mirror of
https://github.com/opencv/opencv.git
synced 2025-07-31 18:07:08 +08:00
Merge pull request #22164 from lamm45:hough-angles
Fix angle discretization in Hough transforms
This commit is contained in:
commit
a72074b33f
@ -2028,23 +2028,24 @@ transform.
|
||||
|
||||
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
|
||||
@param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
|
||||
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
|
||||
the image). \f$\theta\f$ is the line rotation angle in radians (
|
||||
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
|
||||
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
|
||||
the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
|
||||
angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and
|
||||
\f$\textrm{votes}\f$ is the value of accumulator.
|
||||
@param rho Distance resolution of the accumulator in pixels.
|
||||
@param theta Angle resolution of the accumulator in radians.
|
||||
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
votes ( \f$>\texttt{threshold}\f$ ).
|
||||
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
|
||||
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
|
||||
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
|
||||
rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
|
||||
rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
|
||||
parameters should be positive.
|
||||
@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
|
||||
@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
|
||||
Must fall between 0 and max_theta.
|
||||
@param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines.
|
||||
Must fall between min_theta and CV_PI.
|
||||
@param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
|
||||
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
|
||||
less than max_theta, depending on the parameters min_theta and theta.
|
||||
*/
|
||||
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
@ -2072,7 +2073,7 @@ And this is the output of the above program in case of the probabilistic Hough t
|
||||
line segment.
|
||||
@param rho Distance resolution of the accumulator in pixels.
|
||||
@param theta Angle resolution of the accumulator in radians.
|
||||
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
votes ( \f$>\texttt{threshold}\f$ ).
|
||||
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
|
||||
@param maxLineGap Maximum allowed gap between points on the same line to link them.
|
||||
@ -2091,13 +2092,14 @@ The function finds lines in a set of points using a modification of the Hough tr
|
||||
@param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
|
||||
The larger the value of 'votes', the higher the reliability of the Hough line.
|
||||
@param lines_max Max count of Hough lines.
|
||||
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
|
||||
votes ( \f$>\texttt{threshold}\f$ ).
|
||||
@param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).
|
||||
@param max_rho Maximum value for \f$\rho\f$ for the accumulator.
|
||||
@param rho_step Distance resolution of the accumulator.
|
||||
@param min_theta Minimum angle value of the accumulator in radians.
|
||||
@param max_theta Maximum angle value of the accumulator in radians.
|
||||
@param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum
|
||||
angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
|
||||
@param theta_step Angle resolution of the accumulator in radians.
|
||||
*/
|
||||
CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold,
|
||||
|
@ -68,6 +68,18 @@ struct hough_cmp_gt
|
||||
const int* aux;
|
||||
};
|
||||
|
||||
static inline int
|
||||
computeNumangle( double min_theta, double max_theta, double theta_step )
|
||||
{
|
||||
int numangle = cvFloor((max_theta - min_theta) / theta_step) + 1;
|
||||
// If the distance between the first angle and the last angle is
|
||||
// approximately equal to pi, then the last angle will be removed
|
||||
// in order to prevent a line to be detected twice.
|
||||
if ( numangle > 1 && fabs(CV_PI - (numangle-1)*theta_step) < theta_step/2 )
|
||||
--numangle;
|
||||
return numangle;
|
||||
}
|
||||
|
||||
static void
|
||||
createTrigTable( int numangle, double min_theta, double theta_step,
|
||||
float irho, float *tabSin, float *tabCos )
|
||||
@ -130,7 +142,7 @@ HoughLinesStandard( InputArray src, OutputArray lines, int type,
|
||||
|
||||
CV_CheckGE(max_theta, min_theta, "max_theta must be greater than min_theta");
|
||||
|
||||
int numangle = cvRound((max_theta - min_theta) / theta);
|
||||
int numangle = computeNumangle(min_theta, max_theta, theta);
|
||||
int numrho = cvRound(((max_rho - min_rho) + 1) / rho);
|
||||
|
||||
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
|
||||
@ -475,7 +487,7 @@ HoughLinesProbabilistic( Mat& image,
|
||||
int width = image.cols;
|
||||
int height = image.rows;
|
||||
|
||||
int numangle = cvRound(CV_PI / theta);
|
||||
int numangle = computeNumangle(0.0, CV_PI, theta);
|
||||
int numrho = cvRound(((width + height) * 2 + 1) / rho);
|
||||
|
||||
#if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
|
||||
@ -792,7 +804,7 @@ static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, doub
|
||||
}
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
int numangle = cvRound((max_theta - min_theta) / theta);
|
||||
int numangle = computeNumangle(min_theta, max_theta, theta);
|
||||
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
||||
|
||||
UMat pointsList;
|
||||
@ -846,7 +858,7 @@ static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, dou
|
||||
}
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
int numangle = cvRound(CV_PI / theta);
|
||||
int numangle = computeNumangle(0.0, CV_PI, theta);
|
||||
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
||||
|
||||
UMat pointsList;
|
||||
@ -956,7 +968,7 @@ void HoughLinesPointSet( InputArray _point, OutputArray _lines, int lines_max, i
|
||||
int i;
|
||||
float irho = 1 / (float)rho_step;
|
||||
float irho_min = ((float)min_rho * irho);
|
||||
int numangle = cvRound((max_theta - min_theta) / theta_step);
|
||||
int numangle = computeNumangle(min_theta, max_theta, theta_step);
|
||||
int numrho = cvRound((max_rho - min_rho + 1) / rho_step);
|
||||
|
||||
Mat _accum = Mat::zeros( (numangle+2), (numrho+2), CV_32SC1 );
|
||||
|
@ -329,6 +329,17 @@ TEST(HoughLinesPointSet, regression_21029)
|
||||
EXPECT_TRUE(lines.empty());
|
||||
}
|
||||
|
||||
TEST(HoughLines, regression_21983)
|
||||
{
|
||||
Mat img(200, 200, CV_8UC1, Scalar(0));
|
||||
line(img, Point(0, 100), Point(100, 100), Scalar(255));
|
||||
std::vector<Vec2f> lines;
|
||||
HoughLines(img, lines, 1, CV_PI/180, 90, 0, 0, 0.001, 1.58);
|
||||
ASSERT_EQ(lines.size(), 1U);
|
||||
EXPECT_EQ(lines[0][0], 100);
|
||||
EXPECT_NEAR(lines[0][1], 1.57179642, 1e-4);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P( ImgProc, StandartHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "../stitching/a1.png" ),
|
||||
testing::Values( 1, 10 ),
|
||||
testing::Values( 0.05, 0.1 ),
|
||||
|
Loading…
Reference in New Issue
Block a user