mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #15318 from luzpaz:modules_typo_fixes
This commit is contained in:
commit
a41b79d43e
@ -627,7 +627,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
|
||||
if( (CV_MAT_TYPE(A->type) != CV_64FC1 && CV_MAT_TYPE(A->type) != CV_32FC1) ||
|
||||
A->rows != 3 || A->cols != 3 )
|
||||
CV_Error( CV_StsBadArg, "Instrinsic parameters must be 3x3 floating-point matrix" );
|
||||
CV_Error( CV_StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" );
|
||||
|
||||
cvConvert( A, &_a );
|
||||
fx = a[0]; fy = a[4];
|
||||
|
@ -119,7 +119,7 @@ cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst)
|
||||
cv::Mat b = cv::Mat::zeros(count,1,CV_64FC1);
|
||||
|
||||
// fill A;b and perform singular value decomposition
|
||||
// it is assumed that w is one for both cooridnates
|
||||
// it is assumed that w is one for both coordinates
|
||||
// h22 is kept to 1
|
||||
switch(src_n.type())
|
||||
{
|
||||
|
@ -252,7 +252,7 @@ class Chessboard: public cv::Feature2D
|
||||
/**
|
||||
* \brief Estimates the search area for a specific point based on the given homography
|
||||
*
|
||||
* \param[in] H homography descriping the transformation from ideal board to real one
|
||||
* \param[in] H homography describing the transformation from ideal board to real one
|
||||
* \param[in] row Row of the point
|
||||
* \param[in] col Col of the point
|
||||
* \param[in] p Percentage [0..1]
|
||||
@ -562,8 +562,8 @@ class Chessboard: public cv::Feature2D
|
||||
void flipHorizontal();
|
||||
|
||||
/**
|
||||
* \brief Flips and rotates the board so that the anlge of
|
||||
* either the black or white diagonale is bigger than the x
|
||||
* \brief Flips and rotates the board so that the angle of
|
||||
* either the black or white diagonal is bigger than the x
|
||||
* and y axis of the board and from a right handed
|
||||
* coordinate system
|
||||
*/
|
||||
@ -650,7 +650,7 @@ class Chessboard: public cv::Feature2D
|
||||
bool right(bool check_empty=false); // moves one corner to the right or returns false
|
||||
bool bottom(bool check_empty=false); // moves one corner to the bottom or returns false
|
||||
bool top(bool check_empty=false); // moves one corner to the top or returns false
|
||||
bool checkCorner()const; // returns ture if the current corner belongs to at least one
|
||||
bool checkCorner()const; // returns true if the current corner belongs to at least one
|
||||
// none empty cell
|
||||
bool isNaN()const; // returns true if the currnet corner is NaN
|
||||
|
||||
|
@ -506,7 +506,7 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2,
|
||||
// Do the cheirality check.
|
||||
// Notice here a threshold dist is used to filter
|
||||
// out far away points (i.e. infinite points) since
|
||||
// their depth may vary between positive and negtive.
|
||||
// their depth may vary between positive and negative.
|
||||
std::vector<Mat> allTriangulations(4);
|
||||
Mat Q;
|
||||
|
||||
|
@ -650,7 +650,7 @@ void PoseSolver::makeCanonicalObjectPoints(InputArray _objectPoints, OutputArray
|
||||
|
||||
if (!computeObjextSpaceR3Pts(objectPoints,R))
|
||||
{
|
||||
//we could not compute R, problably because there is a duplicate point in {objectPoints(0),objectPoints(1),objectPoints(2)}.
|
||||
//we could not compute R, probably because there is a duplicate point in {objectPoints(0),objectPoints(1),objectPoints(2)}.
|
||||
//So we compute it with the SVD (which is slower):
|
||||
computeObjextSpaceRSvD(UZero,R);
|
||||
}
|
||||
|
@ -191,7 +191,7 @@ void CV_HomographyTest::print_information_4(int _method, int j, int N, int k, in
|
||||
cout << "Number of point: " << k << endl;
|
||||
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
||||
cout << "Difference with noise of point: " << diff << endl;
|
||||
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
|
||||
cout << "Maximum allowed difference: " << max_2diff << endl; cout << endl;
|
||||
}
|
||||
|
||||
void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, double diff)
|
||||
@ -204,7 +204,7 @@ void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, do
|
||||
cout << "Count of points: " << N << endl;
|
||||
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
||||
cout << "Difference with noise of points: " << diff << endl;
|
||||
cout << "Maxumum allowed difference: " << max_diff << endl; cout << endl;
|
||||
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
|
||||
}
|
||||
|
||||
void CV_HomographyTest::print_information_6(int _method, int j, int N, int k, double diff, bool value)
|
||||
@ -244,7 +244,7 @@ void CV_HomographyTest::print_information_8(int _method, int j, int N, int k, in
|
||||
cout << "Number of point: " << k << " " << endl;
|
||||
cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
|
||||
cout << "Difference with noise of point: " << diff << endl;
|
||||
cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
|
||||
cout << "Maximum allowed difference: " << max_2diff << endl; cout << endl;
|
||||
}
|
||||
|
||||
void CV_HomographyTest::run(int)
|
||||
|
@ -53,7 +53,7 @@
|
||||
which is incompatible with C
|
||||
|
||||
It is OK to disable it because we only extend few plain structures with
|
||||
C++ construrtors for simpler interoperability with C++ API of the library
|
||||
C++ constructors for simpler interoperability with C++ API of the library
|
||||
*/
|
||||
# pragma warning(disable:4190)
|
||||
# elif defined __clang__ && __clang_major__ >= 3
|
||||
|
@ -126,7 +126,7 @@ public:
|
||||
CV_WRAP GpuMat(int rows, int cols, int type, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
CV_WRAP GpuMat(Size size, int type, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
|
||||
//! constucts GpuMat and fills it with the specified value _s
|
||||
//! constructs GpuMat and fills it with the specified value _s
|
||||
CV_WRAP GpuMat(int rows, int cols, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
CV_WRAP GpuMat(Size size, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
|
||||
|
@ -76,7 +76,7 @@ implemented as a structure based on a one SIMD register.
|
||||
- cv::v_uint32x4 and cv::v_int32x4: four 32-bit integer values (unsgined/signed) - int
|
||||
- cv::v_uint64x2 and cv::v_int64x2: two 64-bit integer values (unsigned/signed) - int64
|
||||
- cv::v_float32x4: four 32-bit floating point values (signed) - float
|
||||
- cv::v_float64x2: two 64-bit floating point valies (signed) - double
|
||||
- cv::v_float64x2: two 64-bit floating point values (signed) - double
|
||||
|
||||
@note
|
||||
cv::v_float64x2 is not implemented in NEON variant, if you want to use this type, don't forget to
|
||||
|
@ -1272,7 +1272,7 @@ inline v_float32x4 v_load_expand(const float16_t* ptr)
|
||||
|
||||
inline void v_pack_store(float16_t* ptr, const v_float32x4& v)
|
||||
{
|
||||
// fixme: Is there any buitin op or intrinsic that cover "xvcvsphp"?
|
||||
// fixme: Is there any builtin op or intrinsic that cover "xvcvsphp"?
|
||||
#if CV_VSX3 && !defined(CV_COMPILER_VSX_BROKEN_ASM)
|
||||
vec_ushort8 vf16;
|
||||
__asm__ __volatile__ ("xvcvsphp %x0,%x1" : "=wa" (vf16) : "wf" (v.val));
|
||||
|
@ -29,7 +29,7 @@ Using this approach OpenCV provides some basic low level functionality for exter
|
||||
|
||||
typedef enum cvResult
|
||||
{
|
||||
CV_ERROR_FAIL = -1, //!< Some error occured (TODO Require to fill exception information)
|
||||
CV_ERROR_FAIL = -1, //!< Some error occurred (TODO Require to fill exception information)
|
||||
CV_ERROR_OK = 0 //!< No error
|
||||
} CvResult;
|
||||
|
||||
|
@ -151,7 +151,7 @@ number of components (vectors/matrices) of the outer vector.
|
||||
|
||||
In general, type support is limited to cv::Mat types. Other types are forbidden.
|
||||
But in some cases we need to support passing of custom non-general Mat types, like arrays of cv::KeyPoint, cv::DMatch, etc.
|
||||
This data is not intented to be interpreted as an image data, or processed somehow like regular cv::Mat.
|
||||
This data is not intended to be interpreted as an image data, or processed somehow like regular cv::Mat.
|
||||
To pass such custom type use rawIn() / rawOut() / rawInOut() wrappers.
|
||||
Custom type is wrapped as Mat-compatible `CV_8UC<N>` values (N = sizeof(T), N <= CV_CN_MAX).
|
||||
*/
|
||||
@ -2380,7 +2380,7 @@ public:
|
||||
// (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
|
||||
UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
//! constucts 2D matrix and fills it with the specified value _s.
|
||||
//! constructs 2D matrix and fills it with the specified value _s.
|
||||
UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
|
||||
@ -2825,7 +2825,7 @@ public:
|
||||
|
||||
`ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`.
|
||||
The methods always return a valid reference.
|
||||
If the element did not exist, it is created and initialiazed with 0.
|
||||
If the element did not exist, it is created and initialized with 0.
|
||||
*/
|
||||
//! returns reference to the specified element (1D case)
|
||||
template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
|
||||
|
@ -27,7 +27,7 @@ These files can be pre-generated for target configurations of your application
|
||||
or generated by CMake on the fly (use CMAKE_BINARY_DIR for that).
|
||||
|
||||
Notes:
|
||||
- H/W capability checks are still responsibility of your applcation
|
||||
- H/W capability checks are still responsibility of your application
|
||||
- runtime dispatching is not covered by this helper header
|
||||
*/
|
||||
|
||||
|
@ -49,8 +49,8 @@ public:
|
||||
void lock(); //< acquire exclusive (writer) lock
|
||||
void unlock(); //< release exclusive (writer) lock
|
||||
|
||||
void lock_shared(); //< acquire sharable (reader) lock
|
||||
void unlock_shared(); //< release sharable (reader) lock
|
||||
void lock_shared(); //< acquire shareable (reader) lock
|
||||
void unlock_shared(); //< release shareable (reader) lock
|
||||
|
||||
struct Impl;
|
||||
protected:
|
||||
|
@ -13,7 +13,7 @@ public:
|
||||
// (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
|
||||
CV_WRAP UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
CV_WRAP UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
//! constucts 2D matrix and fills it with the specified value _s.
|
||||
//! constructs 2D matrix and fills it with the specified value _s.
|
||||
CV_WRAP UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
CV_WRAP UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
|
||||
|
||||
|
@ -1766,7 +1766,7 @@ cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
|
||||
CV_Error( CV_StsBadArg, "Source is not a sequence nor matrix" );
|
||||
|
||||
if( !CV_IS_MAT_CONT(mat->type) || (mat->rows != 1 && mat->cols != 1) )
|
||||
CV_Error( CV_StsBadArg, "The source array must be 1d coninuous vector" );
|
||||
CV_Error( CV_StsBadArg, "The source array must be 1d continuous vector" );
|
||||
|
||||
from = cvMakeSeqHeaderForArray( CV_SEQ_KIND_GENERIC, sizeof(from_header),
|
||||
CV_ELEM_SIZE(mat->type),
|
||||
|
@ -63,7 +63,7 @@
|
||||
#define HAL_LU_SMALL_MATRIX_THRESH 100
|
||||
#define HAL_CHOLESKY_SMALL_MATRIX_THRESH 100
|
||||
|
||||
//lapack stores matrices in column-major order so transposing is neded everywhere
|
||||
//lapack stores matrices in column-major order so transposing is needed everywhere
|
||||
template <typename fptype> static inline void
|
||||
transpose_square_inplace(fptype *src, size_t src_ld, size_t m)
|
||||
{
|
||||
|
@ -5756,7 +5756,7 @@ public:
|
||||
|
||||
static OpenCLAllocator* getOpenCLAllocator_() // call once guarantee
|
||||
{
|
||||
static OpenCLAllocator* g_allocator = new OpenCLAllocator(); // avoid destrutor call (using of this object is too wide)
|
||||
static OpenCLAllocator* g_allocator = new OpenCLAllocator(); // avoid destructor call (using of this object is too wide)
|
||||
g_isOpenCVActivated = true;
|
||||
return g_allocator;
|
||||
}
|
||||
|
@ -73,7 +73,7 @@ public:
|
||||
protected:
|
||||
|
||||
bool test_values(const cv::Mat& src); // complex test for eigen without vectors
|
||||
bool check_full(int type); // compex test for symmetric matrix
|
||||
bool check_full(int type); // complex test for symmetric matrix
|
||||
virtual void run (int) = 0; // main testing method
|
||||
|
||||
protected:
|
||||
|
@ -104,7 +104,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
h_t &= o_t \odot tanh(c_t), \\
|
||||
c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
|
||||
@f}
|
||||
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.
|
||||
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned weights.
|
||||
|
||||
Gates are computed as follows:
|
||||
@f{eqnarray*}{
|
||||
|
@ -424,7 +424,7 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
* @param inpPin descriptor of the second layer input.
|
||||
*
|
||||
* Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:
|
||||
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
|
||||
* - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
|
||||
* If this part is empty then the network input pseudo layer will be used;
|
||||
* - the second optional part of the template <DFN>input_number</DFN>
|
||||
* is either number of the layer input, either label one.
|
||||
|
@ -618,7 +618,7 @@ void OCL4DNNConvSpatial<Dtype>::calculateBenchmark(const UMat &bottom, UMat &ver
|
||||
// For large enough input size, we do not need to tune kernels for different
|
||||
// size. The reason is with large input size, there will be enough work items
|
||||
// to feed al the EUs.
|
||||
// FIXME for the gemm like convolution, switch back to eaxct image size.
|
||||
// FIXME for the gemm like convolution, switch back to exact image size.
|
||||
|
||||
#define TUNING_SIZE(x) ((x) > 256 ? 256 : (alignSize(x, 16)))
|
||||
|
||||
|
@ -161,7 +161,7 @@ message NodeProto {
|
||||
repeated string output = 2; // namespace Value
|
||||
|
||||
// An optional identifier for this node in a graph.
|
||||
// This field MAY be absent in ths version of the IR.
|
||||
// This field MAY be absent in this version of the IR.
|
||||
optional string name = 3; // namespace Node
|
||||
|
||||
// The symbolic identifier of the Operator to execute.
|
||||
|
@ -610,7 +610,7 @@ void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBl
|
||||
try {
|
||||
wrapper->outProms[processedOutputs].setException(std::current_exception());
|
||||
} catch(...) {
|
||||
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
|
||||
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -623,7 +623,7 @@ void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBl
|
||||
try {
|
||||
wrapper->outProms[processedOutputs].setException(e);
|
||||
} catch(...) {
|
||||
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
|
||||
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -40,7 +40,7 @@
|
||||
#endif
|
||||
|
||||
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
|
||||
//there is no way to suppress warnigns from IE only at this moment, so we are forced to suppress warnings globally
|
||||
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
@ -837,7 +837,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
CV_Assert(paddings.type() == CV_32SC1);
|
||||
if (paddings.total() == 8)
|
||||
{
|
||||
// Perhabs, we have NHWC padding dimensions order.
|
||||
// Perhaps, we have NHWC padding dimensions order.
|
||||
// N H W C
|
||||
// 0 1 2 3 4 5 6 7
|
||||
std::swap(paddings.at<int32_t>(2), paddings.at<int32_t>(6));
|
||||
|
@ -312,7 +312,7 @@ struct TorchImporter
|
||||
fpos = THFile_position(file);
|
||||
int ktype = readInt();
|
||||
|
||||
if (ktype != TYPE_STRING) //skip non-string fileds
|
||||
if (ktype != TYPE_STRING) //skip non-string fields
|
||||
{
|
||||
THFile_seek(file, fpos);
|
||||
readObject(); //key
|
||||
|
@ -46,7 +46,7 @@ void main()
|
||||
}
|
||||
}
|
||||
|
||||
// substract, exp and accumulate along channel
|
||||
// subtract, exp and accumulate along channel
|
||||
for (int i = 0; i < p.channel_size; ++i)
|
||||
sum_buffer[reduced_buffer_off + i] = 0.f;
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
// Synchronize headers include statements with src/op_inf_engine.hpp
|
||||
//
|
||||
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
|
||||
//there is no way to suppress warnigns from IE only at this moment, so we are forced to suppress warnings globally
|
||||
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
@ -6,7 +6,7 @@
|
||||
namespace opencv_test
|
||||
{
|
||||
|
||||
/* cofiguration for tests of detectors/descriptors. shared between ocl and cpu tests. */
|
||||
/* configuration for tests of detectors/descriptors. shared between ocl and cpu tests. */
|
||||
|
||||
// detectors/descriptors configurations to test
|
||||
#define DETECTORS_ONLY \
|
||||
|
@ -578,7 +578,7 @@ public:
|
||||
private:
|
||||
|
||||
/**
|
||||
* Struture representing a node in the hierarchical k-means tree.
|
||||
* Structure representing a node in the hierarchical k-means tree.
|
||||
*/
|
||||
struct Node
|
||||
{
|
||||
|
@ -547,7 +547,7 @@ public:
|
||||
|
||||
private:
|
||||
/**
|
||||
* Struture representing a node in the hierarchical k-means tree.
|
||||
* Structure representing a node in the hierarchical k-means tree.
|
||||
*/
|
||||
struct KMeansNode
|
||||
{
|
||||
|
@ -301,7 +301,7 @@ public:
|
||||
unsigned int index_;
|
||||
};
|
||||
|
||||
/** Default cosntructor */
|
||||
/** Default constructor */
|
||||
UniqueResultSet() :
|
||||
is_full_(false), worst_distance_(std::numeric_limits<DistanceType>::max())
|
||||
{
|
||||
|
@ -46,12 +46,12 @@ majority of the work by itself, keeping the algorithm code clean from
|
||||
device or optimization details. This approach has its own limitations,
|
||||
though, as graph model is a _constrained_ model and not every
|
||||
algorithm can be represented as a graph, so the G-API scope is limited
|
||||
only to regular image processing -- various filters, arithmentic,
|
||||
only to regular image processing -- various filters, arithmetic,
|
||||
binary operations, and well-defined geometrical transformations.
|
||||
|
||||
## Porting with Graph API {#gapi_intro_port}
|
||||
|
||||
The essense of G-API is declaring a sequence of operations to run, and
|
||||
The essence of G-API is declaring a sequence of operations to run, and
|
||||
then executing that sequence. G-API is a constrained API, so it puts a
|
||||
number of limitations on which operations can form a pipeline and
|
||||
which data these operations may exchange each other.
|
||||
@ -67,7 +67,7 @@ interfaces, not implementations -- thus the same graph can be executed
|
||||
on different devices (and, of course, using different optimization
|
||||
techniques) with little-to-no changes in the graph itself.
|
||||
|
||||
G-API supports plugins (_Backends_) which aggreate logic and
|
||||
G-API supports plugins (_Backends_) which aggregate logic and
|
||||
intelligence on what is the best way to execute on a particular
|
||||
platform. Once a pipeline is built with G-API, it can be parametrized
|
||||
to use either of the backends (or a combination of it) and so a graph
|
||||
|
@ -701,7 +701,7 @@ GAPI_EXPORTS GMat divRC(const GScalar& divident, const GMat& src, double scale,
|
||||
/** @brief Applies a mask to a matrix.
|
||||
|
||||
The function mask set value from given matrix if the corresponding pixel value in mask matrix set to true,
|
||||
and set the matrix value to 0 overwise.
|
||||
and set the matrix value to 0 otherwise.
|
||||
|
||||
Supported src matrix data types are @ref CV_8UC1, @ref CV_16SC1, @ref CV_16UC1. Supported mask data type is @ref CV_8UC1.
|
||||
|
||||
@ -1293,7 +1293,7 @@ depths.
|
||||
*/
|
||||
GAPI_EXPORTS GMat threshold(const GMat& src, const GScalar& thresh, const GScalar& maxval, int depth);
|
||||
/** @overload
|
||||
This function appicable for all threshold depths except CV_THRESH_OTSU and CV_THRESH_TRIANGLE
|
||||
This function applicable for all threshold depths except CV_THRESH_OTSU and CV_THRESH_TRIANGLE
|
||||
@note Function textual ID is "org.opencv.core.matrixop.thresholdOT"
|
||||
*/
|
||||
GAPI_EXPORTS std::tuple<GMat, GScalar> threshold(const GMat& src, const GScalar& maxval, int depth);
|
||||
|
@ -92,7 +92,7 @@ protected:
|
||||
|
||||
std::vector<GArg> m_args;
|
||||
|
||||
//FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call
|
||||
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
|
||||
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
|
||||
//once on enter for input and output arguments, and once before return for output arguments only
|
||||
std::unordered_map<std::size_t, GRunArgP> m_results;
|
||||
@ -229,7 +229,7 @@ struct OCVCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
|
||||
static void call(Inputs&&... ins, Outputs&&... outs)
|
||||
{
|
||||
//not using a std::forward on outs is deliberate in order to
|
||||
//cause compilation error, by tring to bind rvalue references to lvalue references
|
||||
//cause compilation error, by trying to bind rvalue references to lvalue references
|
||||
Impl::run(std::forward<Inputs>(ins)..., outs...);
|
||||
|
||||
postprocess(outs...);
|
||||
|
@ -81,7 +81,7 @@ namespace detail
|
||||
|
||||
protected:
|
||||
GArrayU(); // Default constructor
|
||||
template<class> friend class cv::GArray; // (avialable to GArray<T> only)
|
||||
template<class> friend class cv::GArray; // (available to GArray<T> only)
|
||||
|
||||
void setConstructFcn(ConstructVec &&cv); // Store T-aware constructor
|
||||
|
||||
|
@ -23,7 +23,7 @@ namespace wip {
|
||||
class GAsyncContext;
|
||||
//These functions asynchronously (i.e. probably on a separate thread of execution) call operator() member function of their first argument with copies of rest of arguments (except callback) passed in.
|
||||
//The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
|
||||
//If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
|
||||
//If exception is occurred during execution of apply it is transferred to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
|
||||
|
||||
//N.B. :
|
||||
//Input arguments are copied on call to async function (actually on call to cv::gin) and thus do not have to outlive the actual completion of asynchronous activity.
|
||||
|
@ -83,7 +83,7 @@ namespace detail
|
||||
* In the above example, sobelEdge expects one Mat on input and
|
||||
* produces one Mat; while sobelEdgeSub expects two Mats on input and
|
||||
* produces one Mat. GComputation's protocol defines how other
|
||||
* computaion methods should be used -- cv::GComputation::compile() and
|
||||
* computation methods should be used -- cv::GComputation::compile() and
|
||||
* cv::GComputation::apply(). For example, if a graph is defined on
|
||||
* two GMat inputs, two cv::Mat objects have to be passed to apply()
|
||||
* for execution. GComputation checks protocol correctness in runtime
|
||||
|
@ -24,7 +24,7 @@ namespace wip {
|
||||
class GAsyncContext;
|
||||
//These functions asynchronously (i.e. probably on a separate thread of execution) call apply member function of their first argument with copies of rest of arguments (except callback) passed in.
|
||||
//The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
|
||||
//If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
|
||||
//If exception is occurred during execution of apply it is transferred to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
|
||||
|
||||
//N.B. :
|
||||
//Input arguments are copied on call to async function (actually on call to cv::gin) and thus do not have to outlive the actual completion of asynchronous activity.
|
||||
|
@ -323,7 +323,7 @@ namespace gapi {
|
||||
* implementations in form of type list (variadic template) and
|
||||
* generates a kernel package atop of that.
|
||||
*
|
||||
* Kernel packages can be also generated programatically, starting
|
||||
* Kernel packages can be also generated programmatically, starting
|
||||
* with an empty package (created with the default constructor)
|
||||
* and then by populating it with kernels via call to
|
||||
* GKernelPackage::include(). Note this method is also a template
|
||||
|
@ -164,7 +164,7 @@ typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
|
||||
* @param args network's input parameters as specified in G_API_NET() macro.
|
||||
* @return an object of return type as defined in G_API_NET().
|
||||
* If a network has multiple return values (defined with a tuple), a tuple of
|
||||
* objects of apprpriate type is returned.
|
||||
* objects of appropriate type is returned.
|
||||
* @sa G_API_NET()
|
||||
*/
|
||||
template<typename Net, typename... Args>
|
||||
|
@ -198,7 +198,7 @@ struct OCLCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
|
||||
static void call(Inputs&&... ins, Outputs&&... outs)
|
||||
{
|
||||
//not using a std::forward on outs is deliberate in order to
|
||||
//cause compilation error, by tring to bind rvalue references to lvalue references
|
||||
//cause compilation error, by trying to bind rvalue references to lvalue references
|
||||
Impl::run(std::forward<Inputs>(ins)..., outs...);
|
||||
|
||||
postprocess_ocl(outs...);
|
||||
|
@ -66,7 +66,7 @@ static inline DST saturate(SRC x, R round)
|
||||
GAPI_DbgAssert(std::is_integral<DST>::value &&
|
||||
std::is_floating_point<SRC>::value);
|
||||
#ifdef _WIN32
|
||||
// Suppress warning about convering x to floating-point
|
||||
// Suppress warning about converting x to floating-point
|
||||
// Note that x is already floating-point at this point
|
||||
#pragma warning(disable: 4244)
|
||||
#endif
|
||||
|
@ -239,7 +239,7 @@ void resetInternalData(Mag& mag, const Data &d)
|
||||
break;
|
||||
|
||||
case GShape::GMAT:
|
||||
// Do nothign here - FIXME unify with initInternalData?
|
||||
// Do nothing here - FIXME unify with initInternalData?
|
||||
break;
|
||||
|
||||
default:
|
||||
@ -281,7 +281,7 @@ cv::GRunArgP getObjPtr(Mag& mag, const RcDesc &rc, bool is_umat)
|
||||
return GRunArgP(&mag.template slot<cv::gapi::own::Mat>()[rc.id]);
|
||||
case GShape::GSCALAR: return GRunArgP(&mag.template slot<cv::gapi::own::Scalar>()[rc.id]);
|
||||
// Note: .at() is intentional for GArray as object MUST be already there
|
||||
// (and constructer by either bindIn/Out or resetInternal)
|
||||
// (and constructor by either bindIn/Out or resetInternal)
|
||||
case GShape::GARRAY:
|
||||
// FIXME(DM): For some absolutely unknown to me reason, move
|
||||
// semantics is involved here without const_cast to const (and
|
||||
|
@ -413,7 +413,7 @@ GAPI_OCV_KERNEL(GCPUSplit3, cv::gapi::core::GSplit3)
|
||||
std::vector<cv::Mat> outMats = {m1, m2, m3};
|
||||
cv::split(in, outMats);
|
||||
|
||||
// Write back FIXME: Write a helper or avoid this nonsence completely!
|
||||
// Write back FIXME: Write a helper or avoid this nonsense completely!
|
||||
m1 = outMats[0];
|
||||
m2 = outMats[1];
|
||||
m3 = outMats[2];
|
||||
@ -427,7 +427,7 @@ GAPI_OCV_KERNEL(GCPUSplit4, cv::gapi::core::GSplit4)
|
||||
std::vector<cv::Mat> outMats = {m1, m2, m3, m4};
|
||||
cv::split(in, outMats);
|
||||
|
||||
// Write back FIXME: Write a helper or avoid this nonsence completely!
|
||||
// Write back FIXME: Write a helper or avoid this nonsense completely!
|
||||
m1 = outMats[0];
|
||||
m2 = outMats[1];
|
||||
m3 = outMats[2];
|
||||
|
@ -204,7 +204,7 @@ struct IECallContext
|
||||
// Input parameters passed to an inference operation.
|
||||
std::vector<cv::GArg> args;
|
||||
|
||||
//FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call
|
||||
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
|
||||
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
|
||||
//once on enter for input and output arguments, and once before return for output arguments only
|
||||
//FIXME: check if the above applies to this backend (taken from CPU)
|
||||
|
@ -410,7 +410,7 @@ GAPI_OCL_KERNEL(GOCLSplit3, cv::gapi::core::GSplit3)
|
||||
std::vector<cv::UMat> outMats = {m1, m2, m3};
|
||||
cv::split(in, outMats);
|
||||
|
||||
// Write back FIXME: Write a helper or avoid this nonsence completely!
|
||||
// Write back FIXME: Write a helper or avoid this nonsense completely!
|
||||
m1 = outMats[0];
|
||||
m2 = outMats[1];
|
||||
m3 = outMats[2];
|
||||
@ -424,7 +424,7 @@ GAPI_OCL_KERNEL(GOCLSplit4, cv::gapi::core::GSplit4)
|
||||
std::vector<cv::UMat> outMats = {m1, m2, m3, m4};
|
||||
cv::split(in, outMats);
|
||||
|
||||
// Write back FIXME: Write a helper or avoid this nonsence completely!
|
||||
// Write back FIXME: Write a helper or avoid this nonsense completely!
|
||||
m1 = outMats[0];
|
||||
m2 = outMats[1];
|
||||
m3 = outMats[2];
|
||||
|
@ -297,7 +297,7 @@ void cv::gimpl::GCompiler::compileIslands(ade::Graph &g)
|
||||
cv::GCompiled cv::gimpl::GCompiler::produceCompiled(GPtr &&pg)
|
||||
{
|
||||
// This is the final compilation step. Here:
|
||||
// - An instance of GExecutor is created. Depening on the platform,
|
||||
// - An instance of GExecutor is created. Depending on the platform,
|
||||
// build configuration, etc, a GExecutor may be:
|
||||
// - a naive single-thread graph interpreter;
|
||||
// - a std::thread-based thing
|
||||
|
@ -80,7 +80,7 @@ cv::gimpl::Unrolled cv::gimpl::unrollExpr(const GProtoArgs &ins,
|
||||
std::unordered_set<GObjId> in_objs_p;
|
||||
for (const auto& in_obj : ins)
|
||||
{
|
||||
// Objects are guarnateed to remain alive while this method
|
||||
// Objects are guaranteed to remain alive while this method
|
||||
// is working, so it is safe to keep pointers here and below
|
||||
in_objs_p.insert(&proto::origin_of(in_obj));
|
||||
}
|
||||
|
@ -454,7 +454,7 @@ namespace
|
||||
m_changes.enqueue<Change::DropLink>(m_g, m_cons, out_edge);
|
||||
}
|
||||
|
||||
// D: Process the intermediate slots (betweed Prod n Cons).
|
||||
// D: Process the intermediate slots (between Prod n Cons).
|
||||
// D/1 - Those which are optimized out are just removed from the model
|
||||
for (auto opt_slot_nh : mo.opt_interim_slots)
|
||||
{
|
||||
|
@ -32,7 +32,7 @@ namespace
|
||||
cv::GArgs in_args;
|
||||
};
|
||||
|
||||
// Generaly the algorithm is following
|
||||
// Generally the algorithm is following
|
||||
//
|
||||
// 1. Get GCompoundKernel implementation
|
||||
// 2. Create GCompoundContext
|
||||
|
@ -113,7 +113,7 @@ void cv::gimpl::passes::inferMeta(ade::passes::PassContext &ctx, bool meta_is_in
|
||||
} // for(sorted)
|
||||
}
|
||||
|
||||
// After all metadata in graph is infered, store a vector of inferred metas
|
||||
// After all metadata in graph is inferred, store a vector of inferred metas
|
||||
// for computation output values.
|
||||
void cv::gimpl::passes::storeResultingMeta(ade::passes::PassContext &ctx)
|
||||
{
|
||||
|
@ -1806,7 +1806,7 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
else if( event->type == GDK_SCROLL )
|
||||
{
|
||||
#if defined(GTK_VERSION3_4)
|
||||
// NOTE: in current implementation doesn't possible to put into callback function delta_x and delta_y separetely
|
||||
// NOTE: in current implementation doesn't possible to put into callback function delta_x and delta_y separately
|
||||
double delta = (event->scroll.delta_x + event->scroll.delta_y);
|
||||
cv_event = (event->scroll.delta_y!=0) ? CV_EVENT_MOUSEHWHEEL : CV_EVENT_MOUSEWHEEL;
|
||||
#else
|
||||
|
@ -1231,7 +1231,7 @@ cvShowImage( const char* name, const CvArr* arr )
|
||||
cv::flip(dst, dst, 0);
|
||||
}
|
||||
|
||||
// ony resize window if needed
|
||||
// only resize window if needed
|
||||
if (changed_size)
|
||||
icvUpdateWindowPos(window);
|
||||
InvalidateRect(window->hwnd, 0, 0);
|
||||
|
@ -1 +1 @@
|
||||
#error "This header with legacy C API declarations has been removed from OpenCV. Legacy contants are available from legacy/constants_c.h file."
|
||||
#error "This header with legacy C API declarations has been removed from OpenCV. Legacy constants are available from legacy/constants_c.h file."
|
||||
|
@ -52,7 +52,7 @@
|
||||
#include <stdio.h>
|
||||
#include <setjmp.h>
|
||||
|
||||
// the following defines are a hack to avoid multiple problems with frame ponter handling and setjmp
|
||||
// the following defines are a hack to avoid multiple problems with frame pointer handling and setjmp
|
||||
// see http://gcc.gnu.org/ml/gcc/2011-10/msg00324.html for some details
|
||||
#define mingw_getsp(...) 0
|
||||
#define __builtin_frame_address(...) 0
|
||||
|
@ -62,7 +62,7 @@ namespace cv {
|
||||
#define MAX_PAM_HEADER_IDENITFIER_LENGTH 8
|
||||
#define MAX_PAM_HEADER_VALUE_LENGTH 255
|
||||
|
||||
/* PAM header fileds */
|
||||
/* PAM header fields */
|
||||
typedef enum {
|
||||
PAM_HEADER_NONE,
|
||||
PAM_HEADER_COMMENT,
|
||||
|
@ -47,7 +47,7 @@ template<> double atoT<double>(const std::string& s) { return std::atof(s.c_str(
|
||||
template<typename T>
|
||||
T read_number(cv::RLByteStream& strm)
|
||||
{
|
||||
// should be enogh to take string representation of any number
|
||||
// should be enough to take string representation of any number
|
||||
const size_t buffer_size = 2048;
|
||||
|
||||
std::vector<char> buffer(buffer_size, 0);
|
||||
|
@ -72,7 +72,7 @@
|
||||
#pragma warning( disable: 4611 )
|
||||
#endif
|
||||
|
||||
// the following defines are a hack to avoid multiple problems with frame ponter handling and setjmp
|
||||
// the following defines are a hack to avoid multiple problems with frame pointer handling and setjmp
|
||||
// see http://gcc.gnu.org/ml/gcc/2011-10/msg00324.html for some details
|
||||
#define mingw_getsp(...) 0
|
||||
#define __builtin_frame_address(...) 0
|
||||
|
@ -28,7 +28,7 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines,
|
||||
|
||||
Canny(image, image, 32, 128);
|
||||
|
||||
// add some syntetic lines:
|
||||
// add some synthetic lines:
|
||||
line(image, Point(0, 0), Point(image.cols, image.rows), Scalar::all(255), 3);
|
||||
line(image, Point(image.cols, 0), Point(image.cols/2, image.rows), Scalar::all(255), 3);
|
||||
|
||||
@ -89,7 +89,7 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines3f,
|
||||
|
||||
Canny(image, image, 32, 128);
|
||||
|
||||
// add some syntetic lines:
|
||||
// add some synthetic lines:
|
||||
line(image, Point(0, 0), Point(image.cols, image.rows), Scalar::all(255), 3);
|
||||
line(image, Point(image.cols, 0), Point(image.cols/2, image.rows), Scalar::all(255), 3);
|
||||
|
||||
|
@ -603,7 +603,7 @@ HoughLinesProbabilistic( Mat& image,
|
||||
if( k > 0 )
|
||||
dx = -dx, dy = -dy;
|
||||
|
||||
// walk along the line using fixed-point arithmetics,
|
||||
// walk along the line using fixed-point arithmetic,
|
||||
// stop at the image border or in case of too big gap
|
||||
for( ;; x += dx, y += dy )
|
||||
{
|
||||
@ -651,7 +651,7 @@ HoughLinesProbabilistic( Mat& image,
|
||||
if( k > 0 )
|
||||
dx = -dx, dy = -dy;
|
||||
|
||||
// walk along the line using fixed-point arithmetics,
|
||||
// walk along the line using fixed-point arithmetic,
|
||||
// stop at the image border or in case of too big gap
|
||||
for( ;; x += dx, y += dy )
|
||||
{
|
||||
@ -968,7 +968,7 @@ void HoughLinesPointSet( InputArray _point, OutputArray _lines, int lines_max, i
|
||||
createTrigTable( numangle, min_theta, theta_step,
|
||||
irho, tabSin, tabCos );
|
||||
|
||||
// stage 1. fill accumlator
|
||||
// stage 1. fill accumulator
|
||||
for( i = 0; i < (int)point.size(); i++ )
|
||||
for(int n = 0; n < numangle; n++ )
|
||||
{
|
||||
|
@ -269,7 +269,7 @@ static bool ippMorph(int op, int src_type, int dst_type,
|
||||
return false;
|
||||
|
||||
// Multiple iterations on small mask is not effective in current integration
|
||||
// Implace imitation for 3x3 kernel is not efficient
|
||||
// Inplace imitation for 3x3 kernel is not efficient
|
||||
// Advanced morphology for small mask introduces degradations
|
||||
if((iterations > 1 || src_data == dst_data || (op != MORPH_ERODE && op != MORPH_DILATE)) && kernel_width*kernel_height < 25)
|
||||
return false;
|
||||
|
@ -104,7 +104,7 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
|
||||
/* rotating calipers sides will always have coordinates
|
||||
(a,b) (-b,a) (-a,-b) (b, -a)
|
||||
*/
|
||||
/* this is a first base bector (a,b) initialized by (1,0) */
|
||||
/* this is a first base vector (a,b) initialized by (1,0) */
|
||||
float orientation = 0;
|
||||
float base_a;
|
||||
float base_b = 0;
|
||||
|
@ -77,7 +77,7 @@ PARAM_TEST_CASE(Canny, Channels, ApertureSize, L2gradient, UseRoi)
|
||||
void generateTestData()
|
||||
{
|
||||
Mat img = readImageType("shared/fruits.png", CV_8UC(cn));
|
||||
ASSERT_FALSE(img.empty()) << "cann't load shared/fruits.png";
|
||||
ASSERT_FALSE(img.empty()) << "can't load shared/fruits.png";
|
||||
|
||||
Size roiSize = img.size();
|
||||
int type = img.type();
|
||||
|
@ -357,7 +357,7 @@ PARAM_TEST_CASE(CannyVX, ImagePath, ApertureSize, L2gradient)
|
||||
void loadImage()
|
||||
{
|
||||
src = cv::imread(cvtest::TS::ptr()->get_data_path() + imgPath, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(src.empty()) << "cann't load image: " << imgPath;
|
||||
ASSERT_FALSE(src.empty()) << "can't load image: " << imgPath;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -268,7 +268,7 @@ class AsyncServiceHelper
|
||||
}
|
||||
else
|
||||
{
|
||||
Log.d(TAG, "Wating for package installation");
|
||||
Log.d(TAG, "Waiting for package installation");
|
||||
}
|
||||
|
||||
Log.d(TAG, "Unbind from service");
|
||||
|
@ -501,10 +501,10 @@ public class OpenCVTestCase extends TestCase {
|
||||
double maxDiff = Core.norm(diff, Core.NORM_INF);
|
||||
|
||||
if (isEqualityMeasured)
|
||||
assertTrue("Max difference between expected and actiual Mats is "+ maxDiff + ", that bigger than " + eps,
|
||||
assertTrue("Max difference between expected and actual Mats is "+ maxDiff + ", that bigger than " + eps,
|
||||
maxDiff <= eps);
|
||||
else
|
||||
assertFalse("Max difference between expected and actiual Mats is "+ maxDiff + ", that less than " + eps,
|
||||
assertFalse("Max difference between expected and actual Mats is "+ maxDiff + ", that less than " + eps,
|
||||
maxDiff <= eps);
|
||||
}
|
||||
|
||||
|
@ -527,10 +527,10 @@ public class OpenCVTestCase extends TestCase {
|
||||
double maxDiff = Core.norm(diff, Core.NORM_INF);
|
||||
|
||||
if (isEqualityMeasured)
|
||||
assertTrue("Max difference between expected and actiual Mats is "+ maxDiff + ", that bigger than " + eps,
|
||||
assertTrue("Max difference between expected and actual Mats is "+ maxDiff + ", that bigger than " + eps,
|
||||
maxDiff <= eps);
|
||||
else
|
||||
assertFalse("Max difference between expected and actiual Mats is "+ maxDiff + ", that less than " + eps,
|
||||
assertFalse("Max difference between expected and actual Mats is "+ maxDiff + ", that less than " + eps,
|
||||
maxDiff <= eps);
|
||||
}
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
|
||||
|
@ -69,7 +69,7 @@
|
||||
//
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
|
||||
@ -92,7 +92,7 @@ QUnit.test('test_imgProc', function(assert) {
|
||||
binView[0] = 10;
|
||||
cv.calcHist(source, channels, mask, hist, histSize, ranges, false);
|
||||
|
||||
// hist should contains a N X 1 arrary.
|
||||
// hist should contains a N X 1 array.
|
||||
let size = hist.size();
|
||||
assert.equal(size.height, 256);
|
||||
assert.equal(size.width, 1);
|
||||
|
@ -69,7 +69,7 @@
|
||||
//
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
|
||||
|
@ -69,7 +69,7 @@
|
||||
//
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
cv.FS_createLazyFile('/', 'haarcascade_frontalface_default.xml', // eslint-disable-line new-cap
|
||||
'haarcascade_frontalface_default.xml', true, false);
|
||||
|
@ -41,7 +41,7 @@
|
||||
// Author : Rijubrata Bhaumik, Intel Corporation. rijubrata.bhaumik[at]intel[dot]com
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
|
||||
|
@ -68,7 +68,7 @@
|
||||
//
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
QUnit.module('Utils', {});
|
||||
|
@ -68,7 +68,7 @@
|
||||
//
|
||||
|
||||
if (typeof module !== 'undefined' && module.exports) {
|
||||
// The envrionment is Node.js
|
||||
// The environment is Node.js
|
||||
var cv = require('./opencv.js'); // eslint-disable-line no-var
|
||||
}
|
||||
|
||||
|
@ -433,7 +433,7 @@ Logistic Regression {#ml_intro_lr}
|
||||
ML implements logistic regression, which is a probabilistic classification technique. Logistic
|
||||
Regression is a binary classification algorithm which is closely related to Support Vector Machines
|
||||
(SVM). Like SVM, Logistic Regression can be extended to work on multi-class classification problems
|
||||
like digit recognition (i.e. recognizing digitis like 0,1 2, 3,... from the given images). This
|
||||
like digit recognition (i.e. recognizing digits like 0,1 2, 3,... from the given images). This
|
||||
version of Logistic Regression supports both binary and multi-class classifications (for multi-class
|
||||
it creates a multiple 2-class classifiers). In order to train the logistic regression classifier,
|
||||
Batch Gradient Descent and Mini-Batch Gradient Descent algorithms are used (see
|
||||
|
@ -1764,7 +1764,7 @@ Note that the parameters margin regularization, initial step size, and step decr
|
||||
|
||||
To use SVMSGD algorithm do as follows:
|
||||
|
||||
- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
|
||||
- first, create the SVMSGD object. The algorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
|
||||
setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower().
|
||||
|
||||
- then the SVM model can be trained using the train features and the correspondent labels by the method train().
|
||||
|
@ -614,7 +614,7 @@ protected:
|
||||
|
||||
if( data.empty() )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "File with spambase dataset cann't be read.\n");
|
||||
ts->printf(cvtest::TS::LOG, "File with spambase dataset can't be read.\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
@ -721,7 +721,7 @@ class FuncInfo(object):
|
||||
aname, argno = v.py_outlist[0]
|
||||
code_ret = "return pyopencv_from(%s)" % (aname,)
|
||||
else:
|
||||
# ther is more than 1 return parameter; form the tuple out of them
|
||||
# there is more than 1 return parameter; form the tuple out of them
|
||||
fmtspec = "N"*len(v.py_outlist)
|
||||
backcvt_arg_list = []
|
||||
for aname, argno in v.py_outlist:
|
||||
|
@ -585,7 +585,7 @@ $(function(){
|
||||
$(tbl_row).remove()
|
||||
})
|
||||
if($("tbody tr", tbl).length == 0) {
|
||||
$("<tr><td colspan='"+$("thead tr:first th", tbl).length+"'>No results mathing your search criteria</td></tr>")
|
||||
$("<tr><td colspan='"+$("thead tr:first th", tbl).length+"'>No results matching your search criteria</td></tr>")
|
||||
.appendTo($("tbody", tbl))
|
||||
}
|
||||
}
|
||||
|
@ -90,7 +90,7 @@ static void image_jacobian_homo_ECC(const Mat& src1, const Mat& src2,
|
||||
|
||||
|
||||
//instead of dividing each block with den,
|
||||
//just pre-devide the block of gradients (it's more efficient)
|
||||
//just pre-divide the block of gradients (it's more efficient)
|
||||
|
||||
Mat src1Divided_;
|
||||
Mat src2Divided_;
|
||||
|
@ -48,7 +48,7 @@
|
||||
#define GRIDSIZE 3
|
||||
#define LSx 8
|
||||
#define LSy 8
|
||||
// defeine local memory sizes
|
||||
// define local memory sizes
|
||||
#define LM_W (LSx*GRIDSIZE+2)
|
||||
#define LM_H (LSy*GRIDSIZE+2)
|
||||
#define BUFFER (LSx*LSy)
|
||||
|
@ -58,7 +58,7 @@ RIFF ('AVI '
|
||||
{xxdb|xxdc|xxpc|xxwb}
|
||||
xx - stream number: 00, 01, 02, ...
|
||||
db - uncompressed video frame
|
||||
dc - commpressed video frame
|
||||
dc - compressed video frame
|
||||
pc - palette change
|
||||
wb - audio frame
|
||||
|
||||
@ -139,7 +139,7 @@ class BitStream;
|
||||
// {xxdb|xxdc|xxpc|xxwb}
|
||||
// xx - stream number: 00, 01, 02, ...
|
||||
// db - uncompressed video frame
|
||||
// dc - commpressed video frame
|
||||
// dc - compressed video frame
|
||||
// pc - palette change
|
||||
// wb - audio frame
|
||||
|
||||
|
@ -300,10 +300,10 @@ bool CvCaptureCAM_Aravis::grabFrame()
|
||||
size_t buffer_size;
|
||||
framebuffer = (void*)arv_buffer_get_data (arv_buffer, &buffer_size);
|
||||
|
||||
// retieve image size properites
|
||||
// retrieve image size properites
|
||||
arv_buffer_get_image_region (arv_buffer, &xoffset, &yoffset, &width, &height);
|
||||
|
||||
// retieve image ID set by camera
|
||||
// retrieve image ID set by camera
|
||||
frameID = arv_buffer_get_frame_id(arv_buffer);
|
||||
|
||||
arv_stream_push_buffer(stream, arv_buffer);
|
||||
|
@ -1196,7 +1196,7 @@ CvVideoWriter_AVFoundation::CvVideoWriter_AVFoundation(const char* filename, int
|
||||
NSError *error = nil;
|
||||
|
||||
|
||||
// Make sure the file does not already exist. Necessary to overwirte??
|
||||
// Make sure the file does not already exist. Necessary to overwrite??
|
||||
/*
|
||||
NSFileManager *fileManager = [NSFileManager defaultManager];
|
||||
if ([fileManager fileExistsAtPath:path]){
|
||||
@ -1238,7 +1238,7 @@ CvVideoWriter_AVFoundation::CvVideoWriter_AVFoundation(const char* filename, int
|
||||
|
||||
if(mMovieWriter.status == AVAssetWriterStatusFailed){
|
||||
NSLog(@"%@", [mMovieWriter.error localizedDescription]);
|
||||
// TODO: error handling, cleanup. Throw execption?
|
||||
// TODO: error handling, cleanup. Throw exception?
|
||||
// return;
|
||||
}
|
||||
|
||||
|
@ -1196,7 +1196,7 @@ CvVideoWriter_AVFoundation::CvVideoWriter_AVFoundation(const std::string &filena
|
||||
NSError *error = nil;
|
||||
|
||||
|
||||
// Make sure the file does not already exist. Necessary to overwirte??
|
||||
// Make sure the file does not already exist. Necessary to overwrite??
|
||||
/*
|
||||
NSFileManager *fileManager = [NSFileManager defaultManager];
|
||||
if ([fileManager fileExistsAtPath:path]){
|
||||
|
@ -481,7 +481,7 @@ class videoInput{
|
||||
bool setupDeviceFourcc(int deviceID, int w, int h,int fourcc);
|
||||
|
||||
//These two are only for capture cards
|
||||
//USB and Firewire cameras souldn't specify connection
|
||||
//USB and Firewire cameras shouldn't specify connection
|
||||
bool setupDevice(int deviceID, int connection);
|
||||
bool setupDevice(int deviceID, int w, int h, int connection);
|
||||
|
||||
|
@ -1199,7 +1199,7 @@ bool CvCapture_MSMF::grabFrame()
|
||||
{
|
||||
if (streamIndex != dwStreamIndex)
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, "videoio(MSMF): Wrong stream readed. Abort capturing");
|
||||
CV_LOG_DEBUG(NULL, "videoio(MSMF): Wrong stream read. Abort capturing");
|
||||
close();
|
||||
}
|
||||
else if (flags & MF_SOURCE_READERF_ERROR)
|
||||
|
@ -668,7 +668,7 @@ void BitStream::writeBlock()
|
||||
}
|
||||
|
||||
size_t BitStream::getPos() const {
|
||||
return safe_int_cast<size_t>(m_current - m_start, "Failed to determine AVI bufer position: value is out of range") + m_pos;
|
||||
return safe_int_cast<size_t>(m_current - m_start, "Failed to determine AVI buffer position: value is out of range") + m_pos;
|
||||
}
|
||||
|
||||
void BitStream::putByte(int val)
|
||||
|
@ -49,8 +49,8 @@ private:
|
||||
unsigned char __k;
|
||||
};
|
||||
|
||||
static_assert(sizeof(Guid) == sizeof(::_GUID), "Incorect size for Guid");
|
||||
static_assert(sizeof(__rcGUID_t) == sizeof(::_GUID), "Incorect size for __rcGUID_t");
|
||||
static_assert(sizeof(Guid) == sizeof(::_GUID), "Incorrect size for Guid");
|
||||
static_assert(sizeof(__rcGUID_t) == sizeof(::_GUID), "Incorrect size for __rcGUID_t");
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
inline Guid::Guid() : __a(0), __b(0), __c(0), __d(0), __e(0), __f(0), __g(0), __h(0), __i(0), __j(0), __k(0)
|
||||
|
@ -1,7 +1,7 @@
|
||||
package org.opencv.engine;
|
||||
|
||||
/**
|
||||
* Class provides Java interface to OpenCV Engine Service. Is synchronious with native OpenCVEngine class.
|
||||
* Class provides Java interface to OpenCV Engine Service. Is synchronous with native OpenCVEngine class.
|
||||
*/
|
||||
interface OpenCVEngineInterface
|
||||
{
|
||||
|
@ -31,7 +31,7 @@ from __future__ import print_function
|
||||
import glob, re, os, os.path, shutil, string, sys, argparse, traceback, multiprocessing
|
||||
from subprocess import check_call, check_output, CalledProcessError
|
||||
|
||||
IPHONEOS_DEPLOYMENT_TARGET='8.0' # default, can be changed via command line options or environemnt variable
|
||||
IPHONEOS_DEPLOYMENT_TARGET='8.0' # default, can be changed via command line options or environment variable
|
||||
|
||||
def execute(cmd, cwd = None):
|
||||
print("Executing: %s in %s" % (cmd, cwd), file=sys.stderr)
|
||||
|
Loading…
Reference in New Issue
Block a user