mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 04:12:52 +08:00
Merge pull request #9931 from mshabunin:bss-cleanup
This commit is contained in:
commit
a9b5233f67
@ -159,6 +159,10 @@ static inline cv::Size cvGetMatSize( const CvMat* mat )
|
||||
namespace cv
|
||||
{
|
||||
CV_EXPORTS void scalarToRawData(const cv::Scalar& s, void* buf, int type, int unroll_to = 0);
|
||||
|
||||
//! Allocate all memory buffers which will not be freed, ease filtering memcheck issues
|
||||
template <typename T>
|
||||
CV_EXPORTS T* allocSingleton(size_t count) { return static_cast<T*>(fastMalloc(sizeof(T) * count)); }
|
||||
}
|
||||
|
||||
// property implementation macros
|
||||
|
@ -140,48 +140,24 @@ const int CB2GI = -5636;
|
||||
const int CR2GI = -11698;
|
||||
const int CR2RI = 22987;
|
||||
|
||||
// computes cubic spline coefficients for a function: (xi=i, yi=f[i]), i=0..n
|
||||
template<typename _Tp> static void splineBuild(const _Tp* f, int n, _Tp* tab)
|
||||
{
|
||||
_Tp cn = 0;
|
||||
int i;
|
||||
tab[0] = tab[1] = (_Tp)0;
|
||||
|
||||
for(i = 1; i < n-1; i++)
|
||||
{
|
||||
_Tp t = 3*(f[i+1] - 2*f[i] + f[i-1]);
|
||||
_Tp l = 1/(4 - tab[(i-1)*4]);
|
||||
tab[i*4] = l; tab[i*4+1] = (t - tab[(i-1)*4+1])*l;
|
||||
}
|
||||
|
||||
for(i = n-1; i >= 0; i--)
|
||||
{
|
||||
_Tp c = tab[i*4+1] - tab[i*4]*cn;
|
||||
_Tp b = f[i+1] - f[i] - (cn + c*2)*(_Tp)0.3333333333333333;
|
||||
_Tp d = (cn - c)*(_Tp)0.3333333333333333;
|
||||
tab[i*4] = f[i]; tab[i*4+1] = b;
|
||||
tab[i*4+2] = c; tab[i*4+3] = d;
|
||||
cn = c;
|
||||
}
|
||||
}
|
||||
|
||||
static void splineBuild(const softfloat* f, int n, float* tab)
|
||||
static const float * splineBuild(const softfloat* f, size_t n)
|
||||
{
|
||||
float* tab = cv::allocSingleton<float>(n * 4);
|
||||
const softfloat f2(2), f3(3), f4(4);
|
||||
softfloat cn(0);
|
||||
softfloat* sftab = reinterpret_cast<softfloat*>(tab);
|
||||
int i;
|
||||
tab[0] = tab[1] = 0.0f;
|
||||
|
||||
for(i = 1; i < n-1; i++)
|
||||
for(size_t i = 1; i < n; i++)
|
||||
{
|
||||
softfloat t = (f[i+1] - f[i]*f2 + f[i-1])*f3;
|
||||
softfloat l = softfloat::one()/(f4 - sftab[(i-1)*4]);
|
||||
sftab[i*4] = l; sftab[i*4+1] = (t - sftab[(i-1)*4+1])*l;
|
||||
}
|
||||
|
||||
for(i = n-1; i >= 0; i--)
|
||||
for(size_t j = 0; j < n; ++j)
|
||||
{
|
||||
size_t i = n - j - 1;
|
||||
softfloat c = sftab[i*4+1] - sftab[i*4]*cn;
|
||||
softfloat b = f[i+1] - f[i] - (cn + c*f2)/f3;
|
||||
softfloat d = (cn - c)/f3;
|
||||
@ -189,8 +165,10 @@ static void splineBuild(const softfloat* f, int n, float* tab)
|
||||
sftab[i*4+2] = c; sftab[i*4+3] = d;
|
||||
cn = c;
|
||||
}
|
||||
return tab;
|
||||
}
|
||||
|
||||
|
||||
// interpolates value of a function at x, 0 <= x <= n using a cubic spline.
|
||||
template<typename _Tp> static inline _Tp splineInterpolate(_Tp x, const _Tp* tab, int n)
|
||||
{
|
||||
@ -5845,10 +5823,11 @@ static const softdouble D65[] = {softdouble::fromRaw(0x3fee6a22b3892ee8),
|
||||
softdouble::fromRaw(0x3ff16b8950763a19)};
|
||||
|
||||
enum { LAB_CBRT_TAB_SIZE = 1024, GAMMA_TAB_SIZE = 1024 };
|
||||
static float LabCbrtTab[LAB_CBRT_TAB_SIZE*4];
|
||||
static const float *LabCbrtTab = 0;
|
||||
static const float LabCbrtTabScale = softfloat(LAB_CBRT_TAB_SIZE*2)/softfloat(3);
|
||||
|
||||
static float sRGBGammaTab[GAMMA_TAB_SIZE*4], sRGBInvGammaTab[GAMMA_TAB_SIZE*4];
|
||||
static const float *sRGBGammaTab = 0;
|
||||
static const float *sRGBInvGammaTab = 0;
|
||||
static const float GammaTabScale((int)GAMMA_TAB_SIZE);
|
||||
|
||||
static ushort sRGBGammaTab_b[256], linearGammaTab_b[256];
|
||||
@ -5873,21 +5852,27 @@ enum
|
||||
trilinear_shift = 8 - lab_lut_shift + 1,
|
||||
TRILINEAR_BASE = (1 << trilinear_shift)
|
||||
};
|
||||
static int16_t RGB2LabLUT_s16[LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8];
|
||||
static int16_t trilinearLUT[TRILINEAR_BASE*TRILINEAR_BASE*TRILINEAR_BASE*8];
|
||||
static ushort LabToYF_b[256*2];
|
||||
static const int minABvalue = -8145;
|
||||
static int abToXZ_b[LAB_BASE*9/4];
|
||||
static const int *abToXZ_b;
|
||||
// Luv constants
|
||||
static const bool enableRGB2LuvInterpolation = true;
|
||||
static const bool enablePackedRGB2Luv = true;
|
||||
static const bool enablePackedLuv2RGB = true;
|
||||
static int16_t RGB2LuvLUT_s16[LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8];
|
||||
static const softfloat uLow(-134), uHigh(220), uRange(uHigh-uLow);
|
||||
static const softfloat vLow(-140), vHigh(122), vRange(vHigh-vLow);
|
||||
static int LuToUp_b[256*256];
|
||||
static int LvToVp_b[256*256];
|
||||
static long long int LvToVpl_b[256*256];
|
||||
|
||||
static struct LABLUVLUT_s16_t {
|
||||
const int16_t *RGB2LabLUT_s16;
|
||||
const int16_t *RGB2LuvLUT_s16;
|
||||
} LABLUVLUTs16 = {0, 0};
|
||||
|
||||
static struct LUVLUT_T {
|
||||
const int *LuToUp_b;
|
||||
const int *LvToVp_b;
|
||||
const long long int *LvToVpl_b;
|
||||
} LUVLUT = {0, 0, 0};
|
||||
|
||||
#define clip(value) \
|
||||
value < 0.0f ? 0.0f : value > 1.0f ? 1.0f : value;
|
||||
@ -5899,6 +5884,12 @@ static const softdouble gammaLowScale = softdouble(323)/softdouble(25);
|
||||
static const softdouble gammaPower = softdouble(12)/softdouble(5); // 2.4
|
||||
static const softdouble gammaXshift = softdouble(11)/softdouble(200); // 0.055
|
||||
|
||||
static const softfloat lthresh = softfloat(216) / softfloat(24389); // 0.008856f = (6/29)^3
|
||||
static const softfloat lscale = softfloat(841) / softfloat(108); // 7.787f = (29/3)^3/(29*4)
|
||||
static const softfloat lbias = softfloat(16) / softfloat(116);
|
||||
static const softfloat f255(255);
|
||||
|
||||
|
||||
static inline softfloat applyGamma(softfloat x)
|
||||
{
|
||||
//return x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4);
|
||||
@ -5917,16 +5908,192 @@ static inline softfloat applyInvGamma(softfloat x)
|
||||
pow(xd, softdouble::one()/gammaPower)*(softdouble::one()+gammaXshift) - gammaXshift);
|
||||
}
|
||||
|
||||
static LUVLUT_T initLUTforLUV(int BASE, const softfloat &un, const softfloat &vn)
|
||||
{
|
||||
const softfloat oneof4 = softfloat::one()/softfloat(4);
|
||||
int *LuToUp_b = cv::allocSingleton<int>(256*256);
|
||||
int *LvToVp_b = cv::allocSingleton<int>(256*256);
|
||||
long long int *LvToVpl_b = cv::allocSingleton<long long int>(256*256);
|
||||
for(int LL = 0; LL < 256; LL++)
|
||||
{
|
||||
softfloat L = softfloat(LL*100)/f255;
|
||||
for(int uu = 0; uu < 256; uu++)
|
||||
{
|
||||
softfloat u = softfloat(uu)*uRange/f255 + uLow;
|
||||
softfloat up = softfloat(9)*(u + L*un);
|
||||
LuToUp_b[LL*256+uu] = cvRound(up*softfloat(BASE/1024));//1024 is OK, 2048 gave maxerr 3
|
||||
}
|
||||
for(int vv = 0; vv < 256; vv++)
|
||||
{
|
||||
softfloat v = softfloat(vv)*vRange/f255 + vLow;
|
||||
softfloat vp = oneof4/(v + L*vn);
|
||||
if(vp > oneof4) vp = oneof4;
|
||||
if(vp < -oneof4) vp = -oneof4;
|
||||
int ivp = cvRound(vp*softfloat(BASE*1024));
|
||||
LvToVp_b[LL*256+vv] = ivp;
|
||||
int vpl = ivp*LL;
|
||||
LvToVpl_b[LL*256+vv] = (12*13*100*(BASE/1024))*(long long)vpl;
|
||||
}
|
||||
}
|
||||
LUVLUT_T res;
|
||||
res.LuToUp_b = LuToUp_b;
|
||||
res.LvToVp_b = LvToVp_b;
|
||||
res.LvToVpl_b = LvToVpl_b;
|
||||
return res;
|
||||
}
|
||||
|
||||
static int * initLUTforABXZ(int BASE)
|
||||
{
|
||||
int * res = cv::allocSingleton<int>(LAB_BASE*9/4);
|
||||
for(int i = minABvalue; i < LAB_BASE*9/4+minABvalue; i++)
|
||||
{
|
||||
int v;
|
||||
//6.f/29.f*BASE = 3389.730
|
||||
if(i <= 3390)
|
||||
{
|
||||
//fxz[k] = (fxz[k] - 16.0f / 116.0f) / 7.787f;
|
||||
// 7.787f = (29/3)^3/(29*4)
|
||||
v = i*108/841 - BASE*16/116*108/841;
|
||||
}
|
||||
else
|
||||
{
|
||||
//fxz[k] = fxz[k] * fxz[k] * fxz[k];
|
||||
v = i*i/BASE*i/BASE;
|
||||
}
|
||||
res[i-minABvalue] = v; // -1335 <= v <= 88231
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
inline void fill_one(int16_t *LAB, const int16_t *LAB_prev, int16_t *LUV, const int16_t *LUV_prev, int p, int q, int r, int _p, int _q, int _r)
|
||||
{
|
||||
do {
|
||||
int idxold = 0;
|
||||
idxold += min(p+(_p), (int)(LAB_LUT_DIM-1))*3;
|
||||
idxold += min(q+(_q), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*3;
|
||||
idxold += min(r+(_r), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*LAB_LUT_DIM*3;
|
||||
int idxnew = p*3*8 + q*LAB_LUT_DIM*3*8 + r*LAB_LUT_DIM*LAB_LUT_DIM*3*8+4*(_p)+2*(_q)+(_r);
|
||||
LAB[idxnew] = LAB_prev[idxold];
|
||||
LAB[idxnew+8] = LAB_prev[idxold+1];
|
||||
LAB[idxnew+16] = LAB_prev[idxold+2];
|
||||
LUV[idxnew] = LUV_prev[idxold];
|
||||
LUV[idxnew+8] = LUV_prev[idxold+1];
|
||||
LUV[idxnew+16] = LUV_prev[idxold+2];
|
||||
} while(0);
|
||||
}
|
||||
|
||||
static LABLUVLUT_s16_t initLUTforLABLUVs16(const softfloat & un, const softfloat & vn)
|
||||
{
|
||||
int i;
|
||||
softfloat scaledCoeffs[9], coeffs[9];
|
||||
|
||||
//RGB2Lab coeffs
|
||||
softdouble scaleWhite[] = { softdouble::one()/D65[0],
|
||||
softdouble::one(),
|
||||
softdouble::one()/D65[2] };
|
||||
|
||||
for(i = 0; i < 3; i++ )
|
||||
{
|
||||
coeffs[i*3+2] = sRGB2XYZ_D65[i*3+0];
|
||||
coeffs[i*3+1] = sRGB2XYZ_D65[i*3+1];
|
||||
coeffs[i*3+0] = sRGB2XYZ_D65[i*3+2];
|
||||
scaledCoeffs[i*3+0] = sRGB2XYZ_D65[i*3+2] * scaleWhite[i];
|
||||
scaledCoeffs[i*3+1] = sRGB2XYZ_D65[i*3+1] * scaleWhite[i];
|
||||
scaledCoeffs[i*3+2] = sRGB2XYZ_D65[i*3+0] * scaleWhite[i];
|
||||
}
|
||||
|
||||
softfloat S0 = scaledCoeffs[0], S1 = scaledCoeffs[1], S2 = scaledCoeffs[2],
|
||||
S3 = scaledCoeffs[3], S4 = scaledCoeffs[4], S5 = scaledCoeffs[5],
|
||||
S6 = scaledCoeffs[6], S7 = scaledCoeffs[7], S8 = scaledCoeffs[8];
|
||||
softfloat C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
|
||||
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
|
||||
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
|
||||
|
||||
//u, v: [-134.0, 220.0], [-140.0, 122.0]
|
||||
static const softfloat lld(LAB_LUT_DIM - 1), f116(116), f16(16), f500(500), f200(200);
|
||||
static const softfloat f100(100), f128(128), f256(256), lbase((int)LAB_BASE);
|
||||
//903.3f = (29/3)^3
|
||||
static const softfloat f9033 = softfloat(29*29*29)/softfloat(27);
|
||||
static const softfloat f9of4 = softfloat(9)/softfloat(4);
|
||||
static const softfloat f15(15), f3(3);
|
||||
|
||||
AutoBuffer<int16_t> RGB2Labprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
|
||||
AutoBuffer<int16_t> RGB2Luvprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
|
||||
for(int p = 0; p < LAB_LUT_DIM; p++)
|
||||
{
|
||||
for(int q = 0; q < LAB_LUT_DIM; q++)
|
||||
{
|
||||
for(int r = 0; r < LAB_LUT_DIM; r++)
|
||||
{
|
||||
int idx = p*3 + q*LAB_LUT_DIM*3 + r*LAB_LUT_DIM*LAB_LUT_DIM*3;
|
||||
softfloat R = softfloat(p)/lld;
|
||||
softfloat G = softfloat(q)/lld;
|
||||
softfloat B = softfloat(r)/lld;
|
||||
|
||||
R = applyGamma(R);
|
||||
G = applyGamma(G);
|
||||
B = applyGamma(B);
|
||||
|
||||
//RGB 2 Lab LUT building
|
||||
{
|
||||
softfloat X = R*S0 + G*S1 + B*S2;
|
||||
softfloat Y = R*S3 + G*S4 + B*S5;
|
||||
softfloat Z = R*S6 + G*S7 + B*S8;
|
||||
|
||||
softfloat FX = X > lthresh ? cbrt(X) : mulAdd(X, lscale, lbias);
|
||||
softfloat FY = Y > lthresh ? cbrt(Y) : mulAdd(Y, lscale, lbias);
|
||||
softfloat FZ = Z > lthresh ? cbrt(Z) : mulAdd(Z, lscale, lbias);
|
||||
|
||||
softfloat L = Y > lthresh ? (f116*FY - f16) : (f9033*Y);
|
||||
softfloat a = f500 * (FX - FY);
|
||||
softfloat b = f200 * (FY - FZ);
|
||||
|
||||
RGB2Labprev[idx] = (int16_t)(cvRound(lbase*L/f100));
|
||||
RGB2Labprev[idx+1] = (int16_t)(cvRound(lbase*(a + f128)/f256));
|
||||
RGB2Labprev[idx+2] = (int16_t)(cvRound(lbase*(b + f128)/f256));
|
||||
}
|
||||
|
||||
//RGB 2 Luv LUT building
|
||||
{
|
||||
softfloat X = R*C0 + G*C1 + B*C2;
|
||||
softfloat Y = R*C3 + G*C4 + B*C5;
|
||||
softfloat Z = R*C6 + G*C7 + B*C8;
|
||||
|
||||
softfloat L = Y < lthresh ? mulAdd(Y, lscale, lbias) : cbrt(Y);
|
||||
L = L*f116 - f16;
|
||||
|
||||
softfloat d = softfloat(4*13)/max(X + f15 * Y + f3 * Z, softfloat(FLT_EPSILON));
|
||||
softfloat u = L*(X*d - un);
|
||||
softfloat v = L*(f9of4*Y*d - vn);
|
||||
|
||||
RGB2Luvprev[idx ] = (int16_t)cvRound(lbase*L/f100);
|
||||
RGB2Luvprev[idx+1] = (int16_t)cvRound(lbase*(u-uLow)/uRange);
|
||||
RGB2Luvprev[idx+2] = (int16_t)cvRound(lbase*(v-vLow)/vRange);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int16_t *RGB2LabLUT_s16 = cv::allocSingleton<int16_t>(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8);
|
||||
int16_t *RGB2LuvLUT_s16 = cv::allocSingleton<int16_t>(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8);
|
||||
for(int p = 0; p < LAB_LUT_DIM; p++)
|
||||
for(int q = 0; q < LAB_LUT_DIM; q++)
|
||||
for(int r = 0; r < LAB_LUT_DIM; r++)
|
||||
for (int p_ = 0; p_ < 2; ++p_)
|
||||
for (int q_ = 0; q_ < 2; ++q_)
|
||||
for (int r_ = 0; r_ < 2; ++r_)
|
||||
fill_one(RGB2LabLUT_s16, RGB2Labprev, RGB2LuvLUT_s16, RGB2Luvprev, p, q, r, p_, q_, r_);
|
||||
LABLUVLUT_s16_t res;
|
||||
res.RGB2LabLUT_s16 = RGB2LabLUT_s16;
|
||||
res.RGB2LuvLUT_s16 = RGB2LuvLUT_s16;
|
||||
return res;
|
||||
}
|
||||
|
||||
static void initLabTabs()
|
||||
{
|
||||
static bool initialized = false;
|
||||
if(!initialized)
|
||||
{
|
||||
static const softfloat lthresh = softfloat(216) / softfloat(24389); // 0.008856f = (6/29)^3
|
||||
static const softfloat lscale = softfloat(841) / softfloat(108); // 7.787f = (29/3)^3/(29*4)
|
||||
static const softfloat lbias = softfloat(16) / softfloat(116);
|
||||
static const softfloat f255(255);
|
||||
|
||||
softfloat f[LAB_CBRT_TAB_SIZE+1], g[GAMMA_TAB_SIZE+1], ig[GAMMA_TAB_SIZE+1];
|
||||
softfloat scale = softfloat::one()/softfloat(LabCbrtTabScale);
|
||||
int i;
|
||||
@ -5935,7 +6102,7 @@ static void initLabTabs()
|
||||
softfloat x = scale*softfloat(i);
|
||||
f[i] = x < lthresh ? mulAdd(x, lscale, lbias) : cbrt(x);
|
||||
}
|
||||
splineBuild(f, LAB_CBRT_TAB_SIZE, LabCbrtTab);
|
||||
LabCbrtTab = splineBuild(f, LAB_CBRT_TAB_SIZE);
|
||||
|
||||
scale = softfloat::one()/softfloat(GammaTabScale);
|
||||
for(i = 0; i <= GAMMA_TAB_SIZE; i++)
|
||||
@ -5944,8 +6111,9 @@ static void initLabTabs()
|
||||
g[i] = applyGamma(x);
|
||||
ig[i] = applyInvGamma(x);
|
||||
}
|
||||
splineBuild(g, GAMMA_TAB_SIZE, sRGBGammaTab);
|
||||
splineBuild(ig, GAMMA_TAB_SIZE, sRGBInvGammaTab);
|
||||
|
||||
sRGBGammaTab = splineBuild(g, GAMMA_TAB_SIZE);
|
||||
sRGBInvGammaTab = splineBuild(ig, GAMMA_TAB_SIZE);
|
||||
|
||||
static const softfloat intScale(255*(1 << gamma_shift));
|
||||
for(i = 0; i < 256; i++)
|
||||
@ -5999,29 +6167,12 @@ static void initLabTabs()
|
||||
}
|
||||
|
||||
//Lookup table for a,b to x,z conversion
|
||||
for(i = minABvalue; i < LAB_BASE*9/4+minABvalue; i++)
|
||||
{
|
||||
int v;
|
||||
//6.f/29.f*BASE = 3389.730
|
||||
if(i <= 3390)
|
||||
{
|
||||
//fxz[k] = (fxz[k] - 16.0f / 116.0f) / 7.787f;
|
||||
// 7.787f = (29/3)^3/(29*4)
|
||||
v = i*108/841 - BASE*16/116*108/841;
|
||||
}
|
||||
else
|
||||
{
|
||||
//fxz[k] = fxz[k] * fxz[k] * fxz[k];
|
||||
v = i*i/BASE*i/BASE;
|
||||
}
|
||||
abToXZ_b[i-minABvalue] = v; // -1335 <= v <= 88231
|
||||
}
|
||||
abToXZ_b = initLUTforABXZ(BASE);
|
||||
|
||||
softfloat dd = D65[0] + D65[1]*softdouble(15) + D65[2]*softdouble(3);
|
||||
dd = softfloat::one()/max(dd, softfloat::eps());
|
||||
softfloat un = dd*softfloat(13*4)*D65[0];
|
||||
softfloat vn = dd*softfloat(13*9)*D65[1];
|
||||
softfloat oneof4 = softfloat::one()/softfloat(4);
|
||||
|
||||
//when XYZ are limited to [0, 2]
|
||||
/*
|
||||
@ -6032,149 +6183,14 @@ static void initLabTabs()
|
||||
*/
|
||||
|
||||
//Luv LUT
|
||||
for(int LL = 0; LL < 256; LL++)
|
||||
{
|
||||
softfloat L = softfloat(LL*100)/f255;
|
||||
for(int uu = 0; uu < 256; uu++)
|
||||
{
|
||||
softfloat u = softfloat(uu)*uRange/f255 + uLow;
|
||||
softfloat up = softfloat(9)*(u + L*un);
|
||||
LuToUp_b[LL*256+uu] = cvRound(up*softfloat(BASE/1024));//1024 is OK, 2048 gave maxerr 3
|
||||
}
|
||||
for(int vv = 0; vv < 256; vv++)
|
||||
{
|
||||
softfloat v = softfloat(vv)*vRange/f255 + vLow;
|
||||
softfloat vp = oneof4/(v + L*vn);
|
||||
if(vp > oneof4) vp = oneof4;
|
||||
if(vp < -oneof4) vp = -oneof4;
|
||||
int ivp = cvRound(vp*softfloat(BASE*1024));
|
||||
LvToVp_b[LL*256+vv] = ivp;
|
||||
int vpl = ivp*LL;
|
||||
LvToVpl_b[LL*256+vv] = (12*13*100*(BASE/1024))*(long long)vpl;
|
||||
}
|
||||
}
|
||||
LUVLUT = initLUTforLUV(BASE, un, vn);
|
||||
|
||||
//try to suppress warning
|
||||
static const bool calcLUT = enableRGB2LabInterpolation || enableRGB2LuvInterpolation;
|
||||
if(calcLUT)
|
||||
{
|
||||
softfloat scaledCoeffs[9], coeffs[9];
|
||||
|
||||
//RGB2Lab coeffs
|
||||
softdouble scaleWhite[] = { softdouble::one()/D65[0],
|
||||
softdouble::one(),
|
||||
softdouble::one()/D65[2] };
|
||||
|
||||
for(i = 0; i < 3; i++ )
|
||||
{
|
||||
coeffs[i*3+2] = sRGB2XYZ_D65[i*3+0];
|
||||
coeffs[i*3+1] = sRGB2XYZ_D65[i*3+1];
|
||||
coeffs[i*3+0] = sRGB2XYZ_D65[i*3+2];
|
||||
scaledCoeffs[i*3+0] = sRGB2XYZ_D65[i*3+2] * scaleWhite[i];
|
||||
scaledCoeffs[i*3+1] = sRGB2XYZ_D65[i*3+1] * scaleWhite[i];
|
||||
scaledCoeffs[i*3+2] = sRGB2XYZ_D65[i*3+0] * scaleWhite[i];
|
||||
}
|
||||
|
||||
softfloat S0 = scaledCoeffs[0], S1 = scaledCoeffs[1], S2 = scaledCoeffs[2],
|
||||
S3 = scaledCoeffs[3], S4 = scaledCoeffs[4], S5 = scaledCoeffs[5],
|
||||
S6 = scaledCoeffs[6], S7 = scaledCoeffs[7], S8 = scaledCoeffs[8];
|
||||
softfloat C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
|
||||
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
|
||||
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
|
||||
|
||||
//u, v: [-134.0, 220.0], [-140.0, 122.0]
|
||||
static const softfloat lld(LAB_LUT_DIM - 1), f116(116), f16(16), f500(500), f200(200);
|
||||
static const softfloat f100(100), f128(128), f256(256), lbase((int)LAB_BASE);
|
||||
//903.3f = (29/3)^3
|
||||
static const softfloat f9033 = softfloat(29*29*29)/softfloat(27);
|
||||
static const softfloat f9of4 = softfloat(9)/softfloat(4);
|
||||
static const softfloat f15(15), f3(3);
|
||||
AutoBuffer<int16_t> RGB2Labprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
|
||||
AutoBuffer<int16_t> RGB2Luvprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
|
||||
for(int p = 0; p < LAB_LUT_DIM; p++)
|
||||
{
|
||||
for(int q = 0; q < LAB_LUT_DIM; q++)
|
||||
{
|
||||
for(int r = 0; r < LAB_LUT_DIM; r++)
|
||||
{
|
||||
int idx = p*3 + q*LAB_LUT_DIM*3 + r*LAB_LUT_DIM*LAB_LUT_DIM*3;
|
||||
softfloat R = softfloat(p)/lld;
|
||||
softfloat G = softfloat(q)/lld;
|
||||
softfloat B = softfloat(r)/lld;
|
||||
|
||||
R = applyGamma(R);
|
||||
G = applyGamma(G);
|
||||
B = applyGamma(B);
|
||||
|
||||
//RGB 2 Lab LUT building
|
||||
{
|
||||
softfloat X = R*S0 + G*S1 + B*S2;
|
||||
softfloat Y = R*S3 + G*S4 + B*S5;
|
||||
softfloat Z = R*S6 + G*S7 + B*S8;
|
||||
|
||||
softfloat FX = X > lthresh ? cbrt(X) : mulAdd(X, lscale, lbias);
|
||||
softfloat FY = Y > lthresh ? cbrt(Y) : mulAdd(Y, lscale, lbias);
|
||||
softfloat FZ = Z > lthresh ? cbrt(Z) : mulAdd(Z, lscale, lbias);
|
||||
|
||||
softfloat L = Y > lthresh ? (f116*FY - f16) : (f9033*Y);
|
||||
softfloat a = f500 * (FX - FY);
|
||||
softfloat b = f200 * (FY - FZ);
|
||||
|
||||
RGB2Labprev[idx] = (int16_t)(cvRound(lbase*L/f100));
|
||||
RGB2Labprev[idx+1] = (int16_t)(cvRound(lbase*(a + f128)/f256));
|
||||
RGB2Labprev[idx+2] = (int16_t)(cvRound(lbase*(b + f128)/f256));
|
||||
}
|
||||
|
||||
//RGB 2 Luv LUT building
|
||||
{
|
||||
softfloat X = R*C0 + G*C1 + B*C2;
|
||||
softfloat Y = R*C3 + G*C4 + B*C5;
|
||||
softfloat Z = R*C6 + G*C7 + B*C8;
|
||||
|
||||
softfloat L = Y < lthresh ? mulAdd(Y, lscale, lbias) : cbrt(Y);
|
||||
L = L*f116 - f16;
|
||||
|
||||
softfloat d = softfloat(4*13)/max(X + f15 * Y + f3 * Z, softfloat(FLT_EPSILON));
|
||||
softfloat u = L*(X*d - un);
|
||||
softfloat v = L*(f9of4*Y*d - vn);
|
||||
|
||||
RGB2Luvprev[idx ] = (int16_t)cvRound(lbase*L/f100);
|
||||
RGB2Luvprev[idx+1] = (int16_t)cvRound(lbase*(u-uLow)/uRange);
|
||||
RGB2Luvprev[idx+2] = (int16_t)cvRound(lbase*(v-vLow)/vRange);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for(int p = 0; p < LAB_LUT_DIM; p++)
|
||||
{
|
||||
for(int q = 0; q < LAB_LUT_DIM; q++)
|
||||
{
|
||||
for(int r = 0; r < LAB_LUT_DIM; r++)
|
||||
{
|
||||
#define FILL(_p, _q, _r) \
|
||||
do {\
|
||||
int idxold = 0;\
|
||||
idxold += min(p+(_p), (int)(LAB_LUT_DIM-1))*3;\
|
||||
idxold += min(q+(_q), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*3;\
|
||||
idxold += min(r+(_r), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*LAB_LUT_DIM*3;\
|
||||
int idxnew = p*3*8 + q*LAB_LUT_DIM*3*8 + r*LAB_LUT_DIM*LAB_LUT_DIM*3*8+4*(_p)+2*(_q)+(_r);\
|
||||
RGB2LabLUT_s16[idxnew] = RGB2Labprev[idxold];\
|
||||
RGB2LabLUT_s16[idxnew+8] = RGB2Labprev[idxold+1];\
|
||||
RGB2LabLUT_s16[idxnew+16] = RGB2Labprev[idxold+2];\
|
||||
RGB2LuvLUT_s16[idxnew] = RGB2Luvprev[idxold];\
|
||||
RGB2LuvLUT_s16[idxnew+8] = RGB2Luvprev[idxold+1];\
|
||||
RGB2LuvLUT_s16[idxnew+16] = RGB2Luvprev[idxold+2];\
|
||||
} while(0)
|
||||
|
||||
FILL(0, 0, 0); FILL(0, 0, 1);
|
||||
FILL(0, 1, 0); FILL(0, 1, 1);
|
||||
FILL(1, 0, 0); FILL(1, 0, 1);
|
||||
FILL(1, 1, 0); FILL(1, 1, 1);
|
||||
|
||||
#undef FILL
|
||||
}
|
||||
}
|
||||
}
|
||||
LABLUVLUTs16 = initLUTforLABLUVs16(un, vn);
|
||||
|
||||
for(int16_t p = 0; p < TRILINEAR_BASE; p++)
|
||||
{
|
||||
@ -6199,7 +6215,7 @@ static void initLabTabs()
|
||||
|
||||
|
||||
// cx, cy, cz are in [0; LAB_BASE]
|
||||
static inline void trilinearInterpolate(int cx, int cy, int cz, int16_t* LUT,
|
||||
static inline void trilinearInterpolate(int cx, int cy, int cz, const int16_t* LUT,
|
||||
int& a, int& b, int& c)
|
||||
{
|
||||
//LUT idx of origin pt of cube
|
||||
@ -6207,7 +6223,7 @@ static inline void trilinearInterpolate(int cx, int cy, int cz, int16_t* LUT,
|
||||
int ty = cy >> (lab_base_shift - lab_lut_shift);
|
||||
int tz = cz >> (lab_base_shift - lab_lut_shift);
|
||||
|
||||
int16_t* baseLUT = &LUT[3*8*tx + (3*8*LAB_LUT_DIM)*ty + (3*8*LAB_LUT_DIM*LAB_LUT_DIM)*tz];
|
||||
const int16_t* baseLUT = &LUT[3*8*tx + (3*8*LAB_LUT_DIM)*ty + (3*8*LAB_LUT_DIM*LAB_LUT_DIM)*tz];
|
||||
int aa[8], bb[8], cc[8];
|
||||
for(int i = 0; i < 8; i++)
|
||||
{
|
||||
@ -6500,7 +6516,7 @@ struct RGB2Lab_f
|
||||
v_uint16x8 uibvec = v_reinterpret_as_u16(ibvec);
|
||||
|
||||
v_uint16x8 ui_lvec, ui_avec, ui_bvec;
|
||||
trilinearPackedInterpolate(uirvec, uigvec, uibvec, RGB2LabLUT_s16, ui_lvec, ui_avec, ui_bvec);
|
||||
trilinearPackedInterpolate(uirvec, uigvec, uibvec, LABLUVLUTs16.RGB2LabLUT_s16, ui_lvec, ui_avec, ui_bvec);
|
||||
v_int16x8 i_lvec = v_reinterpret_as_s16(ui_lvec);
|
||||
v_int16x8 i_avec = v_reinterpret_as_s16(ui_avec);
|
||||
v_int16x8 i_bvec = v_reinterpret_as_s16(ui_bvec);
|
||||
@ -6541,7 +6557,7 @@ struct RGB2Lab_f
|
||||
|
||||
int iR = cvRound(R*LAB_BASE), iG = cvRound(G*LAB_BASE), iB = cvRound(B*LAB_BASE);
|
||||
int iL, ia, ib;
|
||||
trilinearInterpolate(iR, iG, iB, RGB2LabLUT_s16, iL, ia, ib);
|
||||
trilinearInterpolate(iR, iG, iB, LABLUVLUTs16.RGB2LabLUT_s16, iL, ia, ib);
|
||||
float L = iL*1.0f/LAB_BASE, a = ia*1.0f/LAB_BASE, b = ib*1.0f/LAB_BASE;
|
||||
|
||||
dst[i] = L*100.0f;
|
||||
@ -8121,8 +8137,8 @@ struct RGB2Luvinterpolate
|
||||
trilinearInterpolate(R, G, B, RGB2LuvLUT_s16, L, u, v);
|
||||
*/
|
||||
v_uint16x8 l80, u80, v80, l81, u81, v81;
|
||||
trilinearPackedInterpolate(r80, g80, b80, RGB2LuvLUT_s16, l80, u80, v80);
|
||||
trilinearPackedInterpolate(r81, g81, b81, RGB2LuvLUT_s16, l81, u81, v81);
|
||||
trilinearPackedInterpolate(r80, g80, b80, LABLUVLUTs16.RGB2LuvLUT_s16, l80, u80, v80);
|
||||
trilinearPackedInterpolate(r81, g81, b81, LABLUVLUTs16.RGB2LuvLUT_s16, l81, u81, v81);
|
||||
|
||||
/*
|
||||
dst[i] = saturate_cast<uchar>(L/baseDiv);
|
||||
@ -8148,7 +8164,7 @@ struct RGB2Luvinterpolate
|
||||
R = R*baseDiv, G = G*baseDiv, B = B*baseDiv;
|
||||
|
||||
int L, u, v;
|
||||
trilinearInterpolate(R, G, B, RGB2LuvLUT_s16, L, u, v);
|
||||
trilinearInterpolate(R, G, B, LABLUVLUTs16.RGB2LuvLUT_s16, L, u, v);
|
||||
|
||||
dst[i] = saturate_cast<uchar>(L/baseDiv);
|
||||
dst[i+1] = saturate_cast<uchar>(u/baseDiv);
|
||||
@ -8176,7 +8192,6 @@ struct RGB2Luv_b
|
||||
&& enableBitExactness
|
||||
&& enableRGB2LuvInterpolation);
|
||||
|
||||
static const softfloat f255(255);
|
||||
#if CV_NEON
|
||||
v_scale_inv = vdupq_n_f32(softfloat::one()/f255);
|
||||
v_scale = vdupq_n_f32(f255/softfloat(100));
|
||||
@ -8229,7 +8244,6 @@ struct RGB2Luv_b
|
||||
int i, j, scn = srccn;
|
||||
float CV_DECL_ALIGNED(16) buf[3*BLOCK_SIZE];
|
||||
|
||||
static const softfloat f255(255);
|
||||
#if CV_SSE2
|
||||
__m128 v_coeffs = _mm_set_ps(f255/softfloat(100), f255/vRange, f255/uRange, f255/softfloat(100));
|
||||
__m128 v_res = _mm_set_ps(0.f, -vLow*f255/vRange, -uLow*f255/uRange, 0.f);
|
||||
@ -8425,8 +8439,8 @@ struct Luv2RGBinteger
|
||||
// y : [0, BASE]
|
||||
// up: [-402, 1431.57]*(BASE/1024)
|
||||
// vp: +/- 0.25*BASE*1024
|
||||
int up = LuToUp_b[LL*256+uu];
|
||||
int vp = LvToVp_b[LL*256+vv];
|
||||
int up = LUVLUT.LuToUp_b[LL*256+uu];
|
||||
int vp = LUVLUT.LvToVp_b[LL*256+vv];
|
||||
//X = y*3.f* up/((float)BASE/1024) *vp/((float)BASE*1024);
|
||||
//Z = y*(((12.f*13.f)*((float)LL)*100.f/255.f - up/((float)BASE))*vp/((float)BASE*1024) - 5.f);
|
||||
|
||||
@ -8434,7 +8448,7 @@ struct Luv2RGBinteger
|
||||
int x = (int)(xv/BASE);
|
||||
x = y*x/BASE;
|
||||
|
||||
long long int vpl = LvToVpl_b[LL*256+vv];
|
||||
long long int vpl = LUVLUT.LvToVpl_b[LL*256+vv];
|
||||
long long int zp = vpl - xv*(255/3);
|
||||
zp /= BASE;
|
||||
long long int zq = zp - (long long)(5*255*BASE);
|
||||
@ -8474,11 +8488,11 @@ struct Luv2RGBinteger
|
||||
int v = vvstore[i];
|
||||
int y = LabToYF_b[LL*2];
|
||||
|
||||
int up = LuToUp_b[LL*256+u];
|
||||
int vp = LvToVp_b[LL*256+v];
|
||||
int up = LUVLUT.LuToUp_b[LL*256+u];
|
||||
int vp = LUVLUT.LvToVp_b[LL*256+v];
|
||||
|
||||
long long int xv = up*(long long int)vp;
|
||||
long long int vpl = LvToVpl_b[LL*256+v];
|
||||
long long int vpl = LUVLUT.LvToVpl_b[LL*256+v];
|
||||
long long int zp = vpl - xv*(255/3);
|
||||
zp = zp >> base_shift;
|
||||
long long int zq = zp - (5*255*BASE);
|
||||
@ -8619,7 +8633,6 @@ struct Luv2RGB_b
|
||||
uchar alpha = ColorChannel<uchar>::max();
|
||||
float CV_DECL_ALIGNED(16) buf[3*BLOCK_SIZE];
|
||||
|
||||
static const softfloat f255(255);
|
||||
static const softfloat fl = softfloat(100)/f255;
|
||||
static const softfloat fu = uRange/f255;
|
||||
static const softfloat fv = vRange/f255;
|
||||
@ -9842,9 +9855,9 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
static UMat usRGBGammaTab, ucoeffs, uLabCbrtTab;
|
||||
|
||||
if (srgb && usRGBGammaTab.empty())
|
||||
Mat(1, GAMMA_TAB_SIZE * 4, CV_32FC1, sRGBGammaTab).copyTo(usRGBGammaTab);
|
||||
Mat(1, GAMMA_TAB_SIZE * 4, CV_32FC1, const_cast<float*>(sRGBGammaTab)).copyTo(usRGBGammaTab);
|
||||
if (!lab && uLabCbrtTab.empty())
|
||||
Mat(1, LAB_CBRT_TAB_SIZE * 4, CV_32FC1, LabCbrtTab).copyTo(uLabCbrtTab);
|
||||
Mat(1, LAB_CBRT_TAB_SIZE * 4, CV_32FC1, const_cast<float*>(LabCbrtTab)).copyTo(uLabCbrtTab);
|
||||
|
||||
{
|
||||
float coeffs[9];
|
||||
@ -9930,7 +9943,7 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
static UMat ucoeffs, usRGBInvGammaTab;
|
||||
|
||||
if (srgb && usRGBInvGammaTab.empty())
|
||||
Mat(1, GAMMA_TAB_SIZE*4, CV_32FC1, sRGBInvGammaTab).copyTo(usRGBInvGammaTab);
|
||||
Mat(1, GAMMA_TAB_SIZE*4, CV_32FC1, const_cast<float*>(sRGBInvGammaTab)).copyTo(usRGBInvGammaTab);
|
||||
|
||||
{
|
||||
float coeffs[9];
|
||||
|
Loading…
Reference in New Issue
Block a user