diff --git a/modules/dnn/include/opencv2/dnn/all_layers.hpp b/modules/dnn/include/opencv2/dnn/all_layers.hpp index dae8701970..5c86da2be4 100644 --- a/modules/dnn/include/opencv2/dnn/all_layers.hpp +++ b/modules/dnn/include/opencv2/dnn/all_layers.hpp @@ -263,6 +263,10 @@ CV__DNN_INLINE_NS_BEGIN public: int input_zp, output_zp; float input_sc, output_sc; + + // quantization type flag. The perChannel default is true, that means it contains the parameters + // of per-Channel quantization. Otherwise, that means this layer contains per-Tensor quantized parameters. + bool per_channel; static Ptr create(const LayerParams& params); }; @@ -368,6 +372,10 @@ CV__DNN_INLINE_NS_BEGIN public: int input_zp, output_zp; float input_sc, output_sc; + + // quantization type flag. The perChannel default is true, that means it contains the parameters + // of per-Channel quantization. Otherwise, that means this layer contains per-Tensor quantized parameters. + bool per_channel; static Ptr create(const LayerParams& params); }; diff --git a/modules/dnn/include/opencv2/dnn/dnn.hpp b/modules/dnn/include/opencv2/dnn/dnn.hpp index 8bca6c538b..6f03a8c32e 100644 --- a/modules/dnn/include/opencv2/dnn/dnn.hpp +++ b/modules/dnn/include/opencv2/dnn/dnn.hpp @@ -621,8 +621,10 @@ CV__DNN_INLINE_NS_BEGIN * @param calibData Calibration data to compute the quantization parameters. * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S. * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S. + * @param perChannel Quantization granularity of quantized Net. The default is true, that means quantize model + * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise). */ - CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype); + CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel=true); /** @brief Returns input scale and zeropoint for a quantized Net. * @param scales output parameter for returning input scales. diff --git a/modules/dnn/src/int8layers/convolution_layer.cpp b/modules/dnn/src/int8layers/convolution_layer.cpp index 45aaa3bc19..dfa58b09fe 100644 --- a/modules/dnn/src/int8layers/convolution_layer.cpp +++ b/modules/dnn/src/int8layers/convolution_layer.cpp @@ -51,6 +51,7 @@ public: input_zp = params.get("input_zeropoint"); output_zp = params.get("zeropoints"); output_sc = params.get("scales"); + per_channel = params.get("per_channel", true); if (kernel_size.size() == 2) { kernel = Size(kernel_size[1], kernel_size[0]); diff --git a/modules/dnn/src/int8layers/fully_connected_layer.cpp b/modules/dnn/src/int8layers/fully_connected_layer.cpp index 0887388b0b..dc759ebdbc 100644 --- a/modules/dnn/src/int8layers/fully_connected_layer.cpp +++ b/modules/dnn/src/int8layers/fully_connected_layer.cpp @@ -26,6 +26,8 @@ public: output_zp = params.get("zeropoints"); output_sc = params.get("scales"); axis = params.get("axis", 1); + per_channel = params.get("per_channel", true); + if (blobs.size() == 3) { // blobs[0] - Weights diff --git a/modules/dnn/src/layers/convolution_layer.cpp b/modules/dnn/src/layers/convolution_layer.cpp index 124443399b..c2960d5aeb 100644 --- a/modules/dnn/src/layers/convolution_layer.cpp +++ b/modules/dnn/src/layers/convolution_layer.cpp @@ -2226,26 +2226,36 @@ public: Mat weightsQuantized(weightsMat.rows, weightsMat.cols, CV_8S); Mat biasQuantized(1, numOutput, CV_32S); Mat outputMultiplier(1, numOutput, CV_32F); - double realMin, realMax, weightsScale; + bool perChannel = params.get("per_channel", true); - for( int i = 0; i < numOutput; i++ ) + if (perChannel) // per-Channel quantization. { - // Quantize weights - cv::minMaxIdx(weightsMat.row(i), &realMin, &realMax); - realMin = std::min(realMin, 0.0); - realMax = std::max(realMax, 0.0); - weightsScale = (realMax == realMin) ? 1.0 : std::max(-realMin, realMax)/127; - weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale); + for (int i = 0; i < numOutput; i++) + { + double weightsScale = getWeightScale(weightsMat.row(i)); - // Quantize biases + weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale); + float biasScale = inputScale * weightsScale; + biasQuantized.at(i) = cvRound(biasvec[i]/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); + outputMultiplier.at(i) = biasScale / outputScale; + } + } + else // per-Tensor quantization. + { + double weightsScale = getWeightScale(weightsMat); + + weightsMat.convertTo(weightsQuantized, CV_8S, 1.f/weightsScale); float biasScale = inputScale * weightsScale; - biasQuantized.at(i) = (int)std::round(biasvec[i]/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); - // Store multiplier - outputMultiplier.at(i) = biasScale / outputScale; + for (int i = 0; i < numOutput; i++) + { + biasQuantized.at(i) = cvRound(biasvec[i]/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); + outputMultiplier.at(i) = biasScale / outputScale; + } } params.blobs.clear(); + params.set("per_channel", perChannel); params.blobs.push_back(weightsQuantized.reshape(1, shape(blobs[0]))); params.blobs.push_back(biasQuantized); params.blobs.push_back(outputMultiplier); diff --git a/modules/dnn/src/layers/fully_connected_layer.cpp b/modules/dnn/src/layers/fully_connected_layer.cpp index e9632e20be..509f6cc177 100644 --- a/modules/dnn/src/layers/fully_connected_layer.cpp +++ b/modules/dnn/src/layers/fully_connected_layer.cpp @@ -619,26 +619,36 @@ public: Mat weightsQuantized(weightsMat.rows, weightsMat.cols, CV_8S); Mat biasQuantized(1, numOutput, CV_32S); Mat outputMultiplier(1, numOutput, CV_32F); + bool perChannel = params.get("per_channel", true); - double realMin, realMax, weightsScale; - for( int i = 0; i < numOutput; i++ ) + if (perChannel) // per-Channel quantization. { - // Quantize weights - cv::minMaxIdx(weightsMat.row(i), &realMin, &realMax); - realMin = std::min(realMin, 0.0); - realMax = std::max(realMax, 0.0); - weightsScale = (realMax == realMin) ? 1.0 : std::max(-realMin, realMax)/127; - weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale); + for (int i = 0; i < numOutput; i++) + { + double weightsScale = getWeightScale(weightsMat.row(i)); - // Quantize biases + weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale); + float biasScale = inputScale * weightsScale; + biasQuantized.at(i) = cvRound(biasMat.at(i)/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); + outputMultiplier.at(i) = biasScale / outputScale; + } + } + else // per-Tensor quantization. + { + double weightsScale = getWeightScale(weightsMat); + + weightsMat.convertTo(weightsQuantized, CV_8S, 1.f/weightsScale); float biasScale = inputScale * weightsScale; - biasQuantized.at(i) = (int)std::round(biasMat.at(i)/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); - // Store multiplier - outputMultiplier.at(i) = biasScale / outputScale; + for (int i = 0; i < numOutput; i++) + { + biasQuantized.at(i) = cvRound(biasMat.at(i)/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); + outputMultiplier.at(i) = biasScale / outputScale; + } } params.blobs.clear(); + params.set("per_channel", perChannel); params.blobs.push_back(weightsQuantized.reshape(1, shape(blobs[0]))); params.blobs.push_back(biasQuantized); params.blobs.push_back(outputMultiplier); diff --git a/modules/dnn/src/layers/layers_common.cpp b/modules/dnn/src/layers/layers_common.cpp index 78f91a69d6..445a89ff98 100644 --- a/modules/dnn/src/layers/layers_common.cpp +++ b/modules/dnn/src/layers/layers_common.cpp @@ -250,5 +250,16 @@ void getConvPoolPaddings(const std::vector& inp, const std::vector& } } +double getWeightScale(const Mat& weightsMat) +{ + double realMin, realMax; + + cv::minMaxIdx(weightsMat, &realMin, &realMax); + realMin = std::min(realMin, 0.0); + realMax = std::max(realMax, 0.0); + + return (realMax == realMin) ? 1.0 : std::max(-realMin, realMax)/127; +} + } } diff --git a/modules/dnn/src/layers/layers_common.hpp b/modules/dnn/src/layers/layers_common.hpp index 81e7bdd11c..85f442c78e 100644 --- a/modules/dnn/src/layers/layers_common.hpp +++ b/modules/dnn/src/layers/layers_common.hpp @@ -70,9 +70,12 @@ void getConvPoolOutParams(const std::vector& inp, const std::vector const std::vector& stride, const String &padMode, const std::vector& dilation, std::vector& out); - void getConvPoolPaddings(const std::vector& inp, const std::vector& kernel, +void getConvPoolPaddings(const std::vector& inp, const std::vector& kernel, const std::vector& strides, const String &padMode, std::vector& pads_begin, std::vector& pads_end); + +// Used in quantized model. It will return the (Max_element - Min_element)/127. +double getWeightScale(const Mat& weightsMat); } } diff --git a/modules/dnn/src/net.cpp b/modules/dnn/src/net.cpp index 901101b1e0..33f22744b8 100644 --- a/modules/dnn/src/net.cpp +++ b/modules/dnn/src/net.cpp @@ -115,12 +115,12 @@ void Net::forward(std::vector>& outputBlobs, } // FIXIT drop from inference API -Net Net::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype) +Net Net::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel) { CV_TRACE_FUNCTION(); CV_Assert(impl); CV_Assert(!empty()); - return impl->quantize(calibData, inputsDtype, outputsDtype); + return impl->quantize(calibData, inputsDtype, outputsDtype, perChannel); } // FIXIT drop from inference API diff --git a/modules/dnn/src/net_impl.hpp b/modules/dnn/src/net_impl.hpp index 9dc96fe82d..5f0563d3c3 100644 --- a/modules/dnn/src/net_impl.hpp +++ b/modules/dnn/src/net_impl.hpp @@ -258,7 +258,7 @@ struct Net::Impl : public detail::NetImplBase void dumpNetworkToFile() const; // FIXIT drop from inference API - Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype) /*const*/; + Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel) /*const*/; void getInputDetails(std::vector& scales, std::vector& zeropoints) /*const*/; void getOutputDetails(std::vector& scales, std::vector& zeropoints) /*const*/; diff --git a/modules/dnn/src/net_quantization.cpp b/modules/dnn/src/net_quantization.cpp index ef1857a8e2..8316687412 100644 --- a/modules/dnn/src/net_quantization.cpp +++ b/modules/dnn/src/net_quantization.cpp @@ -33,7 +33,7 @@ void getQuantizationParams(const Mat& src, std::vector& scales, std::vect } // FIXIT drop from inference API -Net Net::Impl::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype) +Net Net::Impl::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel) { // Net can be quantized only once. if (netWasQuantized) @@ -192,6 +192,10 @@ Net Net::Impl::quantize(InputArrayOfArrays calibData, int inputsDtype, int outpu inp_out_sc[1] = scales[ld.id]; inp_out_zp[1] = zeropoints[ld.id]; + // Set the quantization type, per-tensor quantize or per-channel quantize. + // Especially for Convolution layer and Fully connection layer. + ld.params.set("per_channel", perChannel); + // Quantize layer Ptr layer = ld.layerInstance; if (layer->tryQuantize(inp_out_sc, inp_out_zp, ld.params)) diff --git a/modules/dnn/src/onnx/onnx_importer.cpp b/modules/dnn/src/onnx/onnx_importer.cpp index 15e6919f19..ebbda98d51 100644 --- a/modules/dnn/src/onnx/onnx_importer.cpp +++ b/modules/dnn/src/onnx/onnx_importer.cpp @@ -3401,6 +3401,7 @@ void ONNXImporter::parseQConv(LayerParams& layerParams, const opencv_onnx::NodeP int outCn = weights.size[0]; Mat w_scale = getBlob(node_proto, 4); CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn); + bool per_channel = w_scale.total() == outCn ? true : false; Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at(0))); Mat out_sc = getBlob(node_proto, 6); @@ -3419,6 +3420,7 @@ void ONNXImporter::parseQConv(LayerParams& layerParams, const opencv_onnx::NodeP layerParams.set("num_output", outCn); layerParams.set("input_zeropoint", inp_zp.at(0)); layerParams.set("input_scale",inp_sc.at(0)); + layerParams.set("per_channel", per_channel); layerParams.blobs.push_back(weights); layerParams.blobs.push_back(biasFused); layerParams.blobs.push_back(outputMultiplier); @@ -3444,6 +3446,7 @@ void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::Nod Mat w_scale = getBlob(node_proto, 4); CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn); + bool per_channel = w_scale.total() == outCn ? true : false; Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at(0))); Mat out_sc = getBlob(node_proto, 6); @@ -3460,6 +3463,7 @@ void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::Nod layerParams.set("axis", firstInpDims - secondInpDims + 1); layerParams.set("input_scale", inp_sc.at(0)); layerParams.set("input_zeropoint", inp_zp.at(0)); + layerParams.set("per_channel", per_channel); layerParams.blobs.push_back(weights); layerParams.blobs.push_back(bias); diff --git a/modules/dnn/test/test_int8_layers.cpp b/modules/dnn/test/test_int8_layers.cpp index 562014a3b1..ab00bfba76 100644 --- a/modules/dnn/test/test_int8_layers.cpp +++ b/modules/dnn/test/test_int8_layers.cpp @@ -29,7 +29,7 @@ class Test_Int8_layers : public DNNTestLayer public: void testLayer(const String& basename, const String& importer, double l1, double lInf, int numInps = 1, int numOuts = 1, bool useCaffeModel = false, - bool useCommonInputBlob = true, bool hasText = false) + bool useCommonInputBlob = true, bool hasText = false, bool perChannel = true) { CV_Assert_N(numInps >= 1, numInps <= 10, numOuts >= 1, numOuts <= 10); std::vector inps(numInps), inps_int8(numInps); @@ -75,7 +75,7 @@ public: for (int i = 0; i < numOuts; i++) refs[i] = blobFromNPY(outPath + ((numOuts > 1) ? cv::format("_%d.npy", i) : ".npy")); - qnet = net.quantize(inps, CV_8S, CV_8S); + qnet = net.quantize(inps, CV_8S, CV_8S, perChannel); qnet.getInputDetails(inputScale, inputZp); qnet.getOutputDetails(outputScale, outputZp); @@ -103,6 +103,12 @@ TEST_P(Test_Int8_layers, Convolution1D) { testLayer("conv1d", "ONNX", 0.00302, 0.00909); testLayer("conv1d_bias", "ONNX", 0.00306, 0.00948); + + { + SCOPED_TRACE("Per-tensor quantize"); + testLayer("conv1d", "ONNX", 0.00302, 0.00909, 1, 1, false, true, false, false); + testLayer("conv1d_bias", "ONNX", 0.00319, 0.00948, 1, 1, false, true, false, false); + } } TEST_P(Test_Int8_layers, Convolution2D) @@ -130,6 +136,18 @@ TEST_P(Test_Int8_layers, Convolution2D) applyTestTag(CV_TEST_TAG_DNN_SKIP_TIMVX); testLayer("layer_convolution", "Caffe", 0.0174, 0.0758, 1, 1, true); testLayer("depthwise_conv2d", "TensorFlow", 0.0388, 0.169); + + { + SCOPED_TRACE("Per-tensor quantize"); + testLayer("single_conv", "TensorFlow", 0.00413, 0.02301, 1, 1, false, true, false, false); + testLayer("atrous_conv2d_valid", "TensorFlow", 0.027967, 0.07808, 1, 1, false, true, false, false); + testLayer("atrous_conv2d_same", "TensorFlow", 0.01945, 0.1322, 1, 1, false, true, false, false); + testLayer("keras_atrous_conv2d_same", "TensorFlow", 0.005677, 0.03327, 1, 1, false, true, false, false); + testLayer("convolution", "ONNX", 0.00538, 0.01517, 1, 1, false, true, false, false); + testLayer("two_convolution", "ONNX", 0.00295, 0.00926, 1, 1, false, true, false, false); + testLayer("layer_convolution", "Caffe", 0.0175, 0.0759, 1, 1, true, true, false, false); + testLayer("depthwise_conv2d", "TensorFlow", 0.041847, 0.18744, 1, 1, false, true, false, false); + } } TEST_P(Test_Int8_layers, Convolution3D) @@ -144,6 +162,13 @@ TEST_P(Test_Int8_layers, Flatten) testLayer("flatten", "TensorFlow", 0.0036, 0.0069, 1, 1, false, true, true); testLayer("unfused_flatten", "TensorFlow", 0.0014, 0.0028); testLayer("unfused_flatten_unknown_batch", "TensorFlow", 0.0043, 0.0051); + + { + SCOPED_TRACE("Per-tensor quantize"); + testLayer("conv3d", "TensorFlow", 0.00734, 0.02434, 1, 1, false, true, false, false); + testLayer("conv3d", "ONNX", 0.00377, 0.01362, 1, 1, false, true, false, false); + testLayer("conv3d_bias", "ONNX", 0.00201, 0.0039, 1, 1, false, true, false, false); + } } TEST_P(Test_Int8_layers, Padding) @@ -349,6 +374,20 @@ TEST_P(Test_Int8_layers, InnerProduct) testLayer("constant", "ONNX", 0.00021, 0.0006); testLayer("lin_with_constant", "ONNX", 0.0011, 0.0016); + + { + SCOPED_TRACE("Per-tensor quantize"); + testLayer("layer_inner_product", "Caffe", 0.0055, 0.02, 1, 1, true, true, false, false); + testLayer("matmul", "TensorFlow", 0.0075, 0.019, 1, 1, false, true, false, false); + testLayer("nhwc_transpose_reshape_matmul", "TensorFlow", 0.0009, 0.0091, 1, 1, false, true, false, false); + testLayer("nhwc_reshape_matmul", "TensorFlow", 0.037, 0.071, 1, 1, false, true, false, false); + testLayer("matmul_layout", "TensorFlow", 0.035, 0.095, 1, 1, false, true, false, false); + testLayer("tf2_dense", "TensorFlow", 0, 0, 1, 1, false, true, false, false); + testLayer("matmul_add", "ONNX", 0.041, 0.082, 1, 1, false, true, false, false); + testLayer("linear", "ONNX", 0.0022, 0.004, 1, 1, false, true, false, false); + testLayer("constant", "ONNX", 0.00038, 0.0012, 1, 1, false, true, false, false); + testLayer("lin_with_constant", "ONNX", 0.0011, 0.0016, 1, 1, false, true, false, false); + } } TEST_P(Test_Int8_layers, Reshape) @@ -465,9 +504,9 @@ INSTANTIATE_TEST_CASE_P(/**/, Test_Int8_layers, dnnBackendsAndTargetsInt8()); class Test_Int8_nets : public DNNTestLayer { public: - void testClassificationNet(Net baseNet, const Mat& blob, const Mat& ref, double l1, double lInf) + void testClassificationNet(Net baseNet, const Mat& blob, const Mat& ref, double l1, double lInf, bool perChannel = true) { - Net qnet = baseNet.quantize(blob, CV_32F, CV_32F); + Net qnet = baseNet.quantize(blob, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); @@ -477,9 +516,9 @@ public: } void testDetectionNet(Net baseNet, const Mat& blob, const Mat& ref, - double confThreshold, double scoreDiff, double iouDiff) + double confThreshold, double scoreDiff, double iouDiff, bool perChannel = true) { - Net qnet = baseNet.quantize(blob, CV_32F, CV_32F); + Net qnet = baseNet.quantize(blob, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); @@ -488,14 +527,14 @@ public: normAssertDetections(ref, out, "", confThreshold, scoreDiff, iouDiff); } - void testFaster(Net baseNet, const Mat& ref, double confThreshold, double scoreDiff, double iouDiff) + void testFaster(Net baseNet, const Mat& ref, double confThreshold, double scoreDiff, double iouDiff, bool perChannel = true) { Mat inp = imread(_tf("dog416.png")); resize(inp, inp, Size(800, 600)); Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false); Mat imInfo = (Mat_(1, 3) << inp.rows, inp.cols, 1.6f); - Net qnet = baseNet.quantize(std::vector{blob, imInfo}, CV_32F, CV_32F); + Net qnet = baseNet.quantize(std::vector{blob, imInfo}, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); @@ -505,7 +544,7 @@ public: normAssertDetections(ref, out, "", confThreshold, scoreDiff, iouDiff); } - void testONNXNet(const String& basename, double l1, double lInf, bool useSoftmax = false) + void testONNXNet(const String& basename, double l1, double lInf, bool useSoftmax = false, bool perChannel = true) { String onnxmodel = findDataFile("dnn/onnx/models/" + basename + ".onnx", false); @@ -515,7 +554,7 @@ public: baseNet.setPreferableBackend(backend); baseNet.setPreferableTarget(target); - Net qnet = baseNet.quantize(blob, CV_32F, CV_32F); + Net qnet = baseNet.quantize(blob, CV_32F, CV_32F, perChannel); qnet.setInput(blob); Mat out = qnet.forward(); @@ -538,7 +577,7 @@ public: void testDarknetModel(const std::string& cfg, const std::string& weights, const cv::Mat& ref, double scoreDiff, double iouDiff, - float confThreshold = 0.24, float nmsThreshold = 0.4) + float confThreshold = 0.24, float nmsThreshold = 0.4, bool perChannel = true) { CV_Assert(ref.cols == 7); std::vector > refClassIds; @@ -578,7 +617,7 @@ public: Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false); Net baseNet = readNetFromDarknet(findDataFile("dnn/" + cfg), findDataFile("dnn/" + weights, false)); - Net qnet = baseNet.quantize(inp, CV_32F, CV_32F); + Net qnet = baseNet.quantize(inp, CV_32F, CV_32F, perChannel); qnet.setPreferableBackend(backend); qnet.setPreferableTarget(target); qnet.setInput(inp); @@ -720,6 +759,11 @@ TEST_P(Test_Int8_nets, ResNet50) float l1 = 3e-4, lInf = 0.05; testClassificationNet(net, blob, ref, l1, lInf); + + { + SCOPED_TRACE("Per-tensor quantize"); + testClassificationNet(net, blob, ref, l1, lInf, false); + } } TEST_P(Test_Int8_nets, DenseNet121) @@ -954,6 +998,11 @@ TEST_P(Test_Int8_nets, EfficientDet) float confThreshold = 0.65, scoreDiff = 0.3, iouDiff = 0.18; testDetectionNet(net, blob, ref, confThreshold, scoreDiff, iouDiff); + + { + SCOPED_TRACE("Per-tensor quantize"); + testDetectionNet(net, blob, ref, 0.85, scoreDiff, iouDiff, false); + } } TEST_P(Test_Int8_nets, FasterRCNN_resnet50) @@ -1147,11 +1196,20 @@ TEST_P(Test_Int8_nets, TinyYoloVoc) { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff); + { + SCOPED_TRACE("Per-tensor quantize"); + testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), 0.1, 0.2, 0.24, 0.6, false); + } } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); + + { + SCOPED_TRACE("Per-tensor quantize"); + testDarknetModel(config_file, weights_file, ref, 0.1, 0.2, 0.24, 0.6, false); + } } } @@ -1269,6 +1327,11 @@ TEST_P(Test_Int8_nets, YOLOv4_tiny) { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff, confThreshold); + + { + SCOPED_TRACE("Per-tensor quantize"); + testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, 0.16, 0.7, 0.4, false); + } } throw SkipTestException("batch2: bad accuracy on second image");