mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
Resize area result verification moved to the separate function
This commit is contained in:
parent
b7c9aaa471
commit
a96a6bf149
@ -1372,6 +1372,49 @@ void CV_GetQuadSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
dst.convertTo(dst0, dst0.depth());
|
||||
}
|
||||
|
||||
////////////////////////////// resizeArea /////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
static void check_resize_area(const Mat& expected, const Mat& actual, double tolerance = 1.0)
|
||||
{
|
||||
ASSERT_EQ(actual.type(), expected.type());
|
||||
ASSERT_EQ(actual.size(), expected.size());
|
||||
|
||||
Mat diff;
|
||||
absdiff(actual, expected, diff);
|
||||
|
||||
Mat one_channel_diff = diff; //.reshape(1);
|
||||
|
||||
Size dsize = actual.size();
|
||||
bool next = true;
|
||||
for (int dy = 0; dy < dsize.height && next; ++dy)
|
||||
{
|
||||
const T* eD = expected.ptr<T>(dy);
|
||||
const T* aD = actual.ptr<T>(dy);
|
||||
|
||||
for (int dx = 0; dx < dsize.width && next; ++dx)
|
||||
if (fabs(static_cast<double>(aD[dx] - eD[dx])) > tolerance)
|
||||
{
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast<float>(norm(actual, expected, NORM_INF)));
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy);
|
||||
|
||||
const int radius = 3;
|
||||
int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height);
|
||||
int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width);
|
||||
|
||||
std::cout << "Abs diff:" << std::endl << diff << std::endl;
|
||||
std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
|
||||
next = false;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(norm(one_channel_diff, cv::NORM_INF), 0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(Imgproc_cvWarpAffine, regression)
|
||||
{
|
||||
IplImage* src = cvCreateImage(cvSize(100, 100), IPL_DEPTH_8U, 1);
|
||||
@ -1496,52 +1539,18 @@ TEST(Imgproc_resize_area, regression)
|
||||
|
||||
cv::resize(src, actual, cv::Size(), 0.3, 0.3, INTER_AREA);
|
||||
|
||||
ASSERT_EQ(actual.type(), expected.type());
|
||||
ASSERT_EQ(actual.size(), expected.size());
|
||||
|
||||
Mat diff;
|
||||
absdiff(actual, expected, diff);
|
||||
|
||||
Mat one_channel_diff = diff; //.reshape(1);
|
||||
|
||||
float elem_diff = 1.0f;
|
||||
Size dsize = actual.size();
|
||||
bool next = true;
|
||||
for (int dy = 0; dy < dsize.height && next; ++dy)
|
||||
{
|
||||
ushort* eD = expected.ptr<ushort>(dy);
|
||||
ushort* aD = actual.ptr<ushort>(dy);
|
||||
|
||||
for (int dx = 0; dx < dsize.width && next; ++dx)
|
||||
if (fabs(static_cast<float>(aD[dx] - eD[dx])) > elem_diff)
|
||||
{
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast<float>(norm(actual, expected, NORM_INF)));
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy);
|
||||
|
||||
const int radius = 3;
|
||||
int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height);
|
||||
int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width);
|
||||
|
||||
std::cout << "Abs diff:" << std::endl << diff << std::endl;
|
||||
std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
|
||||
next = false;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(norm(one_channel_diff, cv::NORM_INF), 0);
|
||||
check_resize_area<ushort>(expected, actual, 1.0);
|
||||
}
|
||||
|
||||
TEST(Imgproc_resize_area, regression_half_round)
|
||||
{
|
||||
static uchar input_data[32 * 32];
|
||||
for(int i = 0; i < 32 * 32; ++i)
|
||||
input_data[i] = i % 2 + 253 + i / (16 * 32);
|
||||
input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32));
|
||||
|
||||
static uchar expected_data[16 * 16];
|
||||
for(int i = 0; i < 16 * 16; ++i)
|
||||
expected_data[i] = 254 + i / (16 * 8);
|
||||
expected_data[i] = (uchar)(254 + i / (16 * 8));
|
||||
|
||||
cv::Mat src(32, 32, CV_8UC1, input_data);
|
||||
cv::Mat expected(16, 16, CV_8UC1, expected_data);
|
||||
@ -1549,46 +1558,14 @@ TEST(Imgproc_resize_area, regression_half_round)
|
||||
|
||||
cv::resize(src, actual, cv::Size(), 0.5, 0.5, INTER_AREA);
|
||||
|
||||
ASSERT_EQ(actual.type(), expected.type());
|
||||
ASSERT_EQ(actual.size(), expected.size());
|
||||
|
||||
Mat diff;
|
||||
absdiff(actual, expected, diff);
|
||||
|
||||
float elem_diff = 0.5f;
|
||||
Size dsize = actual.size();
|
||||
bool next = true;
|
||||
for (int dy = 0; dy < dsize.height && next; ++dy)
|
||||
{
|
||||
uchar* eD = expected.ptr<uchar>(dy);
|
||||
uchar* aD = actual.ptr<uchar>(dy);
|
||||
|
||||
for (int dx = 0; dx < dsize.width && next; ++dx)
|
||||
if (fabs(static_cast<float>(aD[dx] - eD[dx])) > elem_diff)
|
||||
{
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast<float>(norm(actual, expected, NORM_INF)));
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy);
|
||||
|
||||
const int radius = 3;
|
||||
int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height);
|
||||
int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width);
|
||||
|
||||
std::cout << "Abs diff:" << std::endl << diff << std::endl;
|
||||
std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
|
||||
next = false;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(norm(diff, cv::NORM_INF), 0);
|
||||
check_resize_area<uchar>(expected, actual, 0.5);
|
||||
}
|
||||
|
||||
TEST(Imgproc_resize_area, regression_quarter_round)
|
||||
{
|
||||
static uchar input_data[32 * 32];
|
||||
for(int i = 0; i < 32 * 32; ++i)
|
||||
input_data[i] = i % 2 + 253 + i / (16 * 32);
|
||||
input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32));
|
||||
|
||||
static uchar expected_data[8 * 8];
|
||||
for(int i = 0; i < 8 * 8; ++i)
|
||||
@ -1600,39 +1577,7 @@ TEST(Imgproc_resize_area, regression_quarter_round)
|
||||
|
||||
cv::resize(src, actual, cv::Size(), 0.25, 0.25, INTER_AREA);
|
||||
|
||||
ASSERT_EQ(actual.type(), expected.type());
|
||||
ASSERT_EQ(actual.size(), expected.size());
|
||||
|
||||
Mat diff;
|
||||
absdiff(actual, expected, diff);
|
||||
|
||||
float elem_diff = 0.5f;
|
||||
Size dsize = actual.size();
|
||||
bool next = true;
|
||||
for (int dy = 0; dy < dsize.height && next; ++dy)
|
||||
{
|
||||
uchar* eD = expected.ptr<uchar>(dy);
|
||||
uchar* aD = actual.ptr<uchar>(dy);
|
||||
|
||||
for (int dx = 0; dx < dsize.width && next; ++dx)
|
||||
if (fabs(static_cast<float>(aD[dx] - eD[dx])) > elem_diff)
|
||||
{
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast<float>(norm(actual, expected, NORM_INF)));
|
||||
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy);
|
||||
|
||||
const int radius = 3;
|
||||
int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height);
|
||||
int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width);
|
||||
|
||||
std::cout << "Abs diff:" << std::endl << diff << std::endl;
|
||||
std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
||||
|
||||
next = false;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(norm(diff, cv::NORM_INF), 0);
|
||||
check_resize_area<uchar>(expected, actual, 0.5);
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user