mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Remove preprocessing parameters from README
This commit is contained in:
parent
c9a76ede94
commit
a304069687
@ -2,19 +2,22 @@
|
||||
|
||||
## Model Zoo
|
||||
|
||||
### Object detection
|
||||
Check [a wiki](https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV) for a list of tested models.
|
||||
|
||||
| Model | Scale | Size WxH| Mean subtraction | Channels order |
|
||||
|---------------|-------|-----------|--------------------|-------|
|
||||
| [MobileNet-SSD, Caffe](https://github.com/chuanqi305/MobileNet-SSD/) | `0.00784 (2/255)` | `300x300` | `127.5 127.5 127.5` | BGR |
|
||||
| [OpenCV face detector](https://github.com/opencv/opencv/tree/3.4/samples/dnn/face_detector) | `1.0` | `300x300` | `104 177 123` | BGR |
|
||||
| [SSDs from TensorFlow](https://github.com/tensorflow/models/tree/master/research/object_detection/) | `0.00784 (2/255)` | `300x300` | `127.5 127.5 127.5` | RGB |
|
||||
| [YOLO](https://pjreddie.com/darknet/yolo/) | `0.00392 (1/255)` | `416x416` | `0 0 0` | RGB |
|
||||
| [VGG16-SSD](https://github.com/weiliu89/caffe/tree/ssd) | `1.0` | `300x300` | `104 117 123` | BGR |
|
||||
| [Faster-RCNN](https://github.com/rbgirshick/py-faster-rcnn) | `1.0` | `800x600` | `102.9801 115.9465 122.7717` | BGR |
|
||||
| [R-FCN](https://github.com/YuwenXiong/py-R-FCN) | `1.0` | `800x600` | `102.9801 115.9465 122.7717` | BGR |
|
||||
| [Faster-RCNN, ResNet backbone](https://github.com/tensorflow/models/tree/master/research/object_detection/) | `1.0` | `300x300` | `103.939 116.779 123.68` | RGB |
|
||||
| [Faster-RCNN, InceptionV2 backbone](https://github.com/tensorflow/models/tree/master/research/object_detection/) | `0.00784 (2/255)` | `300x300` | `127.5 127.5 127.5` | RGB |
|
||||
If OpenCV is built with [Intel's Inference Engine support](https://github.com/opencv/opencv/wiki/Intel%27s-Deep-Learning-Inference-Engine-backend) you can use [Intel's pre-trained](https://github.com/opencv/open_model_zoo) models.
|
||||
|
||||
There are different preprocessing parameters such mean subtraction or scale factors for different models.
|
||||
You may check the most popular models and their parameters at [models.yml](https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml) configuration file. It might be also used for aliasing samples parameters. In example,
|
||||
|
||||
```bash
|
||||
python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt
|
||||
```
|
||||
|
||||
Check `-h` option to know which values are used by default:
|
||||
|
||||
```bash
|
||||
python object_detection.py opencv_fd -h
|
||||
```
|
||||
|
||||
#### Face detection
|
||||
[An origin model](https://github.com/opencv/opencv/tree/3.4/samples/dnn/face_detector)
|
||||
@ -44,18 +47,6 @@ AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481 | 0.480 (-0.001) |
|
||||
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528 | 0.528 | 0.520 | 0.462 (-0.058) |
|
||||
```
|
||||
|
||||
### Classification
|
||||
| Model | Scale | Size WxH| Mean subtraction | Channels order |
|
||||
|---------------|-------|-----------|--------------------|-------|
|
||||
| GoogLeNet | `1.0` | `224x224` | `104 117 123` | BGR |
|
||||
| [SqueezeNet](https://github.com/DeepScale/SqueezeNet) | `1.0` | `227x227` | `0 0 0` | BGR |
|
||||
|
||||
### Semantic segmentation
|
||||
| Model | Scale | Size WxH| Mean subtraction | Channels order |
|
||||
|---------------|-------|-----------|--------------------|-------|
|
||||
| [ENet](https://github.com/e-lab/ENet-training) | `0.00392 (1/255)` | `1024x512` | `0 0 0` | RGB |
|
||||
| FCN8s | `1.0` | `500x500` | `0 0 0` | BGR |
|
||||
|
||||
## References
|
||||
* [Models downloading script](https://github.com/opencv/opencv_extra/blob/master/testdata/dnn/download_models.py)
|
||||
* [Configuration files adopted for OpenCV](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn)
|
||||
|
Loading…
Reference in New Issue
Block a user