Merge pull request #23766 from TolyaTalamanov:at/segmentation-demo-desync

G-API: Refine Semantic Segmentation Demo #23766

### Overview
* Supported demo working with camera id (e.g `--input=0`)
* Supported 3d output segmentation models (e.g `deeplabv3`)
* Supported `desync` execution
* Supported higher camera resolution
* Changed the color map to pascal voc (https://cloud.githubusercontent.com/assets/4503207/17803328/1006ca80-65f6-11e6-9ff6-36b7ef5b9ac6.png)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
Anatoliy Talamanov 2023-06-13 16:06:19 +01:00 committed by GitHub
parent 134d0b74d3
commit a371bdac9d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 187 additions and 62 deletions

View File

@ -22,6 +22,7 @@
* because of this file.
*/
#include <chrono>
#include <map>
#include <opencv2/videoio.hpp>
#include <opencv2/gapi/garg.hpp>
@ -47,8 +48,16 @@ namespace wip {
class GCaptureSource: public IStreamSource
{
public:
explicit GCaptureSource(int id) : cap(id) { prep(); }
explicit GCaptureSource(const std::string &path) : cap(path) { prep(); }
explicit GCaptureSource(int id, const std::map<int, double> &properties = {})
: cap(id) { prep(properties); }
explicit GCaptureSource(const std::string &path,
const std::map<int, double> &properties = {})
: cap(path) { prep(properties); }
void set(int propid, double value) {
cap.set(propid, value);
}
// TODO: Add more constructor overloads to make it
// fully compatible with VideoCapture's interface.
@ -59,8 +68,12 @@ protected:
bool first_pulled = false;
int64_t counter = 0;
void prep()
void prep(const std::map<int, double> &properties)
{
for (const auto &it : properties) {
cap.set(it.first, it.second);
}
// Prepare first frame to report its meta to engine
// when needed
GAPI_Assert(first.empty());
@ -114,15 +127,19 @@ protected:
};
// NB: Overload for using from python
GAPI_EXPORTS_W cv::Ptr<IStreamSource> inline make_capture_src(const std::string& path)
GAPI_EXPORTS_W cv::Ptr<IStreamSource>
inline make_capture_src(const std::string& path,
const std::map<int, double>& properties = {})
{
return make_src<GCaptureSource>(path);
return make_src<GCaptureSource>(path, properties);
}
// NB: Overload for using from python
GAPI_EXPORTS_W cv::Ptr<IStreamSource> inline make_capture_src(const int id)
GAPI_EXPORTS_W cv::Ptr<IStreamSource>
inline make_capture_src(const int id,
const std::map<int, double>& properties = {})
{
return make_src<GCaptureSource>(id);
return make_src<GCaptureSource>(id, properties);
}
} // namespace wip

View File

@ -28,6 +28,7 @@ using map_string_and_string = std::map<std::string, std::string>;
using map_string_and_string = std::map<std::string, std::string>;
using map_string_and_vector_size_t = std::map<std::string, std::vector<size_t>>;
using map_string_and_vector_float = std::map<std::string, std::vector<float>>;
using map_int_and_double = std::map<int, double>;
// NB: Python wrapper generate T_U for T<U>
// This behavior is only observed for inputs

View File

@ -5,34 +5,41 @@
#include <opencv2/gapi/operators.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/gapi/streaming/desync.hpp>
#include <opencv2/gapi/streaming/format.hpp>
#include <iomanip>
const std::string keys =
"{ h help | | Print this help message }"
"{ desync | false | Desynchronize inference }"
"{ input | | Path to the input video file }"
"{ output | | Path to the output video file }"
"{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";
// 20 colors for 20 classes of semantic-segmentation-adas-0001
const std::vector<cv::Vec3b> colors = {
{ 128, 64, 128 },
{ 232, 35, 244 },
{ 70, 70, 70 },
{ 156, 102, 102 },
{ 153, 153, 190 },
{ 153, 153, 153 },
{ 30, 170, 250 },
{ 0, 220, 220 },
{ 35, 142, 107 },
{ 152, 251, 152 },
{ 180, 130, 70 },
{ 60, 20, 220 },
{ 0, 0, 255 },
{ 142, 0, 0 },
{ 70, 0, 0 },
{ 100, 60, 0 },
{ 90, 0, 0 },
{ 230, 0, 0 },
{ 32, 11, 119 },
{ 0, 74, 111 },
static std::vector<cv::Vec3b> colors = {
{ 0, 0, 0 },
{ 0, 0, 128 },
{ 0, 128, 0 },
{ 0, 128, 128 },
{ 128, 0, 0 },
{ 128, 0, 128 },
{ 128, 128, 0 },
{ 128, 128, 128 },
{ 0, 0, 64 },
{ 0, 0, 192 },
{ 0, 128, 64 },
{ 0, 128, 192 },
{ 128, 0, 64 },
{ 128, 0, 192 },
{ 128, 128, 64 },
{ 128, 128, 192 },
{ 0, 64, 0 },
{ 0, 64, 128 },
{ 0, 192, 0 },
{ 0, 192, 128 },
{ 128, 64, 0 }
};
namespace {
@ -43,12 +50,23 @@ std::string get_weights_path(const std::string &model_path) {
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
return static_cast<unsigned char>(std::tolower(c));
});
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
bool isNumber(const std::string &str) {
return !str.empty() && std::all_of(str.begin(), str.end(),
[](unsigned char ch) { return std::isdigit(ch); });
}
std::string toStr(double value) {
std::stringstream ss;
ss << std::fixed << std::setprecision(1) << value;
return ss.str();
}
void classesToColors(const cv::Mat &out_blob,
cv::Mat &mask_img) {
const int H = out_blob.size[0];
@ -97,6 +115,25 @@ void probsToClasses(const cv::Mat& probs, cv::Mat& classes) {
} // anonymous namespace
namespace vis {
static void putText(cv::Mat& mat, const cv::Point &position, const std::string &message) {
auto fontFace = cv::FONT_HERSHEY_COMPLEX;
int thickness = 2;
cv::Scalar color = {200, 10, 10};
double fontScale = 0.65;
cv::putText(mat, message, position, fontFace,
fontScale, cv::Scalar(255, 255, 255), thickness + 1);
cv::putText(mat, message, position, fontFace, fontScale, color, thickness);
}
static void drawResults(cv::Mat &img, const cv::Mat &color_mask) {
img = img / 2 + color_mask / 2;
}
} // namespace vis
namespace custom {
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
@ -106,19 +143,34 @@ G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_pro
GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) {
int C = -1, H = -1, W = -1;
if (out_blob.size.dims() == 4u) {
C = 1; H = 2, W = 3;
} else if (out_blob.size.dims() == 3u) {
C = 0; H = 1, W = 2;
} else {
throw std::logic_error(
"Number of dimmensions for model output must be 3 or 4!");
}
cv::Mat classes;
// NB: If output has more than single plane, it contains probabilities
// otherwise class id.
if (out_blob.size[1] > 1) {
if (out_blob.size[C] > 1) {
probsToClasses(out_blob, classes);
} else {
out_blob.convertTo(classes, CV_8UC1);
classes = classes.reshape(1, out_blob.size[2]);
if (out_blob.depth() != CV_32S) {
throw std::logic_error(
"Single channel output must have integer precision!");
}
cv::Mat view(out_blob.size[H], // cols
out_blob.size[W], // rows
CV_32SC1,
out_blob.data);
view.convertTo(classes, CV_8UC1);
}
cv::Mat mask_img;
classesToColors(classes, mask_img);
cv::resize(mask_img, out, in.size());
cv::resize(mask_img, out, in.size(), 0, 0, cv::INTER_NEAREST);
}
};
} // namespace custom
@ -134,6 +186,7 @@ int main(int argc, char *argv[]) {
const std::string input = cmd.get<std::string>("input");
const std::string output = cmd.get<std::string>("output");
const auto model_path = cmd.get<std::string>("ssm");
const bool desync = cmd.get<bool>("desync");
const auto weights_path = get_weights_path(model_path);
const auto device = "CPU";
G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
@ -145,40 +198,87 @@ int main(int argc, char *argv[]) {
// Now build the graph
cv::GMat in;
cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(in);
cv::GMat post_proc_out = custom::PostProcessing::on(in, out_blob);
cv::GMat blending_in = in * 0.3f;
cv::GMat blending_out = post_proc_out * 0.7f;
cv::GMat out = blending_in + blending_out;
cv::GMat bgr = cv::gapi::copy(in);
cv::GMat frame = desync ? cv::gapi::streaming::desync(bgr) : bgr;
cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(frame);
cv::GMat out = custom::PostProcessing::on(frame, out_blob);
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(bgr, out))
.compileStreaming(cv::compile_args(kernels, networks,
cv::gapi::streaming::queue_capacity{1}));
std::shared_ptr<cv::gapi::wip::GCaptureSource> source;
if (isNumber(input)) {
source = std::make_shared<cv::gapi::wip::GCaptureSource>(
std::stoi(input),
std::map<int, double> {
{cv::CAP_PROP_FRAME_WIDTH, 1280},
{cv::CAP_PROP_FRAME_HEIGHT, 720},
{cv::CAP_PROP_BUFFERSIZE, 1},
{cv::CAP_PROP_AUTOFOCUS, true}
}
);
} else {
source = std::make_shared<cv::gapi::wip::GCaptureSource>(input);
}
auto inputs = cv::gin(
static_cast<cv::gapi::wip::IStreamSource::Ptr>(source));
// The execution part
pipeline.setSource(std::move(inputs));
cv::VideoWriter writer;
cv::TickMeter tm;
cv::Mat outMat;
cv::VideoWriter writer;
cv::util::optional<cv::Mat> color_mask;
cv::util::optional<cv::Mat> image;
cv::Mat last_image;
cv::Mat last_color_mask;
pipeline.start();
tm.start();
std::size_t frames = 0u;
tm.start();
pipeline.start();
while (pipeline.pull(cv::gout(outMat))) {
++frames;
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
if (!writer.isOpened()) {
const auto sz = cv::Size{outMat.cols, outMat.rows};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
std::size_t masks = 0u;
while (pipeline.pull(cv::gout(image, color_mask))) {
if (image.has_value()) {
++frames;
last_image = std::move(*image);
}
if (color_mask.has_value()) {
++masks;
last_color_mask = std::move(*color_mask);
}
if (!last_image.empty() && !last_color_mask.empty()) {
tm.stop();
std::string stream_fps = "Stream FPS: " + toStr(frames / tm.getTimeSec());
std::string inference_fps = "Inference FPS: " + toStr(masks / tm.getTimeSec());
cv::Mat tmp = last_image.clone();
vis::drawResults(tmp, last_color_mask);
vis::putText(tmp, {10, 22}, stream_fps);
vis::putText(tmp, {10, 22 + 30}, inference_fps);
cv::imshow("Out", tmp);
cv::waitKey(1);
if (!output.empty()) {
if (!writer.isOpened()) {
const auto sz = cv::Size{tmp.cols, tmp.rows};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
}
writer << tmp;
}
writer << outMat;
tm.start();
}
}
tm.stop();
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
std::cout << "Processed " << frames << " frames" << " ("
<< frames / tm.getTimeSec()<< " FPS)" << std::endl;
return 0;
}

View File

@ -268,6 +268,11 @@ PyObject* pyopencv_from(const std::vector<Tp>& value)
template<typename K, typename V>
bool pyopencv_to(PyObject *obj, std::map<K,V> &map, const ArgInfo& info)
{
if (!obj || obj == Py_None)
{
return true;
}
PyObject* py_key = nullptr;
PyObject* py_value = nullptr;
Py_ssize_t pos = 0;

View File

@ -191,13 +191,15 @@ _PREDEFINED_TYPES = (
PrimitiveTypeNode.str_())
), export_name="SearchParams"),
AliasTypeNode.dict_("map_string_and_string", PrimitiveTypeNode.str_("map_string_and_string::key"),
PrimitiveTypeNode.str_("map_string_and_string::key::value")),
PrimitiveTypeNode.str_("map_string_and_string::value")),
AliasTypeNode.dict_("map_string_and_int", PrimitiveTypeNode.str_("map_string_and_int::key"),
PrimitiveTypeNode.int_("map_string_and_int::key::value")),
PrimitiveTypeNode.int_("map_string_and_int::value")),
AliasTypeNode.dict_("map_string_and_vector_size_t", PrimitiveTypeNode.str_("map_string_and_vector_size_t::key"),
SequenceTypeNode("map_string_and_vector_size_t::key::value", PrimitiveTypeNode.int_("size_t"))),
SequenceTypeNode("map_string_and_vector_size_t::value", PrimitiveTypeNode.int_("size_t"))),
AliasTypeNode.dict_("map_string_and_vector_float", PrimitiveTypeNode.str_("map_string_and_vector_float::key"),
SequenceTypeNode("map_string_and_vector_float::key::value", PrimitiveTypeNode.float_())),
SequenceTypeNode("map_string_and_vector_float::value", PrimitiveTypeNode.float_())),
AliasTypeNode.dict_("map_int_and_double", PrimitiveTypeNode.int_("map_int_and_double::key"),
PrimitiveTypeNode.float_("map_int_and_double::value")),
)
PREDEFINED_TYPES = dict(zip((t.ctype_name for t in _PREDEFINED_TYPES), _PREDEFINED_TYPES))