', cv2.IMREAD_GRAYSCALE);
|
||||
b = self.get_sample('samples/data/shape_sample/2.png', cv2.IMREAD_GRAYSCALE);
|
||||
|
||||
_, ca, _ = cv2.findContours(a, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
|
||||
_, cb, _ = cv2.findContours(b, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
|
||||
|
||||
hd = cv2.createHausdorffDistanceExtractor()
|
||||
sd = cv2.createShapeContextDistanceExtractor()
|
||||
|
||||
d1 = hd.computeDistance(ca[0], cb[0])
|
||||
d2 = sd.computeDistance(ca[0], cb[0])
|
||||
|
||||
self.assertAlmostEqual(d1, 26.4196891785, 3, "HausdorffDistanceExtractor")
|
||||
self.assertAlmostEqual(d2, 0.25804194808, 3, "ShapeContextDistanceExtractor")
|
@ -138,6 +138,13 @@ float HausdorffDistanceExtractorImpl::computeDistance(InputArray contour1, Input
|
||||
set2.convertTo(set2, CV_32F);
|
||||
CV_Assert((set1.channels()==2) && (set1.cols>0));
|
||||
CV_Assert((set2.channels()==2) && (set2.cols>0));
|
||||
|
||||
// Force vectors column-based
|
||||
if (set1.dims > 1)
|
||||
set1 = set1.reshape(2, 1);
|
||||
if (set2.dims > 1)
|
||||
set2 = set2.reshape(2, 1);
|
||||
|
||||
return std::max( _apply(set1, set2, distanceFlag, rankProportion),
|
||||
_apply(set2, set1, distanceFlag, rankProportion) );
|
||||
}
|
||||
|
@ -202,6 +202,13 @@ float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, In
|
||||
|
||||
CV_Assert((set1.channels()==2) && (set1.cols>0));
|
||||
CV_Assert((set2.channels()==2) && (set2.cols>0));
|
||||
|
||||
// Force vectors column-based
|
||||
if (set1.dims > 1)
|
||||
set1 = set1.reshape(2, 1);
|
||||
if (set2.dims > 1)
|
||||
set2 = set2.reshape(2, 1);
|
||||
|
||||
if (imageAppearanceWeight!=0)
|
||||
{
|
||||
CV_Assert((!image1.empty()) && (!image2.empty()));
|
||||
|
@ -299,3 +299,22 @@ TEST(Hauss, regression)
|
||||
ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val);
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST(computeDistance, regression_4976)
|
||||
{
|
||||
Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0);
|
||||
Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0);
|
||||
|
||||
vector<vector<Point> > ca,cb;
|
||||
findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
|
||||
findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS);
|
||||
|
||||
Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor();
|
||||
Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor();
|
||||
|
||||
double d1 = hd->computeDistance(ca[0],cb[0]);
|
||||
double d2 = sd->computeDistance(ca[0],cb[0]);
|
||||
|
||||
EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor";
|
||||
EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor";
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user