mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #13694 from dkurt:dnn_ie_async
Asynchronous API from Intel's Inference Engine (#13694) * Add forwardAsync for asynchronous mode from Intel's Inference Engine * Python test for forwardAsync * Replace Future_Mat to AsyncMat * Shadow AsyncMat * Isolate InferRequest callback * Manage exceptions in Async API of IE
This commit is contained in:
parent
3abae3c511
commit
a5c92c2029
@ -44,11 +44,14 @@
|
|||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <opencv2/core.hpp>
|
#include <opencv2/core.hpp>
|
||||||
|
#ifdef CV_CXX11
|
||||||
|
#include <future>
|
||||||
|
#endif
|
||||||
|
|
||||||
#if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
|
#if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
|
||||||
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_34_v11 {
|
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_34_v12 {
|
||||||
#define CV__DNN_EXPERIMENTAL_NS_END }
|
#define CV__DNN_EXPERIMENTAL_NS_END }
|
||||||
namespace cv { namespace dnn { namespace experimental_dnn_34_v11 { } using namespace experimental_dnn_34_v11; }}
|
namespace cv { namespace dnn { namespace experimental_dnn_34_v12 { } using namespace experimental_dnn_34_v12; }}
|
||||||
#else
|
#else
|
||||||
#define CV__DNN_EXPERIMENTAL_NS_BEGIN
|
#define CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||||
#define CV__DNN_EXPERIMENTAL_NS_END
|
#define CV__DNN_EXPERIMENTAL_NS_END
|
||||||
@ -64,6 +67,18 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|||||||
|
|
||||||
typedef std::vector<int> MatShape;
|
typedef std::vector<int> MatShape;
|
||||||
|
|
||||||
|
#if defined(CV_CXX11) || defined(CV_DOXYGEN)
|
||||||
|
typedef std::future<Mat> AsyncMat;
|
||||||
|
#else
|
||||||
|
// Just a workaround for bindings.
|
||||||
|
struct AsyncMat
|
||||||
|
{
|
||||||
|
Mat get() { return Mat(); }
|
||||||
|
void wait() const {}
|
||||||
|
size_t wait_for(size_t milliseconds) const { CV_UNUSED(milliseconds); return -1; }
|
||||||
|
};
|
||||||
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Enum of computation backends supported by layers.
|
* @brief Enum of computation backends supported by layers.
|
||||||
* @see Net::setPreferableBackend
|
* @see Net::setPreferableBackend
|
||||||
@ -75,7 +90,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|||||||
//! DNN_BACKEND_OPENCV otherwise.
|
//! DNN_BACKEND_OPENCV otherwise.
|
||||||
DNN_BACKEND_DEFAULT,
|
DNN_BACKEND_DEFAULT,
|
||||||
DNN_BACKEND_HALIDE,
|
DNN_BACKEND_HALIDE,
|
||||||
DNN_BACKEND_INFERENCE_ENGINE,
|
DNN_BACKEND_INFERENCE_ENGINE, //!< Intel's Inference Engine computational backend.
|
||||||
DNN_BACKEND_OPENCV
|
DNN_BACKEND_OPENCV
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -89,8 +104,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|||||||
DNN_TARGET_OPENCL,
|
DNN_TARGET_OPENCL,
|
||||||
DNN_TARGET_OPENCL_FP16,
|
DNN_TARGET_OPENCL_FP16,
|
||||||
DNN_TARGET_MYRIAD,
|
DNN_TARGET_MYRIAD,
|
||||||
//! FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
|
DNN_TARGET_FPGA //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
|
||||||
DNN_TARGET_FPGA
|
|
||||||
};
|
};
|
||||||
|
|
||||||
CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
|
CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
|
||||||
@ -462,6 +476,15 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|||||||
*/
|
*/
|
||||||
CV_WRAP Mat forward(const String& outputName = String());
|
CV_WRAP Mat forward(const String& outputName = String());
|
||||||
|
|
||||||
|
/** @brief Runs forward pass to compute output of layer with name @p outputName.
|
||||||
|
* @param outputName name for layer which output is needed to get
|
||||||
|
* @details By default runs forward pass for the whole network.
|
||||||
|
*
|
||||||
|
* This is an asynchronous version of forward(const String&).
|
||||||
|
* dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
|
||||||
|
*/
|
||||||
|
CV_WRAP AsyncMat forwardAsync(const String& outputName = String());
|
||||||
|
|
||||||
/** @brief Runs forward pass to compute output of layer with name @p outputName.
|
/** @brief Runs forward pass to compute output of layer with name @p outputName.
|
||||||
* @param outputBlobs contains all output blobs for specified layer.
|
* @param outputBlobs contains all output blobs for specified layer.
|
||||||
* @param outputName name for layer which output is needed to get
|
* @param outputName name for layer which output is needed to get
|
||||||
|
@ -2,7 +2,13 @@
|
|||||||
typedef dnn::DictValue LayerId;
|
typedef dnn::DictValue LayerId;
|
||||||
typedef std::vector<dnn::MatShape> vector_MatShape;
|
typedef std::vector<dnn::MatShape> vector_MatShape;
|
||||||
typedef std::vector<std::vector<dnn::MatShape> > vector_vector_MatShape;
|
typedef std::vector<std::vector<dnn::MatShape> > vector_vector_MatShape;
|
||||||
|
#ifdef CV_CXX11
|
||||||
|
typedef std::chrono::milliseconds chrono_milliseconds;
|
||||||
|
typedef std::future_status AsyncMatStatus;
|
||||||
|
#else
|
||||||
|
typedef size_t chrono_milliseconds;
|
||||||
|
typedef size_t AsyncMatStatus;
|
||||||
|
#endif
|
||||||
|
|
||||||
template<>
|
template<>
|
||||||
bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
|
bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
|
||||||
@ -40,6 +46,46 @@ bool pyopencv_to(PyObject *o, std::vector<Mat> &blobs, const char *name) //requi
|
|||||||
return pyopencvVecConverter<Mat>::to(o, blobs, ArgInfo(name, false));
|
return pyopencvVecConverter<Mat>::to(o, blobs, ArgInfo(name, false));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef CV_CXX11
|
||||||
|
|
||||||
|
template<>
|
||||||
|
PyObject* pyopencv_from(const std::future<Mat>& f_)
|
||||||
|
{
|
||||||
|
std::future<Mat>& f = const_cast<std::future<Mat>&>(f_);
|
||||||
|
Ptr<cv::dnn::AsyncMat> p(new std::future<Mat>(std::move(f)));
|
||||||
|
return pyopencv_from(p);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<>
|
||||||
|
PyObject* pyopencv_from(const std::future_status& status)
|
||||||
|
{
|
||||||
|
return pyopencv_from((int)status);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<>
|
||||||
|
bool pyopencv_to(PyObject* src, std::chrono::milliseconds& dst, const char* name)
|
||||||
|
{
|
||||||
|
size_t millis = 0;
|
||||||
|
if (pyopencv_to(src, millis, name))
|
||||||
|
{
|
||||||
|
dst = std::chrono::milliseconds(millis);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
template<>
|
||||||
|
PyObject* pyopencv_from(const cv::dnn::AsyncMat&)
|
||||||
|
{
|
||||||
|
CV_Error(Error::StsNotImplemented, "C++11 is required.");
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // CV_CXX11
|
||||||
|
|
||||||
template<typename T>
|
template<typename T>
|
||||||
PyObject* pyopencv_from(const dnn::DictValue &dv)
|
PyObject* pyopencv_from(const dnn::DictValue &dv)
|
||||||
{
|
{
|
||||||
|
22
modules/dnn/misc/python/shadow_async_mat.hpp
Normal file
22
modules/dnn/misc/python/shadow_async_mat.hpp
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
#error This is a shadow header file, which is not intended for processing by any compiler. \
|
||||||
|
Only bindings parser should handle this file.
|
||||||
|
|
||||||
|
namespace cv { namespace dnn {
|
||||||
|
|
||||||
|
class CV_EXPORTS_W AsyncMat
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
//! Wait for Mat object readiness and return it.
|
||||||
|
CV_WRAP Mat get();
|
||||||
|
|
||||||
|
//! Wait for Mat object readiness.
|
||||||
|
CV_WRAP void wait() const;
|
||||||
|
|
||||||
|
/** @brief Wait for Mat object readiness specific amount of time.
|
||||||
|
* @param timeout Timeout in milliseconds
|
||||||
|
* @returns [std::future_status](https://en.cppreference.com/w/cpp/thread/future_status)
|
||||||
|
*/
|
||||||
|
CV_WRAP AsyncMatStatus wait_for(std::chrono::milliseconds timeout) const;
|
||||||
|
};
|
||||||
|
|
||||||
|
}}
|
@ -5,8 +5,8 @@ import numpy as np
|
|||||||
|
|
||||||
from tests_common import NewOpenCVTests, unittest
|
from tests_common import NewOpenCVTests, unittest
|
||||||
|
|
||||||
def normAssert(test, a, b, lInf=1e-5):
|
def normAssert(test, a, b, msg=None, lInf=1e-5):
|
||||||
test.assertLess(np.max(np.abs(a - b)), lInf)
|
test.assertLess(np.max(np.abs(a - b)), lInf, msg)
|
||||||
|
|
||||||
def inter_area(box1, box2):
|
def inter_area(box1, box2):
|
||||||
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2])
|
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2])
|
||||||
@ -53,53 +53,6 @@ def normAssertDetections(test, ref, out, confThreshold=0.0, scores_diff=1e-5, bo
|
|||||||
if errMsg:
|
if errMsg:
|
||||||
test.fail(errMsg)
|
test.fail(errMsg)
|
||||||
|
|
||||||
|
|
||||||
# Returns a simple one-layer network created from Caffe's format
|
|
||||||
def getSimpleNet():
|
|
||||||
prototxt = """
|
|
||||||
name: "simpleNet"
|
|
||||||
input: "data"
|
|
||||||
layer {
|
|
||||||
type: "Identity"
|
|
||||||
name: "testLayer"
|
|
||||||
top: "testLayer"
|
|
||||||
bottom: "data"
|
|
||||||
}
|
|
||||||
"""
|
|
||||||
return cv.dnn.readNetFromCaffe(bytearray(prototxt, 'utf8'))
|
|
||||||
|
|
||||||
|
|
||||||
def testBackendAndTarget(backend, target):
|
|
||||||
net = getSimpleNet()
|
|
||||||
net.setPreferableBackend(backend)
|
|
||||||
net.setPreferableTarget(target)
|
|
||||||
inp = np.random.standard_normal([1, 2, 3, 4]).astype(np.float32)
|
|
||||||
try:
|
|
||||||
net.setInput(inp)
|
|
||||||
net.forward()
|
|
||||||
except BaseException as e:
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
|
||||||
haveInfEngine = testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU)
|
|
||||||
dnnBackendsAndTargets = [
|
|
||||||
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
|
||||||
]
|
|
||||||
|
|
||||||
if haveInfEngine:
|
|
||||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU])
|
|
||||||
if testBackendAndTarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD):
|
|
||||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD])
|
|
||||||
|
|
||||||
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL():
|
|
||||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL])
|
|
||||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16])
|
|
||||||
if haveInfEngine and cv.ocl_Device.getDefault().isIntel():
|
|
||||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL])
|
|
||||||
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16])
|
|
||||||
|
|
||||||
|
|
||||||
def printParams(backend, target):
|
def printParams(backend, target):
|
||||||
backendNames = {
|
backendNames = {
|
||||||
cv.dnn.DNN_BACKEND_OPENCV: 'OCV',
|
cv.dnn.DNN_BACKEND_OPENCV: 'OCV',
|
||||||
@ -116,8 +69,44 @@ def printParams(backend, target):
|
|||||||
|
|
||||||
class dnn_test(NewOpenCVTests):
|
class dnn_test(NewOpenCVTests):
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(dnn_test, self).__init__(*args, **kwargs)
|
||||||
|
self.dnnBackendsAndTargets = [
|
||||||
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
||||||
|
]
|
||||||
|
|
||||||
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU):
|
||||||
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU])
|
||||||
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD):
|
||||||
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD])
|
||||||
|
|
||||||
|
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL():
|
||||||
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL])
|
||||||
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16])
|
||||||
|
if cv.ocl_Device.getDefault().isIntel():
|
||||||
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL):
|
||||||
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL])
|
||||||
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16):
|
||||||
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16])
|
||||||
|
|
||||||
def find_dnn_file(self, filename, required=True):
|
def find_dnn_file(self, filename, required=True):
|
||||||
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd())], required=required)
|
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()),
|
||||||
|
os.environ['OPENCV_TEST_DATA_PATH']],
|
||||||
|
required=required)
|
||||||
|
|
||||||
|
def checkIETarget(self, backend, target):
|
||||||
|
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt', required=True)
|
||||||
|
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel', required=True)
|
||||||
|
net = cv.dnn.readNet(proto, model)
|
||||||
|
net.setPreferableBackend(backend)
|
||||||
|
net.setPreferableTarget(target)
|
||||||
|
inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32)
|
||||||
|
try:
|
||||||
|
net.setInput(inp)
|
||||||
|
net.forward()
|
||||||
|
except BaseException as e:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
def test_blobFromImage(self):
|
def test_blobFromImage(self):
|
||||||
np.random.seed(324)
|
np.random.seed(324)
|
||||||
@ -148,7 +137,7 @@ class dnn_test(NewOpenCVTests):
|
|||||||
|
|
||||||
def test_face_detection(self):
|
def test_face_detection(self):
|
||||||
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
|
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
|
||||||
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt2', required=testdata_required)
|
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt', required=testdata_required)
|
||||||
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=testdata_required)
|
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=testdata_required)
|
||||||
if proto is None or model is None:
|
if proto is None or model is None:
|
||||||
raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
||||||
@ -164,7 +153,7 @@ class dnn_test(NewOpenCVTests):
|
|||||||
[0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]]
|
[0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]]
|
||||||
|
|
||||||
print('\n')
|
print('\n')
|
||||||
for backend, target in dnnBackendsAndTargets:
|
for backend, target in self.dnnBackendsAndTargets:
|
||||||
printParams(backend, target)
|
printParams(backend, target)
|
||||||
|
|
||||||
net = cv.dnn.readNet(proto, model)
|
net = cv.dnn.readNet(proto, model)
|
||||||
@ -178,5 +167,52 @@ class dnn_test(NewOpenCVTests):
|
|||||||
|
|
||||||
normAssertDetections(self, ref, out, 0.5, scoresDiff, iouDiff)
|
normAssertDetections(self, ref, out, 0.5, scoresDiff, iouDiff)
|
||||||
|
|
||||||
|
def test_async(self):
|
||||||
|
timeout = 5000 # in milliseconds
|
||||||
|
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
|
||||||
|
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt', required=testdata_required)
|
||||||
|
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel', required=testdata_required)
|
||||||
|
if proto is None or model is None:
|
||||||
|
raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
|
||||||
|
|
||||||
|
print('\n')
|
||||||
|
for backend, target in self.dnnBackendsAndTargets:
|
||||||
|
if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE:
|
||||||
|
continue
|
||||||
|
|
||||||
|
printParams(backend, target)
|
||||||
|
|
||||||
|
netSync = cv.dnn.readNet(proto, model)
|
||||||
|
netSync.setPreferableBackend(backend)
|
||||||
|
netSync.setPreferableTarget(target)
|
||||||
|
|
||||||
|
netAsync = cv.dnn.readNet(proto, model)
|
||||||
|
netAsync.setPreferableBackend(backend)
|
||||||
|
netAsync.setPreferableTarget(target)
|
||||||
|
|
||||||
|
# Generate inputs
|
||||||
|
numInputs = 10
|
||||||
|
inputs = []
|
||||||
|
for _ in range(numInputs):
|
||||||
|
inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32))
|
||||||
|
|
||||||
|
# Run synchronously
|
||||||
|
refs = []
|
||||||
|
for i in range(numInputs):
|
||||||
|
netSync.setInput(inputs[i])
|
||||||
|
refs.append(netSync.forward())
|
||||||
|
|
||||||
|
# Run asynchronously. To make test more robust, process inputs in the reversed order.
|
||||||
|
outs = []
|
||||||
|
for i in reversed(range(numInputs)):
|
||||||
|
netAsync.setInput(inputs[i])
|
||||||
|
outs.insert(0, netAsync.forwardAsync())
|
||||||
|
|
||||||
|
for i in reversed(range(numInputs)):
|
||||||
|
if outs[i].wait_for(timeout) == 1:
|
||||||
|
self.fail("Timeout")
|
||||||
|
normAssert(self, refs[i], outs[i].get(), 'Index: %d' % i, 1e-10)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
NewOpenCVTests.bootstrap()
|
NewOpenCVTests.bootstrap()
|
||||||
|
@ -1030,6 +1030,7 @@ struct Net::Impl
|
|||||||
lastLayerId = 0;
|
lastLayerId = 0;
|
||||||
netWasAllocated = false;
|
netWasAllocated = false;
|
||||||
fusion = true;
|
fusion = true;
|
||||||
|
isAsync = false;
|
||||||
preferableBackend = DNN_BACKEND_DEFAULT;
|
preferableBackend = DNN_BACKEND_DEFAULT;
|
||||||
preferableTarget = DNN_TARGET_CPU;
|
preferableTarget = DNN_TARGET_CPU;
|
||||||
skipInfEngineInit = false;
|
skipInfEngineInit = false;
|
||||||
@ -1051,6 +1052,7 @@ struct Net::Impl
|
|||||||
|
|
||||||
bool netWasAllocated;
|
bool netWasAllocated;
|
||||||
bool fusion;
|
bool fusion;
|
||||||
|
bool isAsync;
|
||||||
std::vector<int64> layersTimings;
|
std::vector<int64> layersTimings;
|
||||||
Mat output_blob;
|
Mat output_blob;
|
||||||
|
|
||||||
@ -2258,6 +2260,9 @@ struct Net::Impl
|
|||||||
std::map<int, Ptr<BackendNode> >::iterator it = ld.backendNodes.find(preferableBackend);
|
std::map<int, Ptr<BackendNode> >::iterator it = ld.backendNodes.find(preferableBackend);
|
||||||
if (preferableBackend == DNN_BACKEND_OPENCV || it == ld.backendNodes.end() || it->second.empty())
|
if (preferableBackend == DNN_BACKEND_OPENCV || it == ld.backendNodes.end() || it->second.empty())
|
||||||
{
|
{
|
||||||
|
if (isAsync)
|
||||||
|
CV_Error(Error::StsNotImplemented, "Default implementation fallbacks in asynchronous mode");
|
||||||
|
|
||||||
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
||||||
{
|
{
|
||||||
std::vector<UMat> umat_inputBlobs = OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers);
|
std::vector<UMat> umat_inputBlobs = OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers);
|
||||||
@ -2413,7 +2418,7 @@ struct Net::Impl
|
|||||||
}
|
}
|
||||||
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
{
|
{
|
||||||
forwardInfEngine(node);
|
forwardInfEngine(ld.outputBlobsWrappers, node, isAsync);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
@ -2459,15 +2464,6 @@ struct Net::Impl
|
|||||||
forwardLayer(ld);
|
forwardLayer(ld);
|
||||||
}
|
}
|
||||||
|
|
||||||
void forwardAll()
|
|
||||||
{
|
|
||||||
CV_TRACE_FUNCTION();
|
|
||||||
|
|
||||||
MapIdToLayerData::reverse_iterator last_layer = layers.rbegin();
|
|
||||||
CV_Assert(last_layer != layers.rend());
|
|
||||||
forwardToLayer(last_layer->second, true);
|
|
||||||
}
|
|
||||||
|
|
||||||
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
|
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
|
||||||
{
|
{
|
||||||
std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;
|
std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;
|
||||||
@ -2558,6 +2554,42 @@ struct Net::Impl
|
|||||||
{
|
{
|
||||||
return getBlob(getPinByAlias(outputName));
|
return getBlob(getPinByAlias(outputName));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef CV_CXX11
|
||||||
|
std::future<Mat> getBlobAsync(const LayerPin& pin)
|
||||||
|
{
|
||||||
|
CV_TRACE_FUNCTION();
|
||||||
|
#ifdef HAVE_INF_ENGINE
|
||||||
|
if (!pin.valid())
|
||||||
|
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
|
||||||
|
|
||||||
|
LayerData &ld = layers[pin.lid];
|
||||||
|
if ((size_t)pin.oid >= ld.outputBlobs.size())
|
||||||
|
{
|
||||||
|
CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %d outputs, "
|
||||||
|
"the #%d was requested", ld.name.c_str(),
|
||||||
|
ld.outputBlobs.size(), pin.oid));
|
||||||
|
}
|
||||||
|
if (preferableTarget != DNN_TARGET_CPU)
|
||||||
|
{
|
||||||
|
CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty());
|
||||||
|
// Transfer data to CPU if it's require.
|
||||||
|
ld.outputBlobsWrappers[pin.oid]->copyToHost();
|
||||||
|
}
|
||||||
|
CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE);
|
||||||
|
|
||||||
|
Ptr<InfEngineBackendWrapper> wrapper = ld.outputBlobsWrappers[pin.oid].dynamicCast<InfEngineBackendWrapper>();
|
||||||
|
return std::move(wrapper->futureMat);
|
||||||
|
#else
|
||||||
|
CV_Error(Error::StsNotImplemented, "DNN_BACKEND_INFERENCE_ENGINE backend is required");
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
std::future<Mat> getBlobAsync(String outputName)
|
||||||
|
{
|
||||||
|
return getBlobAsync(getPinByAlias(outputName));
|
||||||
|
}
|
||||||
|
#endif // CV_CXX11
|
||||||
};
|
};
|
||||||
|
|
||||||
Net::Net() : impl(new Net::Impl)
|
Net::Net() : impl(new Net::Impl)
|
||||||
@ -2681,6 +2713,31 @@ Mat Net::forward(const String& outputName)
|
|||||||
return impl->getBlob(layerName);
|
return impl->getBlob(layerName);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
AsyncMat Net::forwardAsync(const String& outputName)
|
||||||
|
{
|
||||||
|
CV_TRACE_FUNCTION();
|
||||||
|
#ifdef CV_CXX11
|
||||||
|
if (impl->preferableBackend != DNN_BACKEND_INFERENCE_ENGINE)
|
||||||
|
CV_Error(Error::StsNotImplemented, "Asynchronous forward for backend which is different from DNN_BACKEND_INFERENCE_ENGINE");
|
||||||
|
|
||||||
|
String layerName = outputName;
|
||||||
|
|
||||||
|
if (layerName.empty())
|
||||||
|
layerName = getLayerNames().back();
|
||||||
|
|
||||||
|
std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
|
||||||
|
impl->setUpNet(pins);
|
||||||
|
|
||||||
|
impl->isAsync = true;
|
||||||
|
impl->forwardToLayer(impl->getLayerData(layerName));
|
||||||
|
impl->isAsync = false;
|
||||||
|
|
||||||
|
return impl->getBlobAsync(layerName);
|
||||||
|
#else
|
||||||
|
CV_Error(Error::StsNotImplemented, "Asynchronous forward without C++11");
|
||||||
|
#endif // CV_CXX11
|
||||||
|
}
|
||||||
|
|
||||||
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
|
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
|
||||||
{
|
{
|
||||||
CV_TRACE_FUNCTION();
|
CV_TRACE_FUNCTION();
|
||||||
|
@ -168,7 +168,6 @@ void InfEngineBackendNet::init(int targetId)
|
|||||||
const std::string& name = it.first;
|
const std::string& name = it.first;
|
||||||
auto blobIt = allBlobs.find(name);
|
auto blobIt = allBlobs.find(name);
|
||||||
CV_Assert(blobIt != allBlobs.end());
|
CV_Assert(blobIt != allBlobs.end());
|
||||||
inpBlobs[name] = blobIt->second;
|
|
||||||
it.second->setPrecision(blobIt->second->precision());
|
it.second->setPrecision(blobIt->second->precision());
|
||||||
}
|
}
|
||||||
for (const auto& it : cnn.getOutputsInfo())
|
for (const auto& it : cnn.getOutputsInfo())
|
||||||
@ -176,7 +175,6 @@ void InfEngineBackendNet::init(int targetId)
|
|||||||
const std::string& name = it.first;
|
const std::string& name = it.first;
|
||||||
auto blobIt = allBlobs.find(name);
|
auto blobIt = allBlobs.find(name);
|
||||||
CV_Assert(blobIt != allBlobs.end());
|
CV_Assert(blobIt != allBlobs.end());
|
||||||
outBlobs[name] = blobIt->second;
|
|
||||||
it.second->setPrecision(blobIt->second->precision()); // Should be always FP32
|
it.second->setPrecision(blobIt->second->precision()); // Should be always FP32
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -288,6 +286,24 @@ InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::La
|
|||||||
return wrapToInfEngineBlob(m, reversedShape, layout);
|
return wrapToInfEngineBlob(m, reversedShape, layout);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob)
|
||||||
|
{
|
||||||
|
InferenceEngine::Precision precision = blob->precision();
|
||||||
|
InferenceEngine::Blob::Ptr copy;
|
||||||
|
if (precision == InferenceEngine::Precision::FP32)
|
||||||
|
{
|
||||||
|
copy = InferenceEngine::make_shared_blob<float>(precision, blob->layout(), blob->dims());
|
||||||
|
}
|
||||||
|
else if (precision == InferenceEngine::Precision::U8)
|
||||||
|
{
|
||||||
|
copy = InferenceEngine::make_shared_blob<uint8_t>(precision, blob->layout(), blob->dims());
|
||||||
|
}
|
||||||
|
else
|
||||||
|
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
|
||||||
|
copy->allocate();
|
||||||
|
return copy;
|
||||||
|
}
|
||||||
|
|
||||||
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
|
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
|
||||||
{
|
{
|
||||||
CV_Assert(!ptr.empty());
|
CV_Assert(!ptr.empty());
|
||||||
@ -800,9 +816,6 @@ void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
|
|||||||
plugin = InferenceEngine::InferencePlugin(enginePtr);
|
plugin = InferenceEngine::InferencePlugin(enginePtr);
|
||||||
|
|
||||||
netExec = plugin.LoadNetwork(net, {});
|
netExec = plugin.LoadNetwork(net, {});
|
||||||
infRequest = netExec.CreateInferRequest();
|
|
||||||
infRequest.SetInput(inpBlobs);
|
|
||||||
infRequest.SetOutput(outBlobs);
|
|
||||||
}
|
}
|
||||||
catch (const std::exception& ex)
|
catch (const std::exception& ex)
|
||||||
{
|
{
|
||||||
@ -828,9 +841,116 @@ void InfEngineBackendNet::addBlobs(const std::vector<Ptr<BackendWrapper> >& ptrs
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void InfEngineBackendNet::forward()
|
void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
|
||||||
{
|
{
|
||||||
infRequest.Infer();
|
auto outs = infEngineWrappers(outsWrappers);
|
||||||
|
outProms.clear();
|
||||||
|
outProms.resize(outs.size());
|
||||||
|
outsNames.resize(outs.size());
|
||||||
|
for (int i = 0; i < outs.size(); ++i)
|
||||||
|
{
|
||||||
|
outs[i]->futureMat = outProms[i].get_future();
|
||||||
|
outsNames[i] = outs[i]->dataPtr->name;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
|
||||||
|
bool isAsync)
|
||||||
|
{
|
||||||
|
// Look for finished requests.
|
||||||
|
Ptr<InfEngineReqWrapper> reqWrapper;
|
||||||
|
for (auto& wrapper : infRequests)
|
||||||
|
{
|
||||||
|
if (wrapper->isReady)
|
||||||
|
{
|
||||||
|
reqWrapper = wrapper;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (reqWrapper.empty())
|
||||||
|
{
|
||||||
|
reqWrapper = Ptr<InfEngineReqWrapper>(new InfEngineReqWrapper());
|
||||||
|
try
|
||||||
|
{
|
||||||
|
reqWrapper->req = netExec.CreateInferRequest();
|
||||||
|
}
|
||||||
|
catch (const std::exception& ex)
|
||||||
|
{
|
||||||
|
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
|
||||||
|
}
|
||||||
|
infRequests.push_back(reqWrapper);
|
||||||
|
|
||||||
|
InferenceEngine::BlobMap inpBlobs, outBlobs;
|
||||||
|
for (const auto& it : cnn.getInputsInfo())
|
||||||
|
{
|
||||||
|
const std::string& name = it.first;
|
||||||
|
auto blobIt = allBlobs.find(name);
|
||||||
|
CV_Assert(blobIt != allBlobs.end());
|
||||||
|
inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
|
||||||
|
}
|
||||||
|
for (const auto& it : cnn.getOutputsInfo())
|
||||||
|
{
|
||||||
|
const std::string& name = it.first;
|
||||||
|
auto blobIt = allBlobs.find(name);
|
||||||
|
CV_Assert(blobIt != allBlobs.end());
|
||||||
|
outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
|
||||||
|
}
|
||||||
|
reqWrapper->req.SetInput(inpBlobs);
|
||||||
|
reqWrapper->req.SetOutput(outBlobs);
|
||||||
|
|
||||||
|
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
|
||||||
|
infRequestPtr->SetUserData(reqWrapper.get(), 0);
|
||||||
|
|
||||||
|
infRequestPtr->SetCompletionCallback({
|
||||||
|
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
|
||||||
|
{
|
||||||
|
InfEngineReqWrapper* wrapper;
|
||||||
|
request->GetUserData((void**)&wrapper, 0);
|
||||||
|
CV_Assert(wrapper);
|
||||||
|
|
||||||
|
for (int i = 0; i < wrapper->outProms.size(); ++i)
|
||||||
|
{
|
||||||
|
const std::string& name = wrapper->outsNames[i];
|
||||||
|
Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name));
|
||||||
|
|
||||||
|
if (status == InferenceEngine::StatusCode::OK)
|
||||||
|
wrapper->outProms[i].set_value(m.clone());
|
||||||
|
else
|
||||||
|
{
|
||||||
|
try {
|
||||||
|
std::runtime_error e("Async request failed");
|
||||||
|
wrapper->outProms[i].set_exception(std::make_exception_ptr(e));
|
||||||
|
} catch(...) {
|
||||||
|
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
wrapper->isReady = true;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
if (isAsync)
|
||||||
|
{
|
||||||
|
// Copy actual data to infer request's input blobs.
|
||||||
|
for (const auto& it : cnn.getInputsInfo())
|
||||||
|
{
|
||||||
|
const std::string& name = it.first;
|
||||||
|
auto blobIt = allBlobs.find(name);
|
||||||
|
Mat srcMat = infEngineBlobToMat(blobIt->second);
|
||||||
|
Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name));
|
||||||
|
srcMat.copyTo(dstMat);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set promises to output blobs wrappers.
|
||||||
|
reqWrapper->makePromises(outBlobsWrappers);
|
||||||
|
|
||||||
|
reqWrapper->isReady = false;
|
||||||
|
reqWrapper->req.StartAsync();
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
reqWrapper->req.Infer();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
|
Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
|
||||||
@ -920,14 +1040,15 @@ bool haveInfEngine()
|
|||||||
#endif // HAVE_INF_ENGINE
|
#endif // HAVE_INF_ENGINE
|
||||||
}
|
}
|
||||||
|
|
||||||
void forwardInfEngine(Ptr<BackendNode>& node)
|
void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
|
||||||
|
Ptr<BackendNode>& node, bool isAsync)
|
||||||
{
|
{
|
||||||
CV_Assert(haveInfEngine());
|
CV_Assert(haveInfEngine());
|
||||||
#ifdef HAVE_INF_ENGINE
|
#ifdef HAVE_INF_ENGINE
|
||||||
CV_Assert(!node.empty());
|
CV_Assert(!node.empty());
|
||||||
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
||||||
CV_Assert(!ieNode.empty());
|
CV_Assert(!ieNode.empty());
|
||||||
ieNode->net->forward();
|
ieNode->net->forward(outBlobsWrappers, isAsync);
|
||||||
#endif // HAVE_INF_ENGINE
|
#endif // HAVE_INF_ENGINE
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -185,7 +185,8 @@ public:
|
|||||||
|
|
||||||
void init(int targetId);
|
void init(int targetId);
|
||||||
|
|
||||||
void forward();
|
void forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
|
||||||
|
bool isAsync);
|
||||||
|
|
||||||
void initPlugin(InferenceEngine::ICNNNetwork& net);
|
void initPlugin(InferenceEngine::ICNNNetwork& net);
|
||||||
|
|
||||||
@ -197,12 +198,23 @@ private:
|
|||||||
InferenceEngine::InferenceEnginePluginPtr enginePtr;
|
InferenceEngine::InferenceEnginePluginPtr enginePtr;
|
||||||
InferenceEngine::InferencePlugin plugin;
|
InferenceEngine::InferencePlugin plugin;
|
||||||
InferenceEngine::ExecutableNetwork netExec;
|
InferenceEngine::ExecutableNetwork netExec;
|
||||||
InferenceEngine::InferRequest infRequest;
|
|
||||||
InferenceEngine::BlobMap allBlobs;
|
InferenceEngine::BlobMap allBlobs;
|
||||||
InferenceEngine::BlobMap inpBlobs;
|
|
||||||
InferenceEngine::BlobMap outBlobs;
|
|
||||||
InferenceEngine::TargetDevice targetDevice;
|
InferenceEngine::TargetDevice targetDevice;
|
||||||
|
|
||||||
|
struct InfEngineReqWrapper
|
||||||
|
{
|
||||||
|
InfEngineReqWrapper() : isReady(true) {}
|
||||||
|
|
||||||
|
void makePromises(const std::vector<Ptr<BackendWrapper> >& outs);
|
||||||
|
|
||||||
|
InferenceEngine::InferRequest req;
|
||||||
|
std::vector<std::promise<Mat> > outProms;
|
||||||
|
std::vector<std::string> outsNames;
|
||||||
|
bool isReady;
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<Ptr<InfEngineReqWrapper> > infRequests;
|
||||||
|
|
||||||
InferenceEngine::CNNNetwork cnn;
|
InferenceEngine::CNNNetwork cnn;
|
||||||
bool hasNetOwner;
|
bool hasNetOwner;
|
||||||
|
|
||||||
@ -252,6 +264,7 @@ public:
|
|||||||
|
|
||||||
InferenceEngine::DataPtr dataPtr;
|
InferenceEngine::DataPtr dataPtr;
|
||||||
InferenceEngine::Blob::Ptr blob;
|
InferenceEngine::Blob::Ptr blob;
|
||||||
|
std::future<Mat> futureMat;
|
||||||
};
|
};
|
||||||
|
|
||||||
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY);
|
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY);
|
||||||
@ -302,7 +315,8 @@ CV__DNN_EXPERIMENTAL_NS_END
|
|||||||
|
|
||||||
bool haveInfEngine();
|
bool haveInfEngine();
|
||||||
|
|
||||||
void forwardInfEngine(Ptr<BackendNode>& node);
|
void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
|
||||||
|
Ptr<BackendNode>& node, bool isAsync);
|
||||||
|
|
||||||
}} // namespace dnn, namespace cv
|
}} // namespace dnn, namespace cv
|
||||||
|
|
||||||
|
@ -340,4 +340,106 @@ TEST(Net, forwardAndRetrieve)
|
|||||||
normAssert(outBlobs[0][1], inp.rowRange(2, 4), "second part");
|
normAssert(outBlobs[0][1], inp.rowRange(2, 4), "second part");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef HAVE_INF_ENGINE
|
||||||
|
// This test runs network in synchronous mode for different inputs and then
|
||||||
|
// runs the same model asynchronously for the same inputs.
|
||||||
|
typedef testing::TestWithParam<Target> Async;
|
||||||
|
TEST_P(Async, set_and_forward_single)
|
||||||
|
{
|
||||||
|
static const int kTimeout = 5000; // in milliseconds.
|
||||||
|
const int target = GetParam();
|
||||||
|
|
||||||
|
const std::string suffix = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "_fp16" : "";
|
||||||
|
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
|
||||||
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
|
||||||
|
|
||||||
|
Net netSync = readNet(model, proto);
|
||||||
|
netSync.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Net netAsync = readNet(model, proto);
|
||||||
|
netAsync.setPreferableTarget(target);
|
||||||
|
|
||||||
|
// Generate inputs.
|
||||||
|
const int numInputs = 10;
|
||||||
|
std::vector<Mat> inputs(numInputs);
|
||||||
|
int blobSize[] = {2, 6, 75, 113};
|
||||||
|
for (int i = 0; i < numInputs; ++i)
|
||||||
|
{
|
||||||
|
inputs[i].create(4, &blobSize[0], CV_32FC1);
|
||||||
|
randu(inputs[i], 0.0f, 1.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Run synchronously.
|
||||||
|
std::vector<Mat> refs(numInputs);
|
||||||
|
for (int i = 0; i < numInputs; ++i)
|
||||||
|
{
|
||||||
|
netSync.setInput(inputs[i]);
|
||||||
|
refs[i] = netSync.forward().clone();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Run asynchronously. To make test more robust, process inputs in the reversed order.
|
||||||
|
for (int i = numInputs - 1; i >= 0; --i)
|
||||||
|
{
|
||||||
|
netAsync.setInput(inputs[i]);
|
||||||
|
|
||||||
|
std::future<Mat> out = netAsync.forwardAsync();
|
||||||
|
if (out.wait_for(std::chrono::milliseconds(kTimeout)) == std::future_status::timeout)
|
||||||
|
CV_Error(Error::StsAssert, "Timeout");
|
||||||
|
normAssert(refs[i], out.get(), format("Index: %d", i).c_str(), 0, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(Async, set_and_forward_all)
|
||||||
|
{
|
||||||
|
static const int kTimeout = 5000; // in milliseconds.
|
||||||
|
const int target = GetParam();
|
||||||
|
|
||||||
|
const std::string suffix = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "_fp16" : "";
|
||||||
|
const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
|
||||||
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
|
||||||
|
|
||||||
|
|
||||||
|
Net netSync = readNet(model, proto);
|
||||||
|
netSync.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Net netAsync = readNet(model, proto);
|
||||||
|
netAsync.setPreferableTarget(target);
|
||||||
|
|
||||||
|
// Generate inputs.
|
||||||
|
const int numInputs = 10;
|
||||||
|
std::vector<Mat> inputs(numInputs);
|
||||||
|
int blobSize[] = {2, 6, 75, 113};
|
||||||
|
for (int i = 0; i < numInputs; ++i)
|
||||||
|
{
|
||||||
|
inputs[i].create(4, &blobSize[0], CV_32FC1);
|
||||||
|
randu(inputs[i], 0.0f, 1.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Run synchronously.
|
||||||
|
std::vector<Mat> refs(numInputs);
|
||||||
|
for (int i = 0; i < numInputs; ++i)
|
||||||
|
{
|
||||||
|
netSync.setInput(inputs[i]);
|
||||||
|
refs[i] = netSync.forward().clone();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Run asynchronously. To make test more robust, process inputs in the reversed order.
|
||||||
|
std::vector<std::future<Mat> > outs(numInputs);
|
||||||
|
for (int i = numInputs - 1; i >= 0; --i)
|
||||||
|
{
|
||||||
|
netAsync.setInput(inputs[i]);
|
||||||
|
outs[i] = netAsync.forwardAsync();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = numInputs - 1; i >= 0; --i)
|
||||||
|
{
|
||||||
|
if (outs[i].wait_for(std::chrono::milliseconds(kTimeout)) == std::future_status::timeout)
|
||||||
|
CV_Error(Error::StsAssert, "Timeout");
|
||||||
|
normAssert(refs[i], outs[i].get(), format("Index: %d", i).c_str(), 0, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Async, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE)));
|
||||||
|
#endif // HAVE_INF_ENGINE
|
||||||
|
|
||||||
}} // namespace
|
}} // namespace
|
||||||
|
Loading…
Reference in New Issue
Block a user