mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
added comment to letter_recog.py sample (adopted from c++ version)
This commit is contained in:
parent
5f6bbcc89a
commit
a3220a446f
@ -1,3 +1,28 @@
|
|||||||
|
'''
|
||||||
|
The sample demonstrates how to train Random Trees classifier
|
||||||
|
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
|
||||||
|
|
||||||
|
We use the sample database letter-recognition.data
|
||||||
|
from UCI Repository, here is the link:
|
||||||
|
|
||||||
|
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
|
||||||
|
UCI Repository of machine learning databases
|
||||||
|
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
|
||||||
|
Irvine, CA: University of California, Department of Information and Computer Science.
|
||||||
|
|
||||||
|
The dataset consists of 20000 feature vectors along with the
|
||||||
|
responses - capital latin letters A..Z.
|
||||||
|
The first 10000 samples are used for training
|
||||||
|
and the remaining 10000 - to test the classifier.
|
||||||
|
======================================================
|
||||||
|
USAGE:
|
||||||
|
letter_recog.py [--model <model>]
|
||||||
|
[--data <data fn>]
|
||||||
|
[--load <model fn>] [--save <model fn>]
|
||||||
|
|
||||||
|
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||||
|
'''
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
@ -77,7 +102,6 @@ class Boost(LetterStatModel):
|
|||||||
|
|
||||||
|
|
||||||
class SVM(LetterStatModel):
|
class SVM(LetterStatModel):
|
||||||
train_ratio = 0.1
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.model = cv2.SVM()
|
self.model = cv2.SVM()
|
||||||
|
|
||||||
@ -118,12 +142,11 @@ if __name__ == '__main__':
|
|||||||
import getopt
|
import getopt
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
print __doc__
|
||||||
|
|
||||||
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
||||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||||
|
|
||||||
print 'USAGE: letter_recog.py [--model <model>] [--data <data fn>] [--load <model fn>] [--save <model fn>]'
|
|
||||||
print 'Models: ', ', '.join(models)
|
|
||||||
print
|
|
||||||
|
|
||||||
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
||||||
args = dict(args)
|
args = dict(args)
|
||||||
|
Loading…
Reference in New Issue
Block a user