mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #18287 from mpashchenkov:mp/ocv-gapi-blue-branch
[G-API]: Add four kernels to parse NN outputs & provide information in Streaming scenarios * Kernels from GL "blue" branch, acc and perf tests * Code cleanup * Output fix * Comment fix * Added new file for parsers, stylistic corrections * Added end line * Namespace fix * Code cleanup * nnparsers.hpp moved to gapi/infer/, nnparsers -> parsers * Removed cv:: from parsers.hpp
This commit is contained in:
parent
830d8d6b75
commit
a63cee2139
@ -71,6 +71,7 @@ set(gapi_srcs
|
||||
src/api/kernels_core.cpp
|
||||
src/api/kernels_imgproc.cpp
|
||||
src/api/kernels_video.cpp
|
||||
src/api/kernels_nnparsers.cpp
|
||||
src/api/render.cpp
|
||||
src/api/render_ocv.cpp
|
||||
src/api/ginfer.cpp
|
||||
@ -105,6 +106,7 @@ set(gapi_srcs
|
||||
src/backends/cpu/gcpuimgproc.cpp
|
||||
src/backends/cpu/gcpuvideo.cpp
|
||||
src/backends/cpu/gcpucore.cpp
|
||||
src/backends/cpu/gnnparsers.cpp
|
||||
|
||||
# Fluid Backend (also built-in, FIXME:move away)
|
||||
src/backends/fluid/gfluidbuffer.cpp
|
||||
|
@ -31,7 +31,7 @@ namespace core {
|
||||
using GMat2 = std::tuple<GMat,GMat>;
|
||||
using GMat3 = std::tuple<GMat,GMat,GMat>; // FIXME: how to avoid this?
|
||||
using GMat4 = std::tuple<GMat,GMat,GMat,GMat>;
|
||||
using GMatScalar = std::tuple<GMat, GScalar>;
|
||||
using GMatScalar = std::tuple<GMat, GScalar>;
|
||||
|
||||
G_TYPED_KERNEL(GAdd, <GMat(GMat, GMat, int)>, "org.opencv.core.math.add") {
|
||||
static GMatDesc outMeta(GMatDesc a, GMatDesc b, int ddepth) {
|
||||
@ -501,6 +501,18 @@ namespace core {
|
||||
return in.withType(in.depth, in.chan).withSize(dsize);
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GSize, <GOpaque<Size>(GMat)>, "org.opencv.core.size") {
|
||||
static GOpaqueDesc outMeta(const GMatDesc&) {
|
||||
return empty_gopaque_desc();
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GSizeR, <GOpaque<Size>(GOpaque<Rect>)>, "org.opencv.core.sizeR") {
|
||||
static GOpaqueDesc outMeta(const GOpaqueDesc&) {
|
||||
return empty_gopaque_desc();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
//! @addtogroup gapi_math
|
||||
@ -1720,6 +1732,24 @@ GAPI_EXPORTS GMat warpAffine(const GMat& src, const Mat& M, const Size& dsize, i
|
||||
int borderMode = cv::BORDER_CONSTANT, const Scalar& borderValue = Scalar());
|
||||
//! @} gapi_transform
|
||||
|
||||
/** @brief Gets dimensions from Mat.
|
||||
|
||||
@note Function textual ID is "org.opencv.core.size"
|
||||
|
||||
@param src Input tensor
|
||||
@return Size (tensor dimensions).
|
||||
*/
|
||||
GAPI_EXPORTS GOpaque<Size> size(const GMat& src);
|
||||
|
||||
/** @overload
|
||||
Gets dimensions from rectangle.
|
||||
|
||||
@note Function textual ID is "org.opencv.core.sizeR"
|
||||
|
||||
@param r Input rectangle.
|
||||
@return Size (rectangle dimensions).
|
||||
*/
|
||||
GAPI_EXPORTS GOpaque<Size> size(const GOpaque<Rect>& r);
|
||||
} //namespace gapi
|
||||
} //namespace cv
|
||||
|
||||
|
125
modules/gapi/include/opencv2/gapi/infer/parsers.hpp
Normal file
125
modules/gapi/include/opencv2/gapi/infer/parsers.hpp
Normal file
@ -0,0 +1,125 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
|
||||
|
||||
#ifndef OPENCV_GAPI_PARSERS_HPP
|
||||
#define OPENCV_GAPI_PARSERS_HPP
|
||||
|
||||
#include <utility> // std::tuple
|
||||
|
||||
#include <opencv2/gapi/gmat.hpp>
|
||||
#include <opencv2/gapi/gkernel.hpp>
|
||||
|
||||
namespace cv { namespace gapi {
|
||||
namespace nn {
|
||||
namespace parsers {
|
||||
using GRects = GArray<Rect>;
|
||||
using GDetections = std::tuple<GArray<Rect>, GArray<int>>;
|
||||
|
||||
G_TYPED_KERNEL(GParseSSDBL, <GDetections(GMat, GOpaque<Size>, float, int)>,
|
||||
"org.opencv.nn.parsers.parseSSD_BL") {
|
||||
static std::tuple<GArrayDesc,GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&, float, int) {
|
||||
return std::make_tuple(empty_array_desc(), empty_array_desc());
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GParseSSD, <GRects(GMat, GOpaque<Size>, float, bool, bool)>,
|
||||
"org.opencv.nn.parsers.parseSSD") {
|
||||
static GArrayDesc outMeta(const GMatDesc&, const GOpaqueDesc&, float, bool, bool) {
|
||||
return empty_array_desc();
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GParseYolo, <GDetections(GMat, GOpaque<Size>, float, float, std::vector<float>)>,
|
||||
"org.opencv.nn.parsers.parseYolo") {
|
||||
static std::tuple<GArrayDesc, GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&,
|
||||
float, float, const std::vector<float>&) {
|
||||
return std::make_tuple(empty_array_desc(), empty_array_desc());
|
||||
}
|
||||
static const std::vector<float>& defaultAnchors() {
|
||||
static std::vector<float> anchors {
|
||||
0.57273f, 0.677385f, 1.87446f, 2.06253f, 3.33843f, 5.47434f, 7.88282f, 3.52778f, 9.77052f, 9.16828f
|
||||
};
|
||||
return anchors;
|
||||
}
|
||||
};
|
||||
} // namespace parsers
|
||||
} // namespace nn
|
||||
|
||||
/** @brief Parses output of SSD network.
|
||||
|
||||
Extracts detection information (box, confidence, label) from SSD output and
|
||||
filters it by given confidence and label.
|
||||
|
||||
@note Function textual ID is "org.opencv.nn.parsers.parseSSD_BL"
|
||||
|
||||
@param in Input CV_32F tensor with {1,1,N,7} dimensions.
|
||||
@param inSz Size to project detected boxes to (size of the input image).
|
||||
@param confidenceThreshold If confidence of the
|
||||
detection is smaller than confidence threshold, detection is rejected.
|
||||
@param filterLabel If provided (!= -1), only detections with
|
||||
given label will get to the output.
|
||||
@return a tuple with a vector of detected boxes and a vector of appropriate labels.
|
||||
*/
|
||||
GAPI_EXPORTS std::tuple<GArray<Rect>, GArray<int>> parseSSD(const GMat& in,
|
||||
const GOpaque<Size>& inSz,
|
||||
const float confidenceThreshold = 0.5f,
|
||||
const int filterLabel = -1);
|
||||
|
||||
/** @overload
|
||||
Extracts detection information (box, confidence) from SSD output and
|
||||
filters it by given confidence and by going out of bounds.
|
||||
|
||||
@note Function textual ID is "org.opencv.nn.parsers.parseSSD"
|
||||
|
||||
@param in Input CV_32F tensor with {1,1,N,7} dimensions.
|
||||
@param inSz Size to project detected boxes to (size of the input image).
|
||||
@param confidenceThreshold If confidence of the
|
||||
detection is smaller than confidence threshold, detection is rejected.
|
||||
@param alignmentToSquare If provided true, bounding boxes are extended to squares.
|
||||
The center of the rectangle remains unchanged, the side of the square is
|
||||
the larger side of the rectangle.
|
||||
@param filterOutOfBounds If provided true, out-of-frame boxes are filtered.
|
||||
@return a vector of detected bounding boxes.
|
||||
*/
|
||||
GAPI_EXPORTS GArray<Rect> parseSSD(const GMat& in,
|
||||
const GOpaque<Size>& inSz,
|
||||
const float confidenceThreshold = 0.5f,
|
||||
const bool alignmentToSquare = false,
|
||||
const bool filterOutOfBounds = false);
|
||||
|
||||
/** @brief Parses output of Yolo network.
|
||||
|
||||
Extracts detection information (box, confidence, label) from Yolo output,
|
||||
filters it by given confidence and performs non-maximum supression for overlapping boxes.
|
||||
|
||||
@note Function textual ID is "org.opencv.nn.parsers.parseYolo"
|
||||
|
||||
@param in Input CV_32F tensor with {1,13,13,N} dimensions, N should satisfy:
|
||||
\f[\texttt{N} = (\texttt{num_classes} + \texttt{5}) * \texttt{5},\f]
|
||||
where num_classes - a number of classes Yolo network was trained with.
|
||||
@param inSz Size to project detected boxes to (size of the input image).
|
||||
@param confidenceThreshold If confidence of the
|
||||
detection is smaller than confidence threshold, detection is rejected.
|
||||
@param nmsThreshold Non-maximum supression threshold which controls minimum
|
||||
relative box intersection area required for rejecting the box with a smaller confidence.
|
||||
If 1.f, nms is not performed and no boxes are rejected.
|
||||
@param anchors Anchors Yolo network was trained with.
|
||||
@note The default anchor values are taken from openvinotoolkit docs:
|
||||
https://docs.openvinotoolkit.org/latest/omz_models_intel_yolo_v2_tiny_vehicle_detection_0001_description_yolo_v2_tiny_vehicle_detection_0001.html#output.
|
||||
@return a tuple with a vector of detected boxes and a vector of appropriate labels.
|
||||
*/
|
||||
GAPI_EXPORTS std::tuple<GArray<Rect>, GArray<int>> parseYolo(const GMat& in,
|
||||
const GOpaque<Size>& inSz,
|
||||
const float confidenceThreshold = 0.5f,
|
||||
const float nmsThreshold = 0.5f,
|
||||
const std::vector<float>& anchors
|
||||
= nn::parsers::GParseYolo::defaultAnchors());
|
||||
|
||||
} // namespace gapi
|
||||
} // namespace cv
|
||||
|
||||
#endif // OPENCV_GAPI_PARSERS_HPP
|
@ -10,6 +10,7 @@
|
||||
|
||||
|
||||
#include "../../test/common/gapi_tests_common.hpp"
|
||||
#include "../../test/common/gapi_parsers_tests_common.hpp"
|
||||
#include <opencv2/gapi/core.hpp>
|
||||
|
||||
namespace opencv_test
|
||||
@ -73,5 +74,10 @@ namespace opencv_test
|
||||
class ConvertToPerfTest : public TestPerfParams<tuple<MatType, int, cv::Size, cv::GCompileArgs>> {};
|
||||
class ResizePerfTest : public TestPerfParams<tuple<compare_f, MatType, int, cv::Size, cv::Size, cv::GCompileArgs>> {};
|
||||
class ResizeFxFyPerfTest : public TestPerfParams<tuple<compare_f, MatType, int, cv::Size, double, double, cv::GCompileArgs>> {};
|
||||
class ParseSSDBLPerfTest : public TestPerfParams<tuple<cv::Size, float, int, cv::GCompileArgs>>, public ParserSSDTest {};
|
||||
class ParseSSDPerfTest : public TestPerfParams<tuple<cv::Size, float, bool, bool, cv::GCompileArgs>>, public ParserSSDTest {};
|
||||
class ParseYoloPerfTest : public TestPerfParams<tuple<cv::Size, float, float, int, cv::GCompileArgs>>, public ParserYoloTest {};
|
||||
class SizePerfTest : public TestPerfParams<tuple<MatType, cv::Size, cv::GCompileArgs>> {};
|
||||
class SizeRPerfTest : public TestPerfParams<tuple<cv::Size, cv::GCompileArgs>> {};
|
||||
}
|
||||
#endif // OPENCV_GAPI_CORE_PERF_TESTS_HPP
|
||||
|
@ -1930,5 +1930,187 @@ PERF_TEST_P_(ResizeFxFyPerfTest, TestPerformance)
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(ParseSSDBLPerfTest, TestPerformance)
|
||||
{
|
||||
cv::Size sz;
|
||||
float confidence_threshold = 0.0f;
|
||||
int filter_label = 0;
|
||||
cv::GCompileArgs compile_args;
|
||||
std::tie(sz, confidence_threshold, filter_label, compile_args) = GetParam();
|
||||
cv::Mat in_mat = generateSSDoutput(sz);
|
||||
std::vector<cv::Rect> boxes_gapi, boxes_ref;
|
||||
std::vector<int> labels_gapi, labels_ref;
|
||||
|
||||
// Reference code //////////////////////////////////////////////////////////
|
||||
parseSSDBLref(in_mat, sz, confidence_threshold, filter_label, boxes_ref, labels_ref);
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Size> op_sz;
|
||||
auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold, filter_label);
|
||||
cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
|
||||
|
||||
// Warm-up graph engine:
|
||||
auto cc = c.compile(descr_of(in_mat), descr_of(sz), std::move(compile_args));
|
||||
cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
|
||||
}
|
||||
|
||||
// Comparison ////////////////////////////////////////////////////////////
|
||||
{
|
||||
EXPECT_TRUE(boxes_gapi == boxes_ref);
|
||||
EXPECT_TRUE(labels_gapi == labels_ref);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(ParseSSDPerfTest, TestPerformance)
|
||||
{
|
||||
cv::Size sz;
|
||||
float confidence_threshold = 0;
|
||||
bool alignment_to_square = false, filter_out_of_bounds = false;
|
||||
cv::GCompileArgs compile_args;
|
||||
std::tie(sz, confidence_threshold, alignment_to_square, filter_out_of_bounds, compile_args) = GetParam();
|
||||
cv::Mat in_mat = generateSSDoutput(sz);
|
||||
std::vector<cv::Rect> boxes_gapi, boxes_ref;
|
||||
|
||||
// Reference code //////////////////////////////////////////////////////////
|
||||
parseSSDref(in_mat, sz, confidence_threshold, alignment_to_square, filter_out_of_bounds, boxes_ref);
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Size> op_sz;
|
||||
auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold, alignment_to_square, filter_out_of_bounds);
|
||||
cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(out));
|
||||
|
||||
// Warm-up graph engine:
|
||||
auto cc = c.compile(descr_of(in_mat), descr_of(sz), std::move(compile_args));
|
||||
cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi));
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi));
|
||||
}
|
||||
|
||||
// Comparison ////////////////////////////////////////////////////////////
|
||||
{
|
||||
EXPECT_TRUE(boxes_gapi == boxes_ref);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(ParseYoloPerfTest, TestPerformance)
|
||||
{
|
||||
cv::Size sz;
|
||||
float confidence_threshold = 0.0f, nms_threshold = 0.0f;
|
||||
int num_classes = 0;
|
||||
cv::GCompileArgs compile_args;
|
||||
std::tie(sz, confidence_threshold, nms_threshold, num_classes, compile_args) = GetParam();
|
||||
cv::Mat in_mat = generateYoloOutput(num_classes);
|
||||
auto anchors = cv::gapi::nn::parsers::GParseYolo::defaultAnchors();
|
||||
std::vector<cv::Rect> boxes_gapi, boxes_ref;
|
||||
std::vector<int> labels_gapi, labels_ref;
|
||||
|
||||
// Reference code //////////////////////////////////////////////////////////
|
||||
parseYoloRef(in_mat, sz, confidence_threshold, nms_threshold, num_classes, anchors, boxes_ref, labels_ref);
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Size> op_sz;
|
||||
auto out = cv::gapi::parseYolo(in, op_sz, confidence_threshold, nms_threshold, anchors);
|
||||
cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
|
||||
|
||||
// Warm-up graph engine:
|
||||
auto cc = c.compile(descr_of(in_mat), descr_of(sz), std::move(compile_args));
|
||||
cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi));
|
||||
}
|
||||
|
||||
// Comparison ////////////////////////////////////////////////////////////
|
||||
{
|
||||
EXPECT_TRUE(boxes_gapi == boxes_ref);
|
||||
EXPECT_TRUE(labels_gapi == labels_ref);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(SizePerfTest, TestPerformance)
|
||||
{
|
||||
MatType type;
|
||||
cv::Size sz;
|
||||
cv::GCompileArgs compile_args;
|
||||
std::tie(type, sz, compile_args) = GetParam();
|
||||
in_mat1 = cv::Mat(sz, type);
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
auto out = cv::gapi::size(in);
|
||||
cv::GComputation c(cv::GIn(in), cv::GOut(out));
|
||||
cv::Size out_sz;
|
||||
|
||||
// Warm-up graph engine:
|
||||
auto cc = c.compile(descr_of(in_mat1), std::move(compile_args));
|
||||
cc(cv::gin(in_mat1), cv::gout(out_sz));
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc(cv::gin(in_mat1), cv::gout(out_sz));
|
||||
}
|
||||
|
||||
// Comparison ////////////////////////////////////////////////////////////
|
||||
{
|
||||
EXPECT_EQ(out_sz, sz);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(SizeRPerfTest, TestPerformance)
|
||||
{
|
||||
cv::Size sz;
|
||||
cv::GCompileArgs compile_args;
|
||||
std::tie(sz, compile_args) = GetParam();
|
||||
cv::Rect rect(cv::Point(0,0), sz);
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GOpaque<cv::Rect> op_rect;
|
||||
auto out = cv::gapi::size(op_rect);
|
||||
cv::GComputation c(cv::GIn(op_rect), cv::GOut(out));
|
||||
cv::Size out_sz;
|
||||
|
||||
// Warm-up graph engine:
|
||||
auto cc = c.compile(descr_of(rect), std::move(compile_args));
|
||||
cc(cv::gin(rect), cv::gout(out_sz));
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc(cv::gin(rect), cv::gout(out_sz));
|
||||
}
|
||||
|
||||
// Comparison ////////////////////////////////////////////////////////////
|
||||
{
|
||||
EXPECT_EQ(out_sz, sz);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
}
|
||||
#endif // OPENCV_GAPI_CORE_PERF_TESTS_INL_HPP
|
||||
|
@ -288,4 +288,33 @@ INSTANTIATE_TEST_CASE_P(ResizeFxFyPerfTestCPU, ResizeFxFyPerfTest,
|
||||
Values(0.5, 0.1),
|
||||
Values(0.5, 0.1),
|
||||
Values(cv::compile_args(CORE_CPU))));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ParseSSDBLPerfTestCPU, ParseSSDBLPerfTest,
|
||||
Combine(Values(sz720p, sz1080p),
|
||||
Values(0.3f, 0.7f),
|
||||
Values(0, 1),
|
||||
Values(cv::compile_args(CORE_CPU))));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ParseSSDPerfTestCPU, ParseSSDPerfTest,
|
||||
Combine(Values(sz720p, sz1080p),
|
||||
Values(0.3f, 0.7f),
|
||||
testing::Bool(),
|
||||
testing::Bool(),
|
||||
Values(cv::compile_args(CORE_CPU))));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ParseYoloPerfTestCPU, ParseYoloPerfTest,
|
||||
Combine(Values(sz720p, sz1080p),
|
||||
Values(0.3f, 0.7f),
|
||||
Values(0.5),
|
||||
Values(7, 80),
|
||||
Values(cv::compile_args(CORE_CPU))));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SizePerfTestCPU, SizePerfTest,
|
||||
Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
|
||||
Values(szSmall128, szVGA, sz720p, sz1080p),
|
||||
Values(cv::compile_args(CORE_CPU))));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SizeRPerfTestCPU, SizeRPerfTest,
|
||||
Combine(Values(szSmall128, szVGA, sz720p, sz1080p),
|
||||
Values(cv::compile_args(CORE_CPU))));
|
||||
} // opencv_test
|
||||
|
@ -383,5 +383,15 @@ GMat warpAffine(const GMat& src, const Mat& M, const Size& dsize, int flags,
|
||||
return core::GWarpAffine::on(src, M, dsize, flags, borderMode, borderValue);
|
||||
}
|
||||
|
||||
GOpaque<Size> size(const GMat& src)
|
||||
{
|
||||
return core::GSize::on(src);
|
||||
}
|
||||
|
||||
GOpaque<Size> size(const GOpaque<Rect>& r)
|
||||
{
|
||||
return core::GSizeR::on(r);
|
||||
}
|
||||
|
||||
} //namespace gapi
|
||||
} //namespace cv
|
||||
|
44
modules/gapi/src/api/kernels_nnparsers.cpp
Normal file
44
modules/gapi/src/api/kernels_nnparsers.cpp
Normal file
@ -0,0 +1,44 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include <opencv2/gapi/infer/parsers.hpp>
|
||||
|
||||
#include <tuple>
|
||||
#include <numeric>
|
||||
|
||||
namespace cv { namespace gapi {
|
||||
|
||||
nn::parsers::GDetections parseSSD(const GMat& in,
|
||||
const GOpaque<Size>& inSz,
|
||||
const float confidenceThreshold,
|
||||
const int filterLabel)
|
||||
{
|
||||
return nn::parsers::GParseSSDBL::on(in, inSz, confidenceThreshold, filterLabel);
|
||||
}
|
||||
|
||||
nn::parsers::GRects parseSSD(const GMat& in,
|
||||
const GOpaque<Size>& inSz,
|
||||
const float confidenceThreshold,
|
||||
const bool alignmentToSquare,
|
||||
const bool filterOutOfBounds)
|
||||
{
|
||||
return nn::parsers::GParseSSD::on(in, inSz, confidenceThreshold, alignmentToSquare, filterOutOfBounds);
|
||||
}
|
||||
|
||||
nn::parsers::GDetections parseYolo(const GMat& in,
|
||||
const GOpaque<Size>& inSz,
|
||||
const float confidenceThreshold,
|
||||
const float nmsThreshold,
|
||||
const std::vector<float>& anchors)
|
||||
{
|
||||
return nn::parsers::GParseYolo::on(in, inSz, confidenceThreshold, nmsThreshold, anchors);
|
||||
}
|
||||
|
||||
} //namespace gapi
|
||||
} //namespace cv
|
@ -6,6 +6,7 @@
|
||||
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "gnnparsers.hpp"
|
||||
|
||||
#include <opencv2/gapi/core.hpp>
|
||||
#include <opencv2/gapi/cpu/core.hpp>
|
||||
@ -576,6 +577,63 @@ GAPI_OCV_KERNEL(GCPUWarpAffine, cv::gapi::core::GWarpAffine)
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(GCPUParseSSDBL, cv::gapi::nn::parsers::GParseSSDBL)
|
||||
{
|
||||
static void run(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const int filter_label,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels)
|
||||
{
|
||||
cv::parseSSDBL(in_ssd_result, in_size, confidence_threshold, filter_label, out_boxes, out_labels);
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(GOCVParseSSD, cv::gapi::nn::parsers::GParseSSD)
|
||||
{
|
||||
static void run(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const bool alignment_to_square,
|
||||
const bool filter_out_of_bounds,
|
||||
std::vector<cv::Rect>& out_boxes)
|
||||
{
|
||||
cv::parseSSD(in_ssd_result, in_size, confidence_threshold, alignment_to_square, filter_out_of_bounds, out_boxes);
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(GCPUParseYolo, cv::gapi::nn::parsers::GParseYolo)
|
||||
{
|
||||
static void run(const cv::Mat& in_yolo_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const float nms_threshold,
|
||||
const std::vector<float>& anchors,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels)
|
||||
{
|
||||
cv::parseYolo(in_yolo_result, in_size, confidence_threshold, nms_threshold, anchors, out_boxes, out_labels);
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(GCPUSize, cv::gapi::core::GSize)
|
||||
{
|
||||
static void run(const cv::Mat& in, cv::Size& out)
|
||||
{
|
||||
out.width = in.cols;
|
||||
out.height = in.rows;
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(GCPUSizeR, cv::gapi::core::GSizeR)
|
||||
{
|
||||
static void run(const cv::Rect& in, cv::Size& out)
|
||||
{
|
||||
out.width = in.width;
|
||||
out.height = in.height;
|
||||
}
|
||||
};
|
||||
|
||||
cv::gapi::GKernelPackage cv::gapi::core::cpu::kernels()
|
||||
{
|
||||
@ -647,6 +705,11 @@ cv::gapi::GKernelPackage cv::gapi::core::cpu::kernels()
|
||||
, GCPUNormalize
|
||||
, GCPUWarpPerspective
|
||||
, GCPUWarpAffine
|
||||
, GCPUParseSSDBL
|
||||
, GOCVParseSSD
|
||||
, GCPUParseYolo
|
||||
, GCPUSize
|
||||
, GCPUSizeR
|
||||
>();
|
||||
return pkg;
|
||||
}
|
||||
|
338
modules/gapi/src/backends/cpu/gnnparsers.cpp
Normal file
338
modules/gapi/src/backends/cpu/gnnparsers.cpp
Normal file
@ -0,0 +1,338 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
|
||||
#include "gnnparsers.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace gapi
|
||||
{
|
||||
namespace nn
|
||||
{
|
||||
class YoloParser
|
||||
{
|
||||
public:
|
||||
YoloParser(const float* out, const int side, const int lcoords, const int lclasses)
|
||||
: m_out(out), m_side(side), m_lcoords(lcoords), m_lclasses(lclasses)
|
||||
{}
|
||||
|
||||
float scale(const int i, const int b)
|
||||
{
|
||||
int obj_index = index(i, b, m_lcoords);
|
||||
return m_out[obj_index];
|
||||
}
|
||||
|
||||
double x(const int i, const int b)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
int col = i % m_side;
|
||||
return (col + m_out[box_index]) / m_side;
|
||||
}
|
||||
|
||||
double y(const int i, const int b)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
int row = i / m_side;
|
||||
return (row + m_out[box_index + m_side * m_side]) / m_side;
|
||||
}
|
||||
|
||||
double width(const int i, const int b, const float anchor)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
return std::exp(m_out[box_index + 2 * m_side * m_side]) * anchor / m_side;
|
||||
}
|
||||
|
||||
double height(const int i, const int b, const float anchor)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
return std::exp(m_out[box_index + 3 * m_side * m_side]) * anchor / m_side;
|
||||
}
|
||||
|
||||
float classConf(const int i, const int b, const int label)
|
||||
{
|
||||
int class_index = index(i, b, m_lcoords + 1 + label);
|
||||
return m_out[class_index];
|
||||
}
|
||||
|
||||
cv::Rect toBox(const double x, const double y, const double h, const double w, const cv::Size& in_sz)
|
||||
{
|
||||
auto h_scale = in_sz.height;
|
||||
auto w_scale = in_sz.width;
|
||||
cv::Rect r;
|
||||
r.x = static_cast<int>((x - w / 2) * w_scale);
|
||||
r.y = static_cast<int>((y - h / 2) * h_scale);
|
||||
r.width = static_cast<int>(w * w_scale);
|
||||
r.height = static_cast<int>(h * h_scale);
|
||||
return r;
|
||||
}
|
||||
|
||||
private:
|
||||
const float* m_out = nullptr;
|
||||
int m_side = 0, m_lcoords = 0, m_lclasses = 0;
|
||||
|
||||
int index(const int i, const int b, const int entry)
|
||||
{
|
||||
return b * m_side * m_side * (m_lcoords + m_lclasses + 1) + entry * m_side * m_side + i;
|
||||
}
|
||||
};
|
||||
|
||||
struct YoloParams
|
||||
{
|
||||
int num = 5;
|
||||
int coords = 4;
|
||||
};
|
||||
|
||||
struct Detection
|
||||
{
|
||||
Detection(const cv::Rect& in_rect, const float in_conf, const int in_label)
|
||||
: rect(in_rect), conf(in_conf), label(in_label)
|
||||
{}
|
||||
cv::Rect rect;
|
||||
float conf = 0.0f;
|
||||
int label = 0;
|
||||
};
|
||||
|
||||
class SSDParser
|
||||
{
|
||||
public:
|
||||
SSDParser(const cv::MatSize& in_ssd_dims, const cv::Size& in_size, const float* data)
|
||||
: m_dims(in_ssd_dims), m_maxProp(in_ssd_dims[2]), m_objSize(in_ssd_dims[3]),
|
||||
m_data(data), m_surface(cv::Rect({0,0}, in_size)), m_size(in_size)
|
||||
{
|
||||
GAPI_Assert(in_ssd_dims.dims() == 4u); // Fixed output layout
|
||||
GAPI_Assert(m_objSize == 7); // Fixed SSD object size
|
||||
}
|
||||
|
||||
void adjustBoundingBox(cv::Rect& boundingBox)
|
||||
{
|
||||
auto w = boundingBox.width;
|
||||
auto h = boundingBox.height;
|
||||
|
||||
boundingBox.x -= static_cast<int>(0.067 * w);
|
||||
boundingBox.y -= static_cast<int>(0.028 * h);
|
||||
|
||||
boundingBox.width += static_cast<int>(0.15 * w);
|
||||
boundingBox.height += static_cast<int>(0.13 * h);
|
||||
|
||||
if (boundingBox.width < boundingBox.height)
|
||||
{
|
||||
auto dx = (boundingBox.height - boundingBox.width);
|
||||
boundingBox.x -= dx / 2;
|
||||
boundingBox.width += dx;
|
||||
}
|
||||
else
|
||||
{
|
||||
auto dy = (boundingBox.width - boundingBox.height);
|
||||
boundingBox.y -= dy / 2;
|
||||
boundingBox.height += dy;
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<cv::Rect, float, float, int> extract(const size_t step)
|
||||
{
|
||||
const float* it = m_data + step * m_objSize;
|
||||
float image_id = it[0];
|
||||
int label = static_cast<int>(it[1]);
|
||||
float confidence = it[2];
|
||||
float rc_left = it[3];
|
||||
float rc_top = it[4];
|
||||
float rc_right = it[5];
|
||||
float rc_bottom = it[6];
|
||||
|
||||
cv::Rect rc; // Map relative coordinates to the original image scale
|
||||
rc.x = static_cast<int>(rc_left * m_size.width);
|
||||
rc.y = static_cast<int>(rc_top * m_size.height);
|
||||
rc.width = static_cast<int>(rc_right * m_size.width) - rc.x;
|
||||
rc.height = static_cast<int>(rc_bottom * m_size.height) - rc.y;
|
||||
return std::make_tuple(rc, image_id, confidence, label);
|
||||
}
|
||||
|
||||
int getMaxProposals()
|
||||
{
|
||||
return m_maxProp;
|
||||
}
|
||||
|
||||
cv::Rect getSurface()
|
||||
{
|
||||
return m_surface;
|
||||
}
|
||||
|
||||
private:
|
||||
const cv::MatSize m_dims;
|
||||
int m_maxProp = 0, m_objSize = 0;
|
||||
const float* m_data = nullptr;
|
||||
const cv::Rect m_surface;
|
||||
const cv::Size m_size;
|
||||
};
|
||||
} // namespace nn
|
||||
} // namespace gapi
|
||||
|
||||
void parseSSDBL(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const int filter_label,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels)
|
||||
{
|
||||
cv::gapi::nn::SSDParser parser(in_ssd_result.size, in_size, in_ssd_result.ptr<float>());
|
||||
out_boxes.clear();
|
||||
out_labels.clear();
|
||||
cv::Rect rc;
|
||||
float image_id, confidence;
|
||||
int label;
|
||||
const size_t range = parser.getMaxProposals();
|
||||
for (size_t i = 0; i < range; ++i)
|
||||
{
|
||||
std::tie(rc, image_id, confidence, label) = parser.extract(i);
|
||||
|
||||
if (image_id < 0.f)
|
||||
{
|
||||
break; // marks end-of-detections
|
||||
}
|
||||
|
||||
if (confidence < confidence_threshold ||
|
||||
(filter_label != -1 && label != filter_label))
|
||||
{
|
||||
continue; // filter out object classes if filter is specified
|
||||
} // and skip objects with low confidence
|
||||
out_boxes.emplace_back(rc & parser.getSurface());
|
||||
out_labels.emplace_back(label);
|
||||
}
|
||||
}
|
||||
|
||||
void parseSSD(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const bool alignment_to_square,
|
||||
const bool filter_out_of_bounds,
|
||||
std::vector<cv::Rect>& out_boxes)
|
||||
{
|
||||
cv::gapi::nn::SSDParser parser(in_ssd_result.size, in_size, in_ssd_result.ptr<float>());
|
||||
out_boxes.clear();
|
||||
cv::Rect rc;
|
||||
float image_id, confidence;
|
||||
int label;
|
||||
const size_t range = parser.getMaxProposals();
|
||||
for (size_t i = 0; i < range; ++i)
|
||||
{
|
||||
std::tie(rc, image_id, confidence, label) = parser.extract(i);
|
||||
|
||||
if (image_id < 0.f)
|
||||
{
|
||||
break; // marks end-of-detections
|
||||
}
|
||||
if (confidence < confidence_threshold)
|
||||
{
|
||||
continue; // skip objects with low confidence
|
||||
}
|
||||
|
||||
if (alignment_to_square)
|
||||
{
|
||||
parser.adjustBoundingBox(rc);
|
||||
}
|
||||
|
||||
const auto clipped_rc = rc & parser.getSurface();
|
||||
if (filter_out_of_bounds)
|
||||
{
|
||||
if (clipped_rc.area() != rc.area())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
out_boxes.emplace_back(clipped_rc);
|
||||
}
|
||||
}
|
||||
|
||||
void parseYolo(const cv::Mat& in_yolo_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const float nms_threshold,
|
||||
const std::vector<float>& anchors,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels)
|
||||
{
|
||||
const auto& dims = in_yolo_result.size;
|
||||
GAPI_Assert(dims.dims() == 4);
|
||||
GAPI_Assert(dims[0] == 1);
|
||||
GAPI_Assert(dims[1] == 13);
|
||||
GAPI_Assert(dims[2] == 13);
|
||||
GAPI_Assert(dims[3] % 5 == 0); // 5 boxes
|
||||
const auto num_classes = dims[3] / 5 - 5;
|
||||
GAPI_Assert(num_classes > 0);
|
||||
GAPI_Assert(0 < nms_threshold && nms_threshold <= 1);
|
||||
out_boxes.clear();
|
||||
out_labels.clear();
|
||||
gapi::nn::YoloParams params;
|
||||
constexpr auto side = 13;
|
||||
constexpr auto side_square = side * side;
|
||||
const auto output = in_yolo_result.ptr<float>();
|
||||
|
||||
gapi::nn::YoloParser parser(output, side, params.coords, num_classes);
|
||||
|
||||
std::vector<gapi::nn::Detection> detections;
|
||||
|
||||
for (int i = 0; i < side_square; ++i)
|
||||
{
|
||||
for (int b = 0; b < params.num; ++b)
|
||||
{
|
||||
float scale = parser.scale(i, b);
|
||||
if (scale < confidence_threshold)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
double x = parser.x(i, b);
|
||||
double y = parser.y(i, b);
|
||||
double height = parser.height(i, b, anchors[2 * b + 1]);
|
||||
double width = parser.width(i, b, anchors[2 * b]);
|
||||
|
||||
for (int label = 0; label < num_classes; ++label)
|
||||
{
|
||||
float prob = scale * parser.classConf(i,b,label);
|
||||
if (prob < confidence_threshold)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
auto box = parser.toBox(x, y, height, width, in_size);
|
||||
detections.emplace_back(gapi::nn::Detection(box, prob, label));
|
||||
}
|
||||
}
|
||||
}
|
||||
std::stable_sort(std::begin(detections), std::end(detections),
|
||||
[](const gapi::nn::Detection& a, const gapi::nn::Detection& b)
|
||||
{
|
||||
return a.conf > b.conf;
|
||||
});
|
||||
|
||||
if (nms_threshold < 1.0f)
|
||||
{
|
||||
for (const auto& d : detections)
|
||||
{
|
||||
// Reject boxes which overlap with previously pushed ones
|
||||
// (They are sorted by confidence, so rejected box
|
||||
// always has a smaller confidence
|
||||
if (std::end(out_boxes) ==
|
||||
std::find_if(std::begin(out_boxes), std::end(out_boxes),
|
||||
[&d, nms_threshold](const cv::Rect& r)
|
||||
{
|
||||
float rectOverlap = 1.f - static_cast<float>(jaccardDistance(r, d.rect));
|
||||
return rectOverlap > nms_threshold;
|
||||
}))
|
||||
{
|
||||
out_boxes. emplace_back(d.rect);
|
||||
out_labels.emplace_back(d.label);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (const auto& d: detections)
|
||||
{
|
||||
out_boxes. emplace_back(d.rect);
|
||||
out_labels.emplace_back(d.label);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace cv
|
36
modules/gapi/src/backends/cpu/gnnparsers.hpp
Normal file
36
modules/gapi/src/backends/cpu/gnnparsers.hpp
Normal file
@ -0,0 +1,36 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
|
||||
#include <opencv2/gapi/infer/parsers.hpp>
|
||||
|
||||
#ifndef OPENCV_NNPARSERS_OCV_HPP
|
||||
#define OPENCV_NNPARSERS_OCV_HPP
|
||||
|
||||
namespace cv
|
||||
{
|
||||
void parseSSDBL(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const int filter_label,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels);
|
||||
|
||||
void parseSSD(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const bool alignment_to_square,
|
||||
const bool filter_out_of_bounds,
|
||||
std::vector<cv::Rect>& out_boxes);
|
||||
|
||||
void parseYolo(const cv::Mat& in_yolo_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const float nms_threshold,
|
||||
const std::vector<float>& anchors,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels);
|
||||
}
|
||||
#endif // OPENCV_NNPARSERS_OCV_HPP
|
@ -11,6 +11,7 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "gapi_tests_common.hpp"
|
||||
#include "gapi_parsers_tests_common.hpp"
|
||||
|
||||
namespace opencv_test
|
||||
{
|
||||
@ -149,6 +150,15 @@ GAPI_TEST_FIXTURE(WarpPerspectiveTest, initMatrixRandU,
|
||||
GAPI_TEST_FIXTURE(WarpAffineTest, initMatrixRandU,
|
||||
FIXTURE_API(CompareMats, double , double, int, int, cv::Scalar),
|
||||
6, cmpF, angle, scale, flags, border_mode, border_value)
|
||||
|
||||
GAPI_TEST_EXT_BASE_FIXTURE(ParseSSDBLTest, ParserSSDTest, initNothing,
|
||||
FIXTURE_API(float, int), 2, confidence_threshold, filter_label)
|
||||
GAPI_TEST_EXT_BASE_FIXTURE(ParseSSDTest, ParserSSDTest, initNothing,
|
||||
FIXTURE_API(float, bool, bool), 3, confidence_threshold, alignment_to_square, filter_out_of_bounds)
|
||||
GAPI_TEST_EXT_BASE_FIXTURE(ParseYoloTest, ParserYoloTest, initNothing,
|
||||
FIXTURE_API(float, float, int), 3, confidence_threshold, nms_threshold, num_classes)
|
||||
GAPI_TEST_FIXTURE(SizeTest, initMatrixRandU, <>, 0)
|
||||
GAPI_TEST_FIXTURE(SizeRTest, initNothing, <>, 0)
|
||||
} // opencv_test
|
||||
|
||||
#endif //OPENCV_GAPI_CORE_TESTS_HPP
|
||||
|
@ -9,6 +9,7 @@
|
||||
#define OPENCV_GAPI_CORE_TESTS_INL_HPP
|
||||
|
||||
#include <opencv2/gapi/core.hpp>
|
||||
#include <opencv2/gapi/infer/parsers.hpp>
|
||||
#include "gapi_core_tests.hpp"
|
||||
|
||||
namespace opencv_test
|
||||
@ -1578,6 +1579,95 @@ TEST_P(ReInitOutTest, TestWithAdd)
|
||||
run_and_compare();
|
||||
}
|
||||
|
||||
TEST_P(ParseSSDBLTest, ParseTest)
|
||||
{
|
||||
cv::Mat in_mat = generateSSDoutput(sz);
|
||||
std::vector<cv::Rect> boxes_gapi, boxes_ref;
|
||||
std::vector<int> labels_gapi, labels_ref;
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Size> op_sz;
|
||||
auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold, filter_label);
|
||||
cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
|
||||
c.apply(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi), getCompileArgs());
|
||||
|
||||
// Reference code //////////////////////////////////////////////////////////
|
||||
parseSSDBLref(in_mat, sz, confidence_threshold, filter_label, boxes_ref, labels_ref);
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
EXPECT_TRUE(boxes_gapi == boxes_ref);
|
||||
EXPECT_TRUE(labels_gapi == labels_ref);
|
||||
}
|
||||
|
||||
TEST_P(ParseSSDTest, ParseTest)
|
||||
{
|
||||
cv::Mat in_mat = generateSSDoutput(sz);
|
||||
std::vector<cv::Rect> boxes_gapi, boxes_ref;
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Size> op_sz;
|
||||
auto out = cv::gapi::parseSSD(in, op_sz, confidence_threshold,
|
||||
alignment_to_square, filter_out_of_bounds);
|
||||
cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(out));
|
||||
c.apply(cv::gin(in_mat, sz), cv::gout(boxes_gapi), getCompileArgs());
|
||||
|
||||
// Reference code //////////////////////////////////////////////////////////
|
||||
parseSSDref(in_mat, sz, confidence_threshold, alignment_to_square,
|
||||
filter_out_of_bounds, boxes_ref);
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
EXPECT_TRUE(boxes_gapi == boxes_ref);
|
||||
}
|
||||
|
||||
TEST_P(ParseYoloTest, ParseTest)
|
||||
{
|
||||
cv::Mat in_mat = generateYoloOutput(num_classes);
|
||||
auto anchors = cv::gapi::nn::parsers::GParseYolo::defaultAnchors();
|
||||
std::vector<cv::Rect> boxes_gapi, boxes_ref;
|
||||
std::vector<int> labels_gapi, labels_ref;
|
||||
|
||||
// G-API code //////////////////////////////////////////////////////////////
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Size> op_sz;
|
||||
auto out = cv::gapi::parseYolo(in, op_sz, confidence_threshold, nms_threshold, anchors);
|
||||
cv::GComputation c(cv::GIn(in, op_sz), cv::GOut(std::get<0>(out), std::get<1>(out)));
|
||||
c.apply(cv::gin(in_mat, sz), cv::gout(boxes_gapi, labels_gapi), getCompileArgs());
|
||||
|
||||
// Reference code //////////////////////////////////////////////////////////
|
||||
parseYoloRef(in_mat, sz, confidence_threshold, nms_threshold, num_classes, anchors, boxes_ref, labels_ref);
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
EXPECT_TRUE(boxes_gapi == boxes_ref);
|
||||
EXPECT_TRUE(labels_gapi == labels_ref);
|
||||
}
|
||||
|
||||
TEST_P(SizeTest, ParseTest)
|
||||
{
|
||||
cv::GMat in;
|
||||
cv::Size out_sz;
|
||||
|
||||
auto out = cv::gapi::size(in);
|
||||
cv::GComputation c(cv::GIn(in), cv::GOut(out));
|
||||
c.apply(cv::gin(in_mat1), cv::gout(out_sz), getCompileArgs());
|
||||
|
||||
EXPECT_EQ(out_sz, sz);
|
||||
}
|
||||
|
||||
TEST_P(SizeRTest, ParseTest)
|
||||
{
|
||||
cv::Rect rect(cv::Point(0,0), sz);
|
||||
cv::Size out_sz;
|
||||
|
||||
cv::GOpaque<cv::Rect> op_rect;
|
||||
auto out = cv::gapi::size(op_rect);
|
||||
cv::GComputation c(cv::GIn(op_rect), cv::GOut(out));
|
||||
c.apply(cv::gin(rect), cv::gout(out_sz), getCompileArgs());
|
||||
|
||||
EXPECT_EQ(out_sz, sz);
|
||||
}
|
||||
|
||||
} // opencv_test
|
||||
|
||||
#endif //OPENCV_GAPI_CORE_TESTS_INL_HPP
|
||||
|
397
modules/gapi/test/common/gapi_parsers_tests_common.hpp
Normal file
397
modules/gapi/test/common/gapi_parsers_tests_common.hpp
Normal file
@ -0,0 +1,397 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
|
||||
|
||||
#ifndef OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
|
||||
#define OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
|
||||
|
||||
#include "gapi_tests_common.hpp"
|
||||
#include "../../include/opencv2/gapi/infer/parsers.hpp"
|
||||
|
||||
namespace opencv_test
|
||||
{
|
||||
class ParserSSDTest
|
||||
{
|
||||
public:
|
||||
cv::Mat generateSSDoutput(const cv::Size& in_sz)
|
||||
{
|
||||
constexpr int maxN = 200;
|
||||
constexpr int objSize = 7;
|
||||
std::vector<int> dims{ 1, 1, maxN, objSize };
|
||||
cv::Mat mat(dims, CV_32FC1);
|
||||
auto data = mat.ptr<float>();
|
||||
|
||||
for (int i = 0; i < maxN; ++i)
|
||||
{
|
||||
float* it = data + i * objSize;
|
||||
auto ssdIt = generateItem(i, in_sz);
|
||||
it[0] = ssdIt.image_id;
|
||||
it[1] = ssdIt.label;
|
||||
it[2] = ssdIt.confidence;
|
||||
it[3] = ssdIt.rc_left;
|
||||
it[4] = ssdIt.rc_top;
|
||||
it[5] = ssdIt.rc_right;
|
||||
it[6] = ssdIt.rc_bottom;
|
||||
}
|
||||
return mat;
|
||||
}
|
||||
|
||||
void parseSSDref(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const bool alignment_to_square,
|
||||
const bool filter_out_of_bounds,
|
||||
std::vector<cv::Rect>& out_boxes)
|
||||
{
|
||||
out_boxes.clear();
|
||||
const auto &in_ssd_dims = in_ssd_result.size;
|
||||
CV_Assert(in_ssd_dims.dims() == 4u);
|
||||
|
||||
const int MAX_PROPOSALS = in_ssd_dims[2];
|
||||
const int OBJECT_SIZE = in_ssd_dims[3];
|
||||
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
|
||||
|
||||
const float *data = in_ssd_result.ptr<float>();
|
||||
cv::Rect surface({0,0}, in_size), rc;
|
||||
float image_id, confidence;
|
||||
int label;
|
||||
for (int i = 0; i < MAX_PROPOSALS; ++i)
|
||||
{
|
||||
std::tie(rc, image_id, confidence, label)
|
||||
= extract(data + i*OBJECT_SIZE, in_size);
|
||||
if (image_id < 0.f)
|
||||
{
|
||||
break; // marks end-of-detections
|
||||
}
|
||||
|
||||
if (confidence < confidence_threshold)
|
||||
{
|
||||
continue; // skip objects with low confidence
|
||||
}
|
||||
|
||||
if (alignment_to_square)
|
||||
{
|
||||
adjustBoundingBox(rc);
|
||||
}
|
||||
|
||||
const auto clipped_rc = rc & surface;
|
||||
if (filter_out_of_bounds)
|
||||
{
|
||||
if (clipped_rc.area() != rc.area())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
out_boxes.emplace_back(clipped_rc);
|
||||
}
|
||||
}
|
||||
|
||||
void parseSSDBLref(const cv::Mat& in_ssd_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const int filter_label,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels)
|
||||
{
|
||||
out_boxes.clear();
|
||||
out_labels.clear();
|
||||
const auto &in_ssd_dims = in_ssd_result.size;
|
||||
CV_Assert(in_ssd_dims.dims() == 4u);
|
||||
|
||||
const int MAX_PROPOSALS = in_ssd_dims[2];
|
||||
const int OBJECT_SIZE = in_ssd_dims[3];
|
||||
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
|
||||
cv::Rect surface({0,0}, in_size), rc;
|
||||
float image_id, confidence;
|
||||
int label;
|
||||
const float *data = in_ssd_result.ptr<float>();
|
||||
for (int i = 0; i < MAX_PROPOSALS; i++)
|
||||
{
|
||||
std::tie(rc, image_id, confidence, label)
|
||||
= extract(data + i*OBJECT_SIZE, in_size);
|
||||
if (image_id < 0.f)
|
||||
{
|
||||
break; // marks end-of-detections
|
||||
}
|
||||
|
||||
if (confidence < confidence_threshold ||
|
||||
(filter_label != -1 && label != filter_label))
|
||||
{
|
||||
continue; // filter out object classes if filter is specified
|
||||
}
|
||||
|
||||
out_boxes.emplace_back(rc & surface);
|
||||
out_labels.emplace_back(label);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void adjustBoundingBox(cv::Rect& boundingBox)
|
||||
{
|
||||
auto w = boundingBox.width;
|
||||
auto h = boundingBox.height;
|
||||
|
||||
boundingBox.x -= static_cast<int>(0.067 * w);
|
||||
boundingBox.y -= static_cast<int>(0.028 * h);
|
||||
|
||||
boundingBox.width += static_cast<int>(0.15 * w);
|
||||
boundingBox.height += static_cast<int>(0.13 * h);
|
||||
|
||||
if (boundingBox.width < boundingBox.height)
|
||||
{
|
||||
auto dx = (boundingBox.height - boundingBox.width);
|
||||
boundingBox.x -= dx / 2;
|
||||
boundingBox.width += dx;
|
||||
}
|
||||
else
|
||||
{
|
||||
auto dy = (boundingBox.width - boundingBox.height);
|
||||
boundingBox.y -= dy / 2;
|
||||
boundingBox.height += dy;
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<cv::Rect, float, float, int> extract(const float* it,
|
||||
const cv::Size& in_size)
|
||||
{
|
||||
float image_id = it[0];
|
||||
int label = static_cast<int>(it[1]);
|
||||
float confidence = it[2];
|
||||
float rc_left = it[3];
|
||||
float rc_top = it[4];
|
||||
float rc_right = it[5];
|
||||
float rc_bottom = it[6];
|
||||
|
||||
cv::Rect rc; // map relative coordinates to the original image scale
|
||||
rc.x = static_cast<int>(rc_left * in_size.width);
|
||||
rc.y = static_cast<int>(rc_top * in_size.height);
|
||||
rc.width = static_cast<int>(rc_right * in_size.width) - rc.x;
|
||||
rc.height = static_cast<int>(rc_bottom * in_size.height) - rc.y;
|
||||
return std::make_tuple(rc, image_id, confidence, label);
|
||||
}
|
||||
|
||||
int randInRange(const int start, const int end)
|
||||
{
|
||||
GAPI_Assert(start <= end);
|
||||
return start + std::rand() % (end - start + 1);
|
||||
}
|
||||
|
||||
cv::Rect generateBox(const cv::Size& in_sz)
|
||||
{
|
||||
// Generated rectangle can reside outside of the initial image by border pixels
|
||||
constexpr int border = 10;
|
||||
constexpr int minW = 16;
|
||||
constexpr int minH = 16;
|
||||
cv::Rect box;
|
||||
box.width = randInRange(minW, in_sz.width + 2*border);
|
||||
box.height = randInRange(minH, in_sz.height + 2*border);
|
||||
box.x = randInRange(-border, in_sz.width + border - box.width);
|
||||
box.y = randInRange(-border, in_sz.height + border - box.height);
|
||||
return box;
|
||||
}
|
||||
|
||||
struct SSDitem
|
||||
{
|
||||
float image_id = 0.0f;
|
||||
float label = 0.0f;
|
||||
float confidence = 0.0f;
|
||||
float rc_left = 0.0f;
|
||||
float rc_top = 0.0f;
|
||||
float rc_right = 0.0f;
|
||||
float rc_bottom = 0.0f;
|
||||
};
|
||||
|
||||
SSDitem generateItem(const int i, const cv::Size& in_sz)
|
||||
{
|
||||
const auto normalize = [](int v, int range) { return static_cast<float>(v) / range; };
|
||||
|
||||
SSDitem it;
|
||||
it.image_id = static_cast<float>(i);
|
||||
it.label = static_cast<float>(randInRange(0, 9));
|
||||
it.confidence = static_cast<float>(std::rand()) / RAND_MAX;
|
||||
auto box = generateBox(in_sz);
|
||||
it.rc_left = normalize(box.x, in_sz.width);
|
||||
it.rc_right = normalize(box.x + box.width, in_sz.width);
|
||||
it.rc_top = normalize(box.y, in_sz.height);
|
||||
it.rc_bottom = normalize(box.y + box.height, in_sz.height);
|
||||
|
||||
return it;
|
||||
}
|
||||
};
|
||||
|
||||
class ParserYoloTest
|
||||
{
|
||||
public:
|
||||
cv::Mat generateYoloOutput(const int num_classes)
|
||||
{
|
||||
std::vector<int> dims = { 1, 13, 13, (num_classes + 5) * 5 };
|
||||
cv::Mat mat(dims, CV_32FC1);
|
||||
auto data = mat.ptr<float>();
|
||||
|
||||
const size_t range = dims[0] * dims[1] * dims[2] * dims[3];
|
||||
for (size_t i = 0; i < range; ++i)
|
||||
{
|
||||
data[i] = static_cast<float>(std::rand()) / RAND_MAX;
|
||||
}
|
||||
return mat;
|
||||
}
|
||||
|
||||
void parseYoloRef(const cv::Mat& in_yolo_result,
|
||||
const cv::Size& in_size,
|
||||
const float confidence_threshold,
|
||||
const float nms_threshold,
|
||||
const int num_classes,
|
||||
const std::vector<float>& anchors,
|
||||
std::vector<cv::Rect>& out_boxes,
|
||||
std::vector<int>& out_labels)
|
||||
{
|
||||
YoloParams params;
|
||||
constexpr auto side_square = 13 * 13;
|
||||
this->m_out = in_yolo_result.ptr<float>();
|
||||
this->m_side = 13;
|
||||
this->m_lcoords = params.coords;
|
||||
this->m_lclasses = num_classes;
|
||||
|
||||
std::vector<Detection> detections;
|
||||
|
||||
for (int i = 0; i < side_square; ++i)
|
||||
{
|
||||
for (int b = 0; b < params.num; ++b)
|
||||
{
|
||||
float scale = this->scale(i, b);
|
||||
if (scale < confidence_threshold)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
double x = this->x(i, b);
|
||||
double y = this->y(i, b);
|
||||
double height = this->height(i, b, anchors[2 * b + 1]);
|
||||
double width = this->width(i, b, anchors[2 * b]);
|
||||
|
||||
for (int label = 0; label < num_classes; ++label)
|
||||
{
|
||||
float prob = scale * classConf(i,b,label);
|
||||
if (prob < confidence_threshold)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
auto box = toBox(x, y, height, width, in_size);
|
||||
detections.emplace_back(Detection(box, prob, label));
|
||||
}
|
||||
}
|
||||
}
|
||||
std::stable_sort(std::begin(detections), std::end(detections),
|
||||
[](const Detection& a, const Detection& b)
|
||||
{
|
||||
return a.conf > b.conf;
|
||||
});
|
||||
|
||||
if (nms_threshold < 1.0f)
|
||||
{
|
||||
for (const auto& d : detections)
|
||||
{
|
||||
if (std::end(out_boxes) ==
|
||||
std::find_if(std::begin(out_boxes), std::end(out_boxes),
|
||||
[&d, nms_threshold](const cv::Rect& r)
|
||||
{
|
||||
float rectOverlap = 1.f - static_cast<float>(jaccardDistance(r, d.rect));
|
||||
return rectOverlap > nms_threshold;
|
||||
}))
|
||||
{
|
||||
out_boxes. emplace_back(d.rect);
|
||||
out_labels.emplace_back(d.label);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (const auto& d: detections)
|
||||
{
|
||||
out_boxes. emplace_back(d.rect);
|
||||
out_labels.emplace_back(d.label);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
struct Detection
|
||||
{
|
||||
Detection(const cv::Rect& in_rect, const float in_conf, const int in_label)
|
||||
: rect(in_rect), conf(in_conf), label(in_label)
|
||||
{}
|
||||
cv::Rect rect;
|
||||
float conf = 0.0f;
|
||||
int label = 0;
|
||||
};
|
||||
|
||||
struct YoloParams
|
||||
{
|
||||
int num = 5;
|
||||
int coords = 4;
|
||||
};
|
||||
|
||||
float scale(const int i, const int b)
|
||||
{
|
||||
int obj_index = index(i, b, m_lcoords);
|
||||
return m_out[obj_index];
|
||||
}
|
||||
|
||||
double x(const int i, const int b)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
int col = i % m_side;
|
||||
return (col + m_out[box_index]) / m_side;
|
||||
}
|
||||
|
||||
double y(const int i, const int b)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
int row = i / m_side;
|
||||
return (row + m_out[box_index + m_side * m_side]) / m_side;
|
||||
}
|
||||
|
||||
double width(const int i, const int b, const float anchor)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
return std::exp(m_out[box_index + 2 * m_side * m_side]) * anchor / m_side;
|
||||
}
|
||||
|
||||
double height(const int i, const int b, const float anchor)
|
||||
{
|
||||
int box_index = index(i, b, 0);
|
||||
return std::exp(m_out[box_index + 3 * m_side * m_side]) * anchor / m_side;
|
||||
}
|
||||
|
||||
float classConf(const int i, const int b, const int label)
|
||||
{
|
||||
int class_index = index(i, b, m_lcoords + 1 + label);
|
||||
return m_out[class_index];
|
||||
}
|
||||
|
||||
cv::Rect toBox(const double x, const double y, const double h, const double w, const cv::Size& in_sz)
|
||||
{
|
||||
auto h_scale = in_sz.height;
|
||||
auto w_scale = in_sz.width;
|
||||
cv::Rect r;
|
||||
r.x = static_cast<int>((x - w / 2) * w_scale);
|
||||
r.y = static_cast<int>((y - h / 2) * h_scale);
|
||||
r.width = static_cast<int>(w * w_scale);
|
||||
r.height = static_cast<int>(h * h_scale);
|
||||
return r;
|
||||
}
|
||||
|
||||
int index(const int i, const int b, const int entry)
|
||||
{
|
||||
return b * m_side * m_side * (m_lcoords + m_lclasses + 1) + entry * m_side * m_side + i;
|
||||
}
|
||||
|
||||
const float* m_out = nullptr;
|
||||
int m_side = 0, m_lcoords = 0, m_lclasses = 0;
|
||||
};
|
||||
|
||||
} // namespace opencv_test
|
||||
|
||||
#endif // OPENCV_GAPI_PARSERS_TESTS_COMMON_HPP
|
@ -351,6 +351,27 @@ struct TestWithParamsSpecific : public TestWithParamsBase<ParamsSpecific<Specifi
|
||||
Fixture() { InitF(type, sz, dtype); } \
|
||||
};
|
||||
|
||||
/**
|
||||
* @private
|
||||
* @brief Create G-API test fixture with TestWithParams base class and additional base class.
|
||||
* @param Fixture test fixture name.
|
||||
@param ExtBase additional base class.
|
||||
* @param InitF callable that will initialize default available members (from TestFunctional)
|
||||
* @param API base class API. Specifies types of user-defined parameters. If there are no such
|
||||
* parameters, empty angle brackets ("<>") must be specified.
|
||||
* @param Number number of user-defined parameters (corresponds to the number of types in API).
|
||||
* if there are no such parameters, 0 must be specified.
|
||||
* @param ... list of names of user-defined parameters. if there are no parameters, the list
|
||||
* must be empty.
|
||||
*/
|
||||
#define GAPI_TEST_EXT_BASE_FIXTURE(Fixture, ExtBase, InitF, API, Number, ...) \
|
||||
struct Fixture : public TestWithParams API, public ExtBase { \
|
||||
static_assert(Number == AllParams::specific_params_size, \
|
||||
"Number of user-defined parameters doesn't match size of __VA_ARGS__"); \
|
||||
__WRAP_VAARGS(DEFINE_SPECIFIC_PARAMS_##Number(__VA_ARGS__)) \
|
||||
Fixture() { InitF(type, sz, dtype); } \
|
||||
};
|
||||
|
||||
/**
|
||||
* @private
|
||||
* @brief Create G-API test fixture with TestWithParamsSpecific base class
|
||||
|
@ -496,4 +496,43 @@ INSTANTIATE_TEST_CASE_P(ReInitOutTestCPU, ReInitOutTest,
|
||||
Values(cv::Size(640, 400),
|
||||
cv::Size(10, 480))));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ParseTestCPU, ParseSSDBLTest,
|
||||
Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
|
||||
Values(cv::Size(1920, 1080)),
|
||||
Values(-1),
|
||||
Values(CORE_CPU),
|
||||
Values(0.3f, 0.5f, 0.7f),
|
||||
Values(-1, 0, 1)));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ParseTestCPU, ParseSSDTest,
|
||||
Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
|
||||
Values(cv::Size(1920, 1080)),
|
||||
Values(-1),
|
||||
Values(CORE_CPU),
|
||||
Values(0.3f, 0.5f, 0.7f),
|
||||
testing::Bool(),
|
||||
testing::Bool()));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ParseTestCPU, ParseYoloTest,
|
||||
Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
|
||||
Values(cv::Size(1920, 1080)),
|
||||
Values(-1),
|
||||
Values(CORE_CPU),
|
||||
Values(0.3f, 0.5f, 0.7f),
|
||||
Values(0.5f, 1.0f),
|
||||
Values(80, 7)));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SizeTestCPU, SizeTest,
|
||||
Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
|
||||
Values(cv::Size(32, 32),
|
||||
cv::Size(640, 320)),
|
||||
Values(-1),
|
||||
Values(CORE_CPU)));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SizeRTestCPU, SizeRTest,
|
||||
Combine(Values(CV_8UC1, CV_8UC3, CV_32FC1),
|
||||
Values(cv::Size(32, 32),
|
||||
cv::Size(640, 320)),
|
||||
Values(-1),
|
||||
Values(CORE_CPU)));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user