mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
core(perf): refactor kmeans test
- don't use RNG for "task size" parameters (N, K, dims) - add "good" kmeans test data (without singularities: K > unique points)
This commit is contained in:
parent
12ea8477a3
commit
a5cd62f7bf
@ -3,14 +3,11 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
using std::tr1::make_tuple;
|
||||
using std::tr1::get;
|
||||
|
||||
namespace {
|
||||
|
||||
typedef perf::TestBaseWithParam<size_t> VectorLength;
|
||||
|
||||
typedef std::tr1::tuple<int, int> MaxDim_MaxPoints_t;
|
||||
typedef perf::TestBaseWithParam<MaxDim_MaxPoints_t> MaxDim_MaxPoints;
|
||||
|
||||
PERF_TEST_P(VectorLength, phase32f, testing::Values(128, 1000, 128*1024, 512*1024, 1024*1024))
|
||||
{
|
||||
size_t length = GetParam();
|
||||
@ -39,47 +36,125 @@ PERF_TEST_P(VectorLength, phase64f, testing::Values(128, 1000, 128*1024, 512*102
|
||||
SANITY_CHECK(angle, 5e-5);
|
||||
}
|
||||
|
||||
PERF_TEST_P( MaxDim_MaxPoints, kmeans,
|
||||
testing::Combine( testing::Values( 16, 32, 64 ),
|
||||
testing::Values( 300, 400, 500) ) )
|
||||
typedef perf::TestBaseWithParam< testing::tuple<int, int, int> > KMeans;
|
||||
|
||||
PERF_TEST_P_(KMeans, single_iter)
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int MAX_DIM = get<0>(GetParam());
|
||||
const int MAX_POINTS = get<1>(GetParam());
|
||||
const int K = testing::get<0>(GetParam());
|
||||
const int dims = testing::get<1>(GetParam());
|
||||
const int N = testing::get<2>(GetParam());
|
||||
const int attempts = 5;
|
||||
|
||||
Mat labels, centers;
|
||||
int i, N = 0, N0 = 0, K = 0, dims = 0;
|
||||
dims = rng.uniform(1, MAX_DIM+1);
|
||||
N = rng.uniform(1, MAX_POINTS+1);
|
||||
N0 = rng.uniform(1, MAX(N/10, 2));
|
||||
K = rng.uniform(1, N+1);
|
||||
Mat data(N, dims, CV_32F);
|
||||
rng.fill(data, RNG::UNIFORM, -0.1, 0.1);
|
||||
|
||||
const int N0 = K;
|
||||
Mat data0(N0, dims, CV_32F);
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
Mat data(N, dims, CV_32F);
|
||||
for( i = 0; i < N; i++ )
|
||||
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
int base = rng.uniform(0, N0);
|
||||
cv::add(data0.row(base), data.row(i), data.row(i));
|
||||
}
|
||||
|
||||
declare.in(data);
|
||||
|
||||
Mat labels, centers;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1, 0),
|
||||
attempts, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(KMeans, good)
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int K = testing::get<0>(GetParam());
|
||||
const int dims = testing::get<1>(GetParam());
|
||||
const int N = testing::get<2>(GetParam());
|
||||
const int attempts = 5;
|
||||
|
||||
Mat data(N, dims, CV_32F);
|
||||
rng.fill(data, RNG::UNIFORM, -0.1, 0.1);
|
||||
|
||||
const int N0 = K;
|
||||
Mat data0(N0, dims, CV_32F);
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
int base = rng.uniform(0, N0);
|
||||
cv::add(data0.row(base), data.row(i), data.row(i));
|
||||
}
|
||||
|
||||
declare.in(data);
|
||||
|
||||
Mat labels, centers;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
attempts, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
Mat clusterPointsNumber = Mat::zeros(1, K, CV_32S);
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
for( i = 0; i < labels.rows; i++ )
|
||||
PERF_TEST_P_(KMeans, with_duplicates)
|
||||
{
|
||||
RNG& rng = theRNG();
|
||||
const int K = testing::get<0>(GetParam());
|
||||
const int dims = testing::get<1>(GetParam());
|
||||
const int N = testing::get<2>(GetParam());
|
||||
const int attempts = 5;
|
||||
|
||||
Mat data(N, dims, CV_32F, Scalar::all(0));
|
||||
|
||||
const int N0 = std::max(2, K * 2 / 3);
|
||||
Mat data0(N0, dims, CV_32F);
|
||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
int clusterIdx = labels.at<int>(i);
|
||||
clusterPointsNumber.at<int>(clusterIdx)++;
|
||||
int base = rng.uniform(0, N0);
|
||||
data0.row(base).copyTo(data.row(i));
|
||||
}
|
||||
|
||||
Mat sortedClusterPointsNumber;
|
||||
cv::sort(clusterPointsNumber, sortedClusterPointsNumber, cv::SORT_EVERY_ROW + cv::SORT_ASCENDING);
|
||||
declare.in(data);
|
||||
|
||||
Mat labels, centers;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||
attempts, KMEANS_PP_CENTERS, centers);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/ , KMeans,
|
||||
testing::Values(
|
||||
// K clusters, dims, N points
|
||||
testing::make_tuple(2, 3, 100000),
|
||||
testing::make_tuple(4, 3, 500),
|
||||
testing::make_tuple(4, 3, 1000),
|
||||
testing::make_tuple(4, 3, 10000),
|
||||
testing::make_tuple(8, 3, 1000),
|
||||
testing::make_tuple(8, 16, 1000),
|
||||
testing::make_tuple(8, 64, 1000),
|
||||
testing::make_tuple(16, 16, 1000),
|
||||
testing::make_tuple(16, 32, 1000),
|
||||
testing::make_tuple(32, 16, 1000),
|
||||
testing::make_tuple(32, 32, 1000),
|
||||
testing::make_tuple(100, 2, 1000)
|
||||
)
|
||||
);
|
||||
|
||||
SANITY_CHECK(sortedClusterPointsNumber);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user