mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Merge pull request #24322 from Abdurrahheem:ash/dev_einsum_ellips
Ellipses supported added for Einsum Layer #24322 This PR added addresses issues not covered in #24037. Namely these are: Test case for this patch is in this PR [#1106](https://github.com/opencv/opencv_extra/pull/1106) in opencv extra Added: - [x] Broadcasting reduction "...ii ->...I" - [x] Add lazy shape deduction. "...ij, ...jk->...ik" Features to add: - [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik") - [ ] Add support for CUDA backend - [ ] BatchWiseMultiply optimize - [ ] Performance test ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
1fe0fc224c
commit
a3b3a589f9
@ -32,15 +32,14 @@ static bool IsTransposeReshapeForEinsum(const std::vector<size_t>& perm,
|
||||
return true;
|
||||
}
|
||||
|
||||
Mat batchwiseMatMul(
|
||||
static Mat batchwiseMatMul(
|
||||
const Mat& input1,
|
||||
const MatShape& input1ShapeOverride,
|
||||
const Mat& input2,
|
||||
const MatShape& input2ShapeOverride)
|
||||
{
|
||||
// Sanity checks before the actual MatMul
|
||||
//input_1.DataType() == input_2.DataType(), "Data types of the inputs must match for MatMul");
|
||||
|
||||
CV_CheckType(input1.type(), input2.type(), "Data types of the inputs must match for MatMul");
|
||||
CV_CheckEQ(input1ShapeOverride.size(), (size_t) 3, "Only 1 batch dimension is allowed for MatMul");
|
||||
CV_CheckEQ(input2ShapeOverride.size(), (size_t) 3, "Only 1 batch dimension is allowed for MatMul");
|
||||
CV_CheckEQ((size_t) input1ShapeOverride[0], (size_t) input2ShapeOverride[0], "Batch dimension should match for MatMul;");
|
||||
@ -51,8 +50,6 @@ Mat batchwiseMatMul(
|
||||
size_t K = input1ShapeOverride[2];
|
||||
size_t N = input2ShapeOverride[2];
|
||||
|
||||
//TODO: deal with dynamic shapes
|
||||
//TODO: deal with reshaping operation (it might not always be needed)
|
||||
std::vector<Mat> output;
|
||||
if (batches > 1)
|
||||
{
|
||||
@ -141,26 +138,19 @@ Mat batchwiseMatMul(
|
||||
return output_buffer;
|
||||
};
|
||||
|
||||
Mat Transpose(
|
||||
const cv::Mat& input,
|
||||
static Mat Transpose(
|
||||
const Mat& input,
|
||||
const MatShape& input_shape_override,
|
||||
const std::vector<size_t> permutation)
|
||||
{
|
||||
|
||||
int input_rank = input_shape_override.size();
|
||||
|
||||
CV_Assert(input_rank == permutation.size());
|
||||
|
||||
// TODO: ouptimize
|
||||
bool reshape = false;
|
||||
if (input.dims != input_shape_override.size())
|
||||
{
|
||||
reshape = true;
|
||||
}
|
||||
bool reshape = input.dims != input_rank;
|
||||
|
||||
Mat input_reshaped;
|
||||
if(reshape)
|
||||
{
|
||||
if(reshape){
|
||||
input_reshaped = input.reshape(1, input_shape_override.size(), input_shape_override.data());
|
||||
}
|
||||
|
||||
@ -170,13 +160,9 @@ Mat Transpose(
|
||||
outputDims.emplace_back(input_shape_override[dim]);
|
||||
|
||||
Mat output;
|
||||
// TODO: ouptimize
|
||||
MatShape tmp_perm;
|
||||
tmp_perm.reserve(permutation.size());
|
||||
for (int i = 0; i < permutation.size(); i++)
|
||||
tmp_perm.emplace_back(static_cast<int>(permutation[i]));
|
||||
MatShape order(permutation.begin(), permutation.end());
|
||||
|
||||
cv::transposeND((reshape ? input_reshaped : input), tmp_perm, output);
|
||||
cv::transposeND((reshape ? input_reshaped : input), order, output);
|
||||
return output;
|
||||
}
|
||||
|
||||
@ -201,12 +187,183 @@ bool IsTransposeRequired(size_t input_rank, const std::vector<size_t>& permutati
|
||||
return transpose_required;
|
||||
}
|
||||
|
||||
Mat Diagonal(
|
||||
const cv::Mat& input,
|
||||
int subscriptIndicesToInputIndex,
|
||||
int dimIndexInIreprocessedInput)
|
||||
|
||||
bool IsTransposeRequiredForDiagonal(int dim1, int dim2, int rank) {
|
||||
// If the input is 2D, we don't need a transpose
|
||||
if (rank == 2)
|
||||
return false;
|
||||
|
||||
// If the two dims are the innermost dims, no transpose is required
|
||||
if ((dim1 == rank - 1 && dim2 == rank - 2) ||
|
||||
(dim1 == rank - 2 && dim2 == rank - 1))
|
||||
return false;
|
||||
|
||||
// Transpose is required
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Mat DiagonalDataAssignment(Mat input) {
|
||||
|
||||
int rank = input.dims;
|
||||
CV_Assert(rank >= 2);
|
||||
CV_Assert(input.size[rank - 1] == input.size[rank - 2]);
|
||||
MatShape original_dims = shape(input);
|
||||
|
||||
if (rank > 3){
|
||||
//reshape to 3D mat
|
||||
int collapsed_size = 1;
|
||||
for (int i = 0; i < rank - 2; ++i) {
|
||||
collapsed_size *= input.size[i];
|
||||
}
|
||||
std::vector<int> reshaped_dims = {collapsed_size, input.size[rank - 2], input.size[rank - 1]};
|
||||
input = input.reshape(1, reshaped_dims);
|
||||
}
|
||||
|
||||
// Compute total number of higher-dimensional slices
|
||||
int total_slices = input.size[0];
|
||||
|
||||
original_dims[rank - 1] = 1; // Set the last dimension to 1, as we have extracted the diagonal
|
||||
Mat output = Mat(original_dims, input.type());
|
||||
|
||||
int inner_stride = input.size[input.dims - 1];
|
||||
auto inputPtr = input.ptr<T>();
|
||||
auto outputPtr = output.ptr<T>();
|
||||
for (int slice = 0; slice < total_slices; ++slice) {
|
||||
for (int j = 0; j < inner_stride; ++j) {
|
||||
// Direct memory access using raw pointers
|
||||
outputPtr[slice * inner_stride + j] = inputPtr[slice * inner_stride * inner_stride + j * inner_stride + j];
|
||||
}
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
/* Extract the diagonal elements from the last two dimensions of the tensor.
|
||||
For instance, given an input_shape of [1, 2, 3, 3]:
|
||||
|
||||
The flexibility in this implementation allows one to choose which of the two
|
||||
last dimensions retains its value, determined by the `preserve_innermost_dim_val` parameter.
|
||||
|
||||
When preserve_innermost_dim_val == true:
|
||||
The resulting shape is [1, 2, 1, 3], indicating the diagonal has 3 elements,
|
||||
and it keeps the dimension value of the innermost dimension.
|
||||
|
||||
When preserve_innermost_dim_val == false:
|
||||
The resulting shape is [1, 2, 3, 1], indicating the diagonal also has 3 elements,
|
||||
but it retains the dimension value of the penultimate dimension. */
|
||||
Mat DiagonalInnermostDims(const Mat& input, bool preserve_innermost_dim_val) {
|
||||
const MatShape input_dims = shape(input);
|
||||
int rank = input_dims.size();
|
||||
|
||||
// This is an internal method and we already have finished all validations in the calling method.
|
||||
// We proceed without duplicating all validations again here.
|
||||
|
||||
// We have a minimalistic check here to make sure the innermost dims have the same dim value
|
||||
// as the calling method may have done a transpose before calling this method
|
||||
CV_CheckEQ(input.size[rank - 1], input.size[rank - 2],
|
||||
"innermost dims should have the same dim value to parse the diagonal elements");
|
||||
|
||||
MatShape output_dims = input_dims; // Copy the original dims
|
||||
if (preserve_innermost_dim_val) {
|
||||
output_dims[rank - 2] = 1;
|
||||
} else {
|
||||
output_dims[rank - 1] = 1;
|
||||
}
|
||||
|
||||
// TODO: hande different types
|
||||
Mat output = DiagonalDataAssignment<float>(input);
|
||||
|
||||
if (output_dims != shape(output)){
|
||||
CV_Error(Error::StsError, "Output shape does not match with calculated shape");
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
Mat Diagonal(const Mat& input, int dim1, int dim2)
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "Diagonal Not Implemented Yet");
|
||||
const MatShape input_dims = shape(input);
|
||||
int rank = input_dims.size();
|
||||
|
||||
if (!(rank >= 2 && dim1 != dim2 && input_dims[dim1] == input_dims[dim2])){
|
||||
std::string input_dims_str = std::accumulate(std::next(input_dims.begin()), input_dims.end(), std::to_string(input_dims[0]),
|
||||
[](const std::string& a, int b) {
|
||||
return a + ' ' + std::to_string(b);
|
||||
});
|
||||
CV_Error(Error::StsError, cv::format("Cannot parse the diagonal elements along dims %d and %d for input shape %s",dim1, dim2, input_dims_str.c_str()));
|
||||
}
|
||||
|
||||
int first_dim = std::min(dim1, dim2);
|
||||
int second_dim = std::max(dim1, dim2);
|
||||
|
||||
Mat output;
|
||||
bool preserve_innermost_dim_val = false;
|
||||
|
||||
bool is_transpose_required = IsTransposeRequiredForDiagonal(dim1, dim2, rank);
|
||||
if (is_transpose_required)
|
||||
{
|
||||
std::vector<size_t> permutation(rank, 0);
|
||||
int first_dim_axis = -1; // This is the axis eventually occupied by the first_dim
|
||||
|
||||
// If one of the diagonal dimensions is one of the 2 innermost dims, then leave it as such
|
||||
// so as to avoid transpose overhead
|
||||
if (first_dim == rank - 2) { // If rank - 2 is occupied by first_dim, keep it there
|
||||
permutation[rank - 2] = first_dim;
|
||||
first_dim_axis = rank - 2;
|
||||
} else {
|
||||
if (second_dim != rank - 2) { // If rank - 2 is not occupied by second_dim, then put first_dim there
|
||||
permutation[rank - 2] = first_dim;
|
||||
first_dim_axis = rank - 2;
|
||||
} else { // If rank - 2 is occupied by second_dim, then put first_dim in rank - 1
|
||||
permutation[rank - 1] = first_dim;
|
||||
first_dim_axis = rank - 1;
|
||||
preserve_innermost_dim_val = true; // We always want to preserve the dim value of the first_dim
|
||||
}
|
||||
}
|
||||
|
||||
// Put the second_dim in the dim not occupied by the first_dim
|
||||
if (first_dim_axis != rank - 1) {
|
||||
permutation[rank - 1] = second_dim;
|
||||
} else {
|
||||
permutation[rank - 2] = second_dim;
|
||||
}
|
||||
|
||||
size_t iter = 0;
|
||||
for (int i = 0; i < rank; ++i) {
|
||||
if (i != first_dim && i != second_dim) {
|
||||
permutation[iter++] = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Permutate the input so that the dims from which we need the diagonal forms the innermost dims
|
||||
Mat transposed = Transpose(input, input_dims, permutation);
|
||||
|
||||
// Parse the diagonal from the innermost dims
|
||||
output = DiagonalInnermostDims(transposed, preserve_innermost_dim_val);
|
||||
|
||||
// Swap back the dimensions to the original axes ordering using a "reverse permutation"
|
||||
// Find the "reverse" permutation
|
||||
iter = 0;
|
||||
std::vector<size_t> reverse_permutation(rank, 0);
|
||||
for (const auto& perm : permutation) {
|
||||
reverse_permutation[perm] = iter++;
|
||||
}
|
||||
|
||||
// Permutate using the reverse permutation to get back the original axes ordering
|
||||
// (Pass in CPU Transpose function here as this Diagonal method will only be used for CPU based diagonal parsing)
|
||||
output = Transpose(output, shape(output), reverse_permutation);
|
||||
} else {
|
||||
// No transposing required
|
||||
output = DiagonalInnermostDims(input, preserve_innermost_dim_val);
|
||||
}
|
||||
|
||||
// Make copy of the output dims
|
||||
MatShape output_dims = shape(output);
|
||||
|
||||
// Unsqueeze the reduced dim
|
||||
auto iter = output_dims.begin() + second_dim;
|
||||
output_dims.erase(iter);
|
||||
output = output.reshape(1, output_dims);
|
||||
return output;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -299,7 +456,7 @@ public:
|
||||
void parseEquation(String equation);
|
||||
void processEquation(const std::vector<MatShape>& inputs);
|
||||
void processBroadcastedDims();
|
||||
void createOutputSubsctipt();
|
||||
void validateOutputSubscript();
|
||||
void calculateOutputShape();
|
||||
void preProcessInputs(InputArrayOfArrays& inputs);
|
||||
Mat reduceSum(Mat& src, MatShape& reduceAxis);
|
||||
@ -358,7 +515,7 @@ public:
|
||||
processBroadcastedDims();
|
||||
|
||||
// calculate output shape
|
||||
createOutputSubsctipt();
|
||||
validateOutputSubscript();
|
||||
calculateOutputShape();
|
||||
}
|
||||
|
||||
@ -624,7 +781,7 @@ void LayerEinsumImpl::calculateOutputShape()
|
||||
{
|
||||
// Traverse through each of the subscript labels within the output subscript.
|
||||
bool middleOfEllipsis = false;
|
||||
// int64_t ellipsisCharCount = 0;
|
||||
int ellipsisCharCount = 0;
|
||||
|
||||
subscriptIndicesToOutputIndices.resize(numLetterIndices, -1);
|
||||
|
||||
@ -636,7 +793,21 @@ void LayerEinsumImpl::calculateOutputShape()
|
||||
{
|
||||
if(letter == '.')
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "Ellipsis are not supported yet");
|
||||
middleOfEllipsis = true;
|
||||
// Make sure there aren't more than 3 '.'s in the current subscript
|
||||
if (++ellipsisCharCount > 3) {
|
||||
CV_Error(Error::StsError, "Found a '.' not part of an ellipsis in the output subscript provided");
|
||||
}
|
||||
|
||||
if (ellipsisCharCount == 3) { // Ellipsis is complete. Process it.
|
||||
middleOfEllipsis = false;
|
||||
for (size_t i = 0; i < numOfEllipsisDims; ++i) {
|
||||
einsumOutDims.emplace_back(subscriptIndicesToDimValue[i]);
|
||||
// The ellipsis is seen in the output and hence the corresponding dims are to not be reduced
|
||||
subscriptIndicesToLastInput[i] = -1;
|
||||
subscriptIndicesToOutputIndices[i] = outputDimCounter++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
CV_CheckEQ(middleOfEllipsis, false,
|
||||
"Encountered '.' character that is not part of output subscript");
|
||||
@ -666,7 +837,7 @@ void LayerEinsumImpl::calculateOutputShape()
|
||||
}
|
||||
}
|
||||
|
||||
void LayerEinsumImpl::createOutputSubsctipt()
|
||||
void LayerEinsumImpl::validateOutputSubscript()
|
||||
{
|
||||
// The explicit form requires no operation, as the output
|
||||
// would have already been parsed during the input parsing process.
|
||||
@ -679,8 +850,6 @@ void LayerEinsumImpl::createOutputSubsctipt()
|
||||
{
|
||||
CV_Error(Error::StsError,
|
||||
"Provided output subscript does not include ellipsis while Inputs subscrits constain ellipsis");
|
||||
} else {
|
||||
CV_Error(Error::StsNotImplemented, "Ellipsis are not yet supported");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -689,9 +858,84 @@ void LayerEinsumImpl::createOutputSubsctipt()
|
||||
void LayerEinsumImpl::processBroadcastedDims()
|
||||
{
|
||||
// Only compute this function if ellipsis "..." was found in the equation
|
||||
if (numOfEllipsisDims > 0){
|
||||
// add assert inplace of return bool
|
||||
CV_Error(Error::StsError, "Ellipsis are not supperted currenly");
|
||||
if (numOfEllipsisDims > 0)
|
||||
{
|
||||
// extend the number of subscript labels to include each ellipsis dim as
|
||||
// theoretically each ellipsis dim does correspond to a "virtual" subscript label
|
||||
numLetterIndices += numOfEllipsisDims;
|
||||
|
||||
// We are going to assign the broadcasted dims outermost subscript indices (i.e.) 0 -> numOfEllipsisDims - 1
|
||||
// as most likely bradcasted dims will be batch dimensions (i.e.) outermost dimensions and hence we don't have to pay
|
||||
// transposing while "homogenizing" the input
|
||||
|
||||
// Hence offset all subscript indices by numOfEllipsisDims
|
||||
for (size_t i = 0; i < numOfLetters; ++i){
|
||||
if (letter2count[i] != -1){
|
||||
letter2index[i] += numOfEllipsisDims;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> tempIndex2LastInput(numLetterIndices, -1);
|
||||
for (int i = 0; i < subscriptIndicesToLastInput.size(); ++i){
|
||||
tempIndex2LastInput[i + numOfEllipsisDims] = subscriptIndicesToLastInput[i];
|
||||
}
|
||||
subscriptIndicesToLastInput = std::move(tempIndex2LastInput);
|
||||
|
||||
std::vector<int> tempIndexToDimValue(numLetterIndices, -1);
|
||||
for (int i = 0; i < subscriptIndicesToDimValue.size(); ++i){
|
||||
tempIndexToDimValue[i + numOfEllipsisDims] = subscriptIndicesToDimValue[i];
|
||||
}
|
||||
subscriptIndicesToDimValue = std::move(tempIndexToDimValue);
|
||||
|
||||
for (size_t i = 0; i < inputSubscriptIndices.size(); ++i)
|
||||
{
|
||||
auto& currentInputDimIndicesToSubscriptIndices = inputSubscriptIndices[i];
|
||||
std::vector<int> tempCurrentInputDimIndicesToSubscriptIndices;
|
||||
tempCurrentInputDimIndicesToSubscriptIndices.reserve(currentInputDimIndicesToSubscriptIndices.size());
|
||||
|
||||
// make sure it is correct
|
||||
const auto& dims = einsumInpShapes[i];
|
||||
auto rank = dims.size();
|
||||
|
||||
size_t dimIter = 0;
|
||||
size_t numBroadcastedIndices = 0;
|
||||
while (dimIter < currentInputDimIndicesToSubscriptIndices.size())
|
||||
{
|
||||
auto value = currentInputDimIndicesToSubscriptIndices[dimIter];
|
||||
if (value == numOfLetters)
|
||||
{ // This is a broadcasted dim
|
||||
// Shouldn't hit this error - just a sanity check
|
||||
CV_Assert(numBroadcastedIndices < numOfEllipsisDims);
|
||||
tempCurrentInputDimIndicesToSubscriptIndices.push_back(static_cast<int>(numBroadcastedIndices));
|
||||
subscriptIndicesToLastInput[numBroadcastedIndices] = i;
|
||||
|
||||
// This is the first time we are seeing this broadcasted dim
|
||||
if (subscriptIndicesToDimValue[numBroadcastedIndices] == -1)
|
||||
{
|
||||
subscriptIndicesToDimValue[numBroadcastedIndices] = dims[dimIter];
|
||||
} else { // We have seen this broadcasted dim before
|
||||
// Check if the previous value is equal to the current value
|
||||
if (subscriptIndicesToDimValue[numBroadcastedIndices] != dims[dimIter])
|
||||
{
|
||||
// If they are not equal, one of them needs to be 1
|
||||
if (subscriptIndicesToDimValue[numBroadcastedIndices] == 1)
|
||||
{
|
||||
subscriptIndicesToDimValue[numBroadcastedIndices] = dims[dimIter];
|
||||
} else {
|
||||
CV_CheckEQ(dims[dimIter], 1, "The broadcasted dimensions of the inputs are incompatible");
|
||||
}
|
||||
}
|
||||
}
|
||||
++numBroadcastedIndices;
|
||||
} else { // This is a regular dim - offset it by number of broadcasted dims
|
||||
tempCurrentInputDimIndicesToSubscriptIndices.push_back(value + static_cast<int>(numOfEllipsisDims));
|
||||
}
|
||||
++dimIter;
|
||||
}
|
||||
// Shouldn't hit this error - just a sanity check
|
||||
CV_Assert(dimIter == rank);
|
||||
currentInputDimIndicesToSubscriptIndices = std::move(tempCurrentInputDimIndicesToSubscriptIndices);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -718,18 +962,58 @@ void LayerEinsumImpl::processEquation(const std::vector<MatShape>& inputs)
|
||||
|
||||
// Variable to deal with "ellipsis" - '...' in the input
|
||||
bool middleOfellipsis = false;
|
||||
int ellipsisCharCount = 0;
|
||||
for (auto letter : token)
|
||||
{
|
||||
// Broadcasting based tokens are not implemented yet
|
||||
if (letter == '.')
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented,
|
||||
"Broad casting based indices are not supported currently");
|
||||
} else
|
||||
{
|
||||
middleOfellipsis = true;
|
||||
|
||||
if (middleOfellipsis)
|
||||
// there should not be more than 3 '.'s in the current subscript
|
||||
if (++ellipsisCharCount > 3)
|
||||
{
|
||||
CV_Error(Error::StsError, cv::format("Found a '.' not part of an ellipsis in input: %d", inputIdx));
|
||||
}
|
||||
|
||||
// We have seen all 3 '.'s. We can safely process the ellipsis now.
|
||||
if (ellipsisCharCount == 3)
|
||||
{
|
||||
middleOfellipsis = false;
|
||||
|
||||
// Example for the following line of code
|
||||
// Subscript "...ij" for an input of rank 6
|
||||
// numOfEllipsisDims = 6 - 5 + 3 = 4
|
||||
int currentNumOfEllipsisDims = static_cast<int>(rank) - token.length() + 3;
|
||||
CV_CheckGE(currentNumOfEllipsisDims, 0,
|
||||
"Einsum subscripts string contains too many subscript labels when compared to the rank of the input");
|
||||
|
||||
// Theoretically, currentNumOfEllipsisDims could be 0
|
||||
// Example: For an input of rank 2 paired with a subscript "...ij"
|
||||
if (currentNumOfEllipsisDims != 0)
|
||||
{
|
||||
// We have seen a ellipsis before - make sure ranks align as per the ONNX spec -
|
||||
// "Ellipsis must indicate a fixed number of dimensions."
|
||||
if (numOfEllipsisDims != 0){
|
||||
CV_CheckEQ(numOfEllipsisDims, static_cast<size_t>(currentNumOfEllipsisDims),
|
||||
"Ellipsis must indicate a fixed number of dimensions across all inputs");
|
||||
} else {
|
||||
numOfEllipsisDims = static_cast<size_t>(currentNumOfEllipsisDims);
|
||||
}
|
||||
|
||||
// We reserve 'numOfLetters' for broadcasted dims as we only allow 'a' - 'z'
|
||||
// and 'A' - 'Z' (0 - 51) for non-broadcasted dims.
|
||||
// We will assign appropriate indices (based on number of dimensions the ellipsis corresponds to)
|
||||
// during broadcasting related post-processing.
|
||||
for (size_t i = 0; i < numOfEllipsisDims; ++i){
|
||||
currTokenIndices.push_back(numOfLetters);
|
||||
}
|
||||
|
||||
// Offset 'dim_count' by number of dimensions the ellipsis corresponds to
|
||||
dim_count += numOfEllipsisDims;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (middleOfellipsis){
|
||||
CV_Error(Error::StsAssert,
|
||||
cv::format(
|
||||
"Encountered '.' character that is not part of an ellipsis in the input: [%d]",
|
||||
@ -744,8 +1028,7 @@ void LayerEinsumImpl::processEquation(const std::vector<MatShape>& inputs)
|
||||
|
||||
// The subscript label was not found in the global subscript label array
|
||||
// Therefore, it is added to both the local and global subscript arrays
|
||||
if(letter2count[letterIdx] == 0)
|
||||
{
|
||||
if(letter2count[letterIdx] == 0){
|
||||
letter2index[letterIdx] = numLetterIndices++;
|
||||
subscriptIndicesToDimValue.push_back(dimValue);
|
||||
subscriptIndicesToLastInput.push_back(inputIdx);
|
||||
@ -756,20 +1039,12 @@ void LayerEinsumImpl::processEquation(const std::vector<MatShape>& inputs)
|
||||
auto mappedIndx = letter2index[letterIdx];
|
||||
subscriptIndicesToLastInput[mappedIndx] = inputIdx;
|
||||
|
||||
if (subscriptIndicesToDimValue[mappedIndx] != dimValue)
|
||||
{
|
||||
if(subscriptIndicesToDimValue[mappedIndx] == 1){
|
||||
//TODO: uncomment later on
|
||||
// subscriptIndicesToDimValue[mappedIndx] == dimValue;
|
||||
} else
|
||||
{
|
||||
if (dimValue != 1)
|
||||
{
|
||||
CV_Error(Error::StsError, cv::format("Einsum operands can not be broadcasted."
|
||||
"Check input shapes/equation passed."
|
||||
"Input shape of operand [%d]", inputIdx) +
|
||||
cv::format(" is incompatible in the dimention [%zu].", static_cast<size_t>(dim_count)));
|
||||
}
|
||||
if (subscriptIndicesToDimValue[mappedIndx] != dimValue) {
|
||||
if (dimValue != 1) {
|
||||
CV_Error(Error::StsError, cv::format("Einsum operands can not be broadcasted."
|
||||
"Check input shapes/equation passed."
|
||||
"Input shape of operand [%d]", inputIdx) +
|
||||
cv::format(" is incompatible in the dimention [%zu].", static_cast<size_t>(dim_count)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -103,7 +103,6 @@
|
||||
"test_dynamicquantizelinear_min_adjusted",
|
||||
"test_dynamicquantizelinear_min_adjusted_expanded",
|
||||
"test_edge_pad",
|
||||
"test_einsum_batch_diagonal",
|
||||
"test_einsum_inner_prod",
|
||||
"test_equal",
|
||||
"test_equal_bcast",
|
||||
|
@ -1456,6 +1456,11 @@ TEST_P(Test_ONNX_layers, Einsum_2D)
|
||||
testONNXModels("einsum_2d", npy, 0, 0, false, false, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Einsum_2D_Ellipses)
|
||||
{
|
||||
testONNXModels("einsum_2d_ellipses", npy, 0, 0, false, false, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Einsum_3D)
|
||||
{
|
||||
testONNXModels("einsum_3d", npy, 0, 0, false, false, 2);
|
||||
@ -1481,7 +1486,7 @@ TEST_P(Test_ONNX_layers, DISABLED_Einsum_HadamardProduct)
|
||||
testONNXModels("einsum_hadamard", npy, 0, 0, false, false, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, DISABLED_Einsum_Batch_Diagonal)
|
||||
TEST_P(Test_ONNX_layers, Einsum_Batch_Diagonal)
|
||||
{
|
||||
testONNXModels("einsum_batch_diagonal", npy, 0, 0, false, false, 1);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user