Merge pull request #18838 from alalek:video_tracking_api

Tracking API: move to video/tracking.hpp

* video(tracking): moved code from opencv_contrib/tracking module

- Tracker API
- MIL, GOTURN trackers
- applied clang-format

* video(tracking): cleanup unused code

* samples: add tracker.py sample

* video(tracking): avoid div by zero

* static analyzer
This commit is contained in:
Alexander Alekhin 2020-11-18 14:04:15 +03:00 committed by GitHub
parent 94e8a08d1d
commit aab6362705
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
31 changed files with 3843 additions and 4 deletions

View File

@ -1,2 +1,12 @@
set(the_description "Video Analysis")
ocv_define_module(video opencv_imgproc OPTIONAL opencv_calib3d WRAP java objc python js)
ocv_define_module(video
opencv_imgproc
OPTIONAL
opencv_calib3d
opencv_dnn
WRAP
java
objc
python
js
)

View File

@ -1,6 +1,44 @@
@article{AAM,
title={Adaptive appearance modeling for video tracking: survey and evaluation},
author={Salti, Samuele and Cavallaro, Andrea and Di Stefano, Luigi},
journal={Image Processing, IEEE Transactions on},
volume={21},
number={10},
pages={4334--4348},
year={2012},
publisher={IEEE}
}
@article{AMVOT,
title={A survey of appearance models in visual object tracking},
author={Li, Xi and Hu, Weiming and Shen, Chunhua and Zhang, Zhongfei and Dick, Anthony and Hengel, Anton Van Den},
journal={ACM Transactions on Intelligent Systems and Technology (TIST)},
volume={4},
number={4},
pages={58},
year={2013},
publisher={ACM}
}
@inproceedings{GOTURN,
title={Learning to Track at 100 FPS with Deep Regression Networks},
author={Held, David and Thrun, Sebastian and Savarese, Silvio},
booktitle={European Conference Computer Vision (ECCV)},
year={2016}
}
@inproceedings{Kroeger2016,
author={Till Kroeger and Radu Timofte and Dengxin Dai and Luc Van Gool},
title={Fast Optical Flow using Dense Inverse Search},
booktitle={Proceedings of the European Conference on Computer Vision ({ECCV})},
year = {2016}
year={2016}
}
@inproceedings{MIL,
title={Visual tracking with online multiple instance learning},
author={Babenko, Boris and Yang, Ming-Hsuan and Belongie, Serge},
booktitle={Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on},
pages={983--990},
year={2009},
organization={IEEE}
}

View File

@ -0,0 +1,406 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
#define OPENCV_VIDEO_DETAIL_TRACKING_HPP
/*
* Partially based on:
* ====================================================================================================================
* - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
* - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
*
* This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
*
*/
#include "opencv2/core.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
/** @addtogroup tracking_detail
@{
*/
/************************************ TrackerFeature Base Classes ************************************/
/** @brief Abstract base class for TrackerFeature that represents the feature.
*/
class CV_EXPORTS TrackerFeature
{
public:
virtual ~TrackerFeature();
/** @brief Compute the features in the images collection
@param images The images
@param response The output response
*/
void compute(const std::vector<Mat>& images, Mat& response);
protected:
virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
};
/** @brief Class that manages the extraction and selection of features
@cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
section 3.1 - 3.2)
TrackerFeatureSet is an aggregation of TrackerFeature
@sa
TrackerFeature
*/
class CV_EXPORTS TrackerFeatureSet
{
public:
TrackerFeatureSet();
~TrackerFeatureSet();
/** @brief Extract features from the images collection
@param images The input images
*/
void extraction(const std::vector<Mat>& images);
/** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
@param feature The TrackerFeature class
*/
bool addTrackerFeature(const Ptr<TrackerFeature>& feature);
/** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
*/
const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
/** @brief Get the responses
@note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses
*/
const std::vector<Mat>& getResponses() const;
private:
void clearResponses();
bool blockAddTrackerFeature;
std::vector<Ptr<TrackerFeature>> features; // list of features
std::vector<Mat> responses; // list of response after compute
};
/************************************ TrackerSampler Base Classes ************************************/
/** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
sampler.
*/
class CV_EXPORTS TrackerSamplerAlgorithm
{
public:
virtual ~TrackerSamplerAlgorithm();
/** @brief Computes the regions starting from a position in an image.
Return true if samples are computed, false otherwise
@param image The current frame
@param boundingBox The bounding box from which regions can be calculated
@param sample The computed samples @cite AAM Fig. 1 variable Sk
*/
virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
};
/**
* \brief Class that manages the sampler in order to select regions for the update the model of the tracker
* [AAM] Sampling e Labeling. See table I and section III B
*/
/** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
@cite AAM Sampling e Labeling. See table I and section III B
TrackerSampler is an aggregation of TrackerSamplerAlgorithm
@sa
TrackerSamplerAlgorithm
*/
class CV_EXPORTS TrackerSampler
{
public:
TrackerSampler();
~TrackerSampler();
/** @brief Computes the regions starting from a position in an image
@param image The current frame
@param boundingBox The bounding box from which regions can be calculated
*/
void sampling(const Mat& image, Rect boundingBox);
/** @brief Return the collection of the TrackerSamplerAlgorithm
*/
const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
/** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
*/
const std::vector<Mat>& getSamples() const;
/** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
@param sampler The TrackerSamplerAlgorithm
*/
bool addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler);
private:
std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
std::vector<Mat> samples;
bool blockAddTrackerSampler;
void clearSamples();
};
/************************************ TrackerModel Base Classes ************************************/
/** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
Inherits this class with your Target state, In own implementation you can add scale variation,
width, height, orientation, etc.
*/
class CV_EXPORTS TrackerTargetState
{
public:
virtual ~TrackerTargetState() {};
/** @brief Get the position
* @return The position
*/
Point2f getTargetPosition() const;
/** @brief Set the position
* @param position The position
*/
void setTargetPosition(const Point2f& position);
/** @brief Get the width of the target
* @return The width of the target
*/
int getTargetWidth() const;
/** @brief Set the width of the target
* @param width The width of the target
*/
void setTargetWidth(int width);
/** @brief Get the height of the target
* @return The height of the target
*/
int getTargetHeight() const;
/** @brief Set the height of the target
* @param height The height of the target
*/
void setTargetHeight(int height);
protected:
Point2f targetPosition;
int targetWidth;
int targetHeight;
};
/** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
@sa TrackerTargetState
*/
typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
/** @brief Represents the estimate states for all frames
@cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
@sa TrackerTargetState
*/
typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
/** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
See @cite AAM State estimator
See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
*/
class CV_EXPORTS TrackerStateEstimator
{
public:
virtual ~TrackerStateEstimator();
/** @brief Estimate the most likely target state, return the estimated state
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
*/
Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
/** @brief Update the ConfidenceMap with the scores
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
*/
void update(std::vector<ConfidenceMap>& confidenceMaps);
/** @brief Create TrackerStateEstimator by tracker state estimator type
@param trackeStateEstimatorType The TrackerStateEstimator name
The modes available now:
- "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
The modes available soon:
- "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
*/
static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
/** @brief Get the name of the specific TrackerStateEstimator
*/
String getClassName() const;
protected:
virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
String className;
};
/** @brief Abstract class that represents the model of the target.
It must be instantiated by specialized tracker
See @cite AAM Ak
Inherits this with your TrackerModel
*/
class CV_EXPORTS TrackerModel
{
public:
TrackerModel();
virtual ~TrackerModel();
/** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
@param trackerStateEstimator The TrackerStateEstimator
@note You can add only one TrackerStateEstimator
*/
bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator);
/** @brief Estimate the most likely target location
@cite AAM ME, Model Estimation table I
@param responses Features extracted from TrackerFeatureSet
*/
void modelEstimation(const std::vector<Mat>& responses);
/** @brief Update the model
@cite AAM MU, Model Update table I
*/
void modelUpdate();
/** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
*/
bool runStateEstimator();
/** @brief Set the current TrackerTargetState in the Trajectory
@param lastTargetState The current TrackerTargetState
*/
void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
/** @brief Get the last TrackerTargetState from Trajectory
*/
Ptr<TrackerTargetState> getLastTargetState() const;
/** @brief Get the list of the ConfidenceMap
*/
const std::vector<ConfidenceMap>& getConfidenceMaps() const;
/** @brief Get the last ConfidenceMap for the current frame
*/
const ConfidenceMap& getLastConfidenceMap() const;
/** @brief Get the TrackerStateEstimator
*/
Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
private:
void clearCurrentConfidenceMap();
protected:
std::vector<ConfidenceMap> confidenceMaps;
Ptr<TrackerStateEstimator> stateEstimator;
ConfidenceMap currentConfidenceMap;
Trajectory trajectory;
int maxCMLength;
virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
virtual void modelUpdateImpl() = 0;
};
/************************************ Specific TrackerStateEstimator Classes ************************************/
// None
/************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
/** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
*/
class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
{
public:
~TrackerSamplerCSC();
enum MODE
{
MODE_INIT_POS = 1, //!< mode for init positive samples
MODE_INIT_NEG = 2, //!< mode for init negative samples
MODE_TRACK_POS = 3, //!< mode for update positive samples
MODE_TRACK_NEG = 4, //!< mode for update negative samples
MODE_DETECT = 5 //!< mode for detect samples
};
struct CV_EXPORTS Params
{
Params();
float initInRad; //!< radius for gathering positive instances during init
float trackInPosRad; //!< radius for gathering positive instances during tracking
float searchWinSize; //!< size of search window
int initMaxNegNum; //!< # negative samples to use during init
int trackMaxPosNum; //!< # positive samples to use during training
int trackMaxNegNum; //!< # negative samples to use during training
};
/** @brief Constructor
@param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
*/
TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters = TrackerSamplerCSC::Params());
/** @brief Set the sampling mode of TrackerSamplerCSC
@param samplingMode The sampling mode
The modes are:
- "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
- "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
- "MODE_TRACK_POS = 3" -- for the positive sampling in update step
- "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
- "MODE_DETECT = 5" -- for the sampling in detection step
*/
void setMode(int samplingMode);
bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
private:
Params params;
int mode;
RNG rng;
std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
};
//! @}
}}} // namespace cv::detail::tracking
#endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP

View File

@ -0,0 +1,168 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_FEATURE_HPP
#define OPENCV_VIDEO_DETAIL_TRACKING_FEATURE_HPP
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
/*
* TODO This implementation is based on apps/traincascade/
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
*/
namespace cv {
namespace detail {
inline namespace tracking {
//! @addtogroup tracking_detail
//! @{
inline namespace feature {
class CvParams
{
public:
CvParams();
virtual ~CvParams()
{
}
};
class CvFeatureParams : public CvParams
{
public:
enum FeatureType
{
HAAR = 0,
LBP = 1,
HOG = 2
};
CvFeatureParams();
static Ptr<CvFeatureParams> create(CvFeatureParams::FeatureType featureType);
int maxCatCount; // 0 in case of numerical features
int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
int numFeatures;
};
class CvFeatureEvaluator
{
public:
virtual ~CvFeatureEvaluator()
{
}
virtual void init(const CvFeatureParams* _featureParams, int _maxSampleCount, Size _winSize);
virtual void setImage(const Mat& img, uchar clsLabel, int idx);
static Ptr<CvFeatureEvaluator> create(CvFeatureParams::FeatureType type);
int getNumFeatures() const
{
return numFeatures;
}
int getMaxCatCount() const
{
return featureParams->maxCatCount;
}
int getFeatureSize() const
{
return featureParams->featSize;
}
const Mat& getCls() const
{
return cls;
}
float getCls(int si) const
{
return cls.at<float>(si, 0);
}
protected:
virtual void generateFeatures() = 0;
int npos, nneg;
int numFeatures;
Size winSize;
CvFeatureParams* featureParams;
Mat cls;
};
class CvHaarFeatureParams : public CvFeatureParams
{
public:
CvHaarFeatureParams();
bool isIntegral;
};
class CvHaarEvaluator : public CvFeatureEvaluator
{
public:
class FeatureHaar
{
public:
FeatureHaar(Size patchSize);
bool eval(const Mat& image, Rect ROI, float* result) const;
inline int getNumAreas() const { return m_numAreas; }
inline const std::vector<float>& getWeights() const { return m_weights; }
inline const std::vector<Rect>& getAreas() const { return m_areas; }
private:
int m_type;
int m_numAreas;
std::vector<float> m_weights;
float m_initMean;
float m_initSigma;
void generateRandomFeature(Size imageSize);
float getSum(const Mat& image, Rect imgROI) const;
std::vector<Rect> m_areas; // areas within the patch over which to compute the feature
cv::Size m_initSize; // size of the patch used during training
cv::Size m_curSize; // size of the patches currently under investigation
float m_scaleFactorHeight; // scaling factor in vertical direction
float m_scaleFactorWidth; // scaling factor in horizontal direction
std::vector<Rect> m_scaleAreas; // areas after scaling
std::vector<float> m_scaleWeights; // weights after scaling
};
virtual void init(const CvFeatureParams* _featureParams, int _maxSampleCount, Size _winSize) CV_OVERRIDE;
virtual void setImage(const Mat& img, uchar clsLabel = 0, int idx = 1) CV_OVERRIDE;
inline const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const { return features; }
inline CvHaarEvaluator::FeatureHaar& getFeatures(int idx)
{
return features[idx];
}
inline void setWinSize(Size patchSize) { winSize = patchSize; }
inline Size getWinSize() const { return winSize; }
virtual void generateFeatures() CV_OVERRIDE;
/**
* \brief Overload the original generateFeatures in order to limit the number of the features
* @param numFeatures Number of the features
*/
virtual void generateFeatures(int numFeatures);
protected:
bool isIntegral;
/* TODO Added from MIL implementation */
Mat _ii_img;
void compute_integral(const cv::Mat& img, std::vector<cv::Mat_<float>>& ii_imgs)
{
Mat ii_img;
integral(img, ii_img, CV_32F);
split(ii_img, ii_imgs);
}
std::vector<FeatureHaar> features;
Mat sum; /* sum images (each row represents image) */
};
} // namespace feature
//! @}
}}} // namespace cv::detail::tracking
#endif

View File

@ -705,6 +705,121 @@ public:
double minEigThreshold = 1e-4);
};
/** @brief Base abstract class for the long-term tracker
*/
class CV_EXPORTS_W Tracker
{
protected:
Tracker();
public:
virtual ~Tracker();
/** @brief Initialize the tracker with a known bounding box that surrounded the target
@param image The initial frame
@param boundingBox The initial bounding box
*/
CV_WRAP virtual
void init(InputArray image, const Rect& boundingBox) = 0;
/** @brief Update the tracker, find the new most likely bounding box for the target
@param image The current frame
@param boundingBox The bounding box that represent the new target location, if true was returned, not
modified otherwise
@return True means that target was located and false means that tracker cannot locate target in
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
*/
CV_WRAP virtual
bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
};
/** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
background.
Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
based on @cite MIL .
Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
*/
class CV_EXPORTS_W TrackerMIL : public Tracker
{
protected:
TrackerMIL(); // use ::create()
public:
virtual ~TrackerMIL() CV_OVERRIDE;
struct CV_EXPORTS_W_SIMPLE Params
{
CV_WRAP Params();
//parameters for sampler
CV_PROP_RW float samplerInitInRadius; //!< radius for gathering positive instances during init
CV_PROP_RW int samplerInitMaxNegNum; //!< # negative samples to use during init
CV_PROP_RW float samplerSearchWinSize; //!< size of search window
CV_PROP_RW float samplerTrackInRadius; //!< radius for gathering positive instances during tracking
CV_PROP_RW int samplerTrackMaxPosNum; //!< # positive samples to use during tracking
CV_PROP_RW int samplerTrackMaxNegNum; //!< # negative samples to use during tracking
CV_PROP_RW int featureSetNumFeatures; //!< # features
};
/** @brief Create MIL tracker instance
* @param parameters MIL parameters TrackerMIL::Params
*/
static CV_WRAP
Ptr<TrackerMIL> create(const TrackerMIL::Params &parameters = TrackerMIL::Params());
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
/** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
*
* GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
* GOTURN is much faster due to offline training without online fine-tuning nature.
* GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
* we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
* robust to viewpoint changes, lighting changes, and deformations.
* Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
* Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
* Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
* As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
* Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
* <https://github.com/Auron-X/GOTURN_Training_Toolkit>
* GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
*/
class CV_EXPORTS_W TrackerGOTURN : public Tracker
{
protected:
TrackerGOTURN(); // use ::create()
public:
virtual ~TrackerGOTURN() CV_OVERRIDE;
struct CV_EXPORTS_W_SIMPLE Params
{
CV_WRAP Params();
CV_PROP_RW std::string modelTxt;
CV_PROP_RW std::string modelBin;
};
/** @brief Constructor
@param parameters GOTURN parameters TrackerGOTURN::Params
*/
static CV_WRAP
Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
//! @} video_track
} // cv

View File

@ -0,0 +1,32 @@
package org.opencv.test.video;
import org.opencv.core.Core;
import org.opencv.core.CvException;
import org.opencv.test.OpenCVTestCase;
import org.opencv.video.Tracker;
import org.opencv.video.TrackerGOTURN;
import org.opencv.video.TrackerMIL;
public class TrackerCreateTest extends OpenCVTestCase {
@Override
protected void setUp() throws Exception {
super.setUp();
}
public void testCreateTrackerGOTURN() {
try {
Tracker tracker = TrackerGOTURN.create();
assert(tracker != null);
} catch (CvException e) {
// expected, model files may be missing
}
}
public void testCreateTrackerMIL() {
Tracker tracker = TrackerMIL.create();
}
}

View File

@ -0,0 +1,4 @@
#ifdef HAVE_OPENCV_VIDEO
typedef TrackerMIL::Params TrackerMIL_Params;
typedef TrackerGOTURN::Params TrackerGOTURN_Params;
#endif

View File

@ -0,0 +1,19 @@
#!/usr/bin/env python
import os
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests, unittest
class tracking_test(NewOpenCVTests):
def test_createTracker(self):
t = cv.TrackerMIL_create()
try:
t = cv.TrackerGOTURN_create()
except cv.error as e:
pass # may fail due to missing DL model files
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -4,4 +4,19 @@
#include <hpx/hpx_main.hpp>
#endif
CV_PERF_TEST_MAIN(video)
static
void initTests()
{
const char* extraTestDataPath =
#ifdef WINRT
NULL;
#else
getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
if (extraTestDataPath)
cvtest::addDataSearchPath(extraTestDataPath);
cvtest::addDataSearchSubDirectory(""); // override "cv" prefix below to access without "../dnn" hacks
}
CV_PERF_TEST_MAIN(video, initTests())

View File

@ -0,0 +1,104 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
namespace opencv_test { namespace {
using namespace perf;
typedef tuple<string, int, Rect> TrackingParams_t;
std::vector<TrackingParams_t> getTrackingParams()
{
std::vector<TrackingParams_t> params {
TrackingParams_t("david/data/david.webm", 300, Rect(163,62,47,56)),
TrackingParams_t("dudek/data/dudek.webm", 1, Rect(123,87,132,176)),
TrackingParams_t("faceocc2/data/faceocc2.webm", 1, Rect(118,57,82,98))
};
return params;
}
class Tracking : public perf::TestBaseWithParam<TrackingParams_t>
{
public:
template<typename ROI_t = Rect2d, typename Tracker>
void runTrackingTest(const Ptr<Tracker>& tracker, const TrackingParams_t& params);
};
template<typename ROI_t, typename Tracker>
void Tracking::runTrackingTest(const Ptr<Tracker>& tracker, const TrackingParams_t& params)
{
const int N = 10;
string video = get<0>(params);
int startFrame = get<1>(params);
//int endFrame = startFrame + N;
Rect boundingBox = get<2>(params);
string videoPath = findDataFile(std::string("cv/tracking/") + video);
VideoCapture c;
c.open(videoPath);
if (!c.isOpened())
throw SkipTestException("Can't open video file");
#if 0
// c.set(CAP_PROP_POS_FRAMES, startFrame);
#else
if (startFrame)
std::cout << "startFrame = " << startFrame << std::endl;
for (int i = 0; i < startFrame; i++)
{
Mat dummy_frame;
c >> dummy_frame;
ASSERT_FALSE(dummy_frame.empty()) << i << ": " << videoPath;
}
#endif
// decode frames into memory (don't measure decoding performance)
std::vector<Mat> frames;
for (int i = 0; i < N; ++i)
{
Mat frame;
c >> frame;
ASSERT_FALSE(frame.empty()) << "i=" << i;
frames.push_back(frame);
}
std::cout << "frame size = " << frames[0].size() << std::endl;
PERF_SAMPLE_BEGIN();
{
tracker->init(frames[0], (ROI_t)boundingBox);
for (int i = 1; i < N; ++i)
{
ROI_t rc;
tracker->update(frames[i], rc);
ASSERT_FALSE(rc.empty());
}
}
PERF_SAMPLE_END();
SANITY_CHECK_NOTHING();
}
//==================================================================================================
PERF_TEST_P(Tracking, MIL, testing::ValuesIn(getTrackingParams()))
{
auto tracker = TrackerMIL::create();
runTrackingTest<Rect>(tracker, GetParam());
}
PERF_TEST_P(Tracking, GOTURN, testing::ValuesIn(getTrackingParams()))
{
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
TrackerGOTURN::Params params;
params.modelTxt = model;
params.modelBin = weights;
auto tracker = TrackerGOTURN::create(params);
runTrackingTest<Rect>(tracker, GetParam());
}
}} // namespace

View File

@ -0,0 +1,25 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
TrackerFeature::~TrackerFeature()
{
// nothing
}
void TrackerFeature::compute(const std::vector<Mat>& images, Mat& response)
{
if (images.empty())
return;
computeImpl(images, response);
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,121 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
#include "opencv2/video/detail/tracking_feature.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
inline namespace internal {
class TrackerFeatureHAAR : public TrackerFeature
{
public:
struct Params
{
Params();
int numFeatures; //!< # of rects
Size rectSize; //!< rect size
bool isIntegral; //!< true if input images are integral, false otherwise
};
TrackerFeatureHAAR(const TrackerFeatureHAAR::Params& parameters = TrackerFeatureHAAR::Params());
virtual ~TrackerFeatureHAAR() CV_OVERRIDE {}
protected:
bool computeImpl(const std::vector<Mat>& images, Mat& response) CV_OVERRIDE;
private:
Params params;
Ptr<CvHaarEvaluator> featureEvaluator;
};
/**
* Parameters
*/
TrackerFeatureHAAR::Params::Params()
{
numFeatures = 250;
rectSize = Size(100, 100);
isIntegral = false;
}
TrackerFeatureHAAR::TrackerFeatureHAAR(const TrackerFeatureHAAR::Params& parameters)
: params(parameters)
{
CvHaarFeatureParams haarParams;
haarParams.numFeatures = params.numFeatures;
haarParams.isIntegral = params.isIntegral;
featureEvaluator = makePtr<CvHaarEvaluator>();
featureEvaluator->init(&haarParams, 1, params.rectSize);
}
class Parallel_compute : public cv::ParallelLoopBody
{
private:
Ptr<CvHaarEvaluator> featureEvaluator;
std::vector<Mat> images;
Mat response;
//std::vector<CvHaarEvaluator::FeatureHaar> features;
public:
Parallel_compute(Ptr<CvHaarEvaluator>& fe, const std::vector<Mat>& img, Mat& resp)
: featureEvaluator(fe)
, images(img)
, response(resp)
{
//features = featureEvaluator->getFeatures();
}
virtual void operator()(const cv::Range& r) const CV_OVERRIDE
{
for (int jf = r.start; jf != r.end; ++jf)
{
int cols = images[jf].cols;
int rows = images[jf].rows;
for (int j = 0; j < featureEvaluator->getNumFeatures(); j++)
{
float res = 0;
featureEvaluator->getFeatures()[j].eval(images[jf], Rect(0, 0, cols, rows), &res);
(Mat_<float>(response))(j, jf) = res;
}
}
}
};
bool TrackerFeatureHAAR::computeImpl(const std::vector<Mat>& images, Mat& response)
{
if (images.empty())
{
return false;
}
int numFeatures = featureEvaluator->getNumFeatures();
response = Mat_<float>(Size((int)images.size(), numFeatures));
std::vector<CvHaarEvaluator::FeatureHaar> f = featureEvaluator->getFeatures();
//for each sample compute #n_feature -> put each feature (n Rect) in response
parallel_for_(Range(0, (int)images.size()), Parallel_compute(featureEvaluator, images, response));
/*for ( size_t i = 0; i < images.size(); i++ )
{
int c = images[i].cols;
int r = images[i].rows;
for ( int j = 0; j < numFeatures; j++ )
{
float res = 0;
featureEvaluator->getFeatures( j ).eval( images[i], Rect( 0, 0, c, r ), &res );
( Mat_<float>( response ) )( j, i ) = res;
}
}*/
return true;
}
}}}} // namespace cv::detail::tracking::internal

View File

@ -0,0 +1,60 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
TrackerFeatureSet::TrackerFeatureSet()
{
blockAddTrackerFeature = false;
}
TrackerFeatureSet::~TrackerFeatureSet()
{
// nothing
}
void TrackerFeatureSet::extraction(const std::vector<Mat>& images)
{
blockAddTrackerFeature = true;
clearResponses();
responses.resize(features.size());
for (size_t i = 0; i < features.size(); i++)
{
CV_DbgAssert(features[i]);
features[i]->compute(images, responses[i]);
}
}
bool TrackerFeatureSet::addTrackerFeature(const Ptr<TrackerFeature>& feature)
{
CV_Assert(!blockAddTrackerFeature);
CV_Assert(feature);
features.push_back(feature);
return true;
}
const std::vector<Ptr<TrackerFeature>>& TrackerFeatureSet::getTrackerFeatures() const
{
return features;
}
const std::vector<Mat>& TrackerFeatureSet::getResponses() const
{
return responses;
}
void TrackerFeatureSet::clearResponses()
{
responses.clear();
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,85 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "tracker_mil_model.hpp"
/**
* TrackerMILModel
*/
namespace cv {
inline namespace tracking {
namespace impl {
TrackerMILModel::TrackerMILModel(const Rect& boundingBox)
{
currentSample.clear();
mode = MODE_POSITIVE;
width = boundingBox.width;
height = boundingBox.height;
Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState> initState = Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState>(
new TrackerStateEstimatorMILBoosting::TrackerMILTargetState(Point2f((float)boundingBox.x, (float)boundingBox.y), boundingBox.width, boundingBox.height,
true, Mat()));
trajectory.push_back(initState);
}
void TrackerMILModel::responseToConfidenceMap(const std::vector<Mat>& responses, ConfidenceMap& confidenceMap)
{
if (currentSample.empty())
{
CV_Error(-1, "The samples in Model estimation are empty");
}
for (size_t i = 0; i < responses.size(); i++)
{
//for each column (one sample) there are #num_feature
//get informations from currentSample
for (int j = 0; j < responses.at(i).cols; j++)
{
Size currentSize;
Point currentOfs;
currentSample.at(j).locateROI(currentSize, currentOfs);
bool foreground = false;
if (mode == MODE_POSITIVE || mode == MODE_ESTIMATON)
{
foreground = true;
}
else if (mode == MODE_NEGATIVE)
{
foreground = false;
}
//get the column of the HAAR responses
Mat singleResponse = responses.at(i).col(j);
//create the state
Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState> currentState = Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState>(
new TrackerStateEstimatorMILBoosting::TrackerMILTargetState(currentOfs, width, height, foreground, singleResponse));
confidenceMap.push_back(std::make_pair(currentState, 0.0f));
}
}
}
void TrackerMILModel::modelEstimationImpl(const std::vector<Mat>& responses)
{
responseToConfidenceMap(responses, currentConfidenceMap);
}
void TrackerMILModel::modelUpdateImpl()
{
}
void TrackerMILModel::setMode(int trainingMode, const std::vector<Mat>& samples)
{
currentSample.clear();
currentSample = samples;
mode = trainingMode;
}
}}} // namespace cv::tracking::impl

View File

@ -0,0 +1,67 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TRACKER_MIL_MODEL_HPP__
#define __OPENCV_TRACKER_MIL_MODEL_HPP__
#include "opencv2/video/detail/tracking.private.hpp"
#include "tracker_mil_state.hpp"
namespace cv {
inline namespace tracking {
namespace impl {
using namespace cv::detail::tracking;
/**
* \brief Implementation of TrackerModel for MIL algorithm
*/
class TrackerMILModel : public detail::TrackerModel
{
public:
enum
{
MODE_POSITIVE = 1, // mode for positive features
MODE_NEGATIVE = 2, // mode for negative features
MODE_ESTIMATON = 3 // mode for estimation step
};
/**
* \brief Constructor
* \param boundingBox The first boundingBox
*/
TrackerMILModel(const Rect& boundingBox);
/**
* \brief Destructor
*/
~TrackerMILModel() {};
/**
* \brief Set the mode
*/
void setMode(int trainingMode, const std::vector<Mat>& samples);
/**
* \brief Create the ConfidenceMap from a list of responses
* \param responses The list of the responses
* \param confidenceMap The output
*/
void responseToConfidenceMap(const std::vector<Mat>& responses, ConfidenceMap& confidenceMap);
protected:
void modelEstimationImpl(const std::vector<Mat>& responses) CV_OVERRIDE;
void modelUpdateImpl() CV_OVERRIDE;
private:
int mode;
std::vector<Mat> currentSample;
int width; //initial width of the boundingBox
int height; //initial height of the boundingBox
};
}}} // namespace cv::tracking::impl
#endif

View File

@ -0,0 +1,159 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
#include "tracker_mil_state.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
/**
* TrackerStateEstimatorMILBoosting::TrackerMILTargetState
*/
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::TrackerMILTargetState(const Point2f& position, int width, int height, bool foreground,
const Mat& features)
{
setTargetPosition(position);
setTargetWidth(width);
setTargetHeight(height);
setTargetFg(foreground);
setFeatures(features);
}
void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setTargetFg(bool foreground)
{
isTarget = foreground;
}
void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setFeatures(const Mat& features)
{
targetFeatures = features;
}
bool TrackerStateEstimatorMILBoosting::TrackerMILTargetState::isTargetFg() const
{
return isTarget;
}
Mat TrackerStateEstimatorMILBoosting::TrackerMILTargetState::getFeatures() const
{
return targetFeatures;
}
TrackerStateEstimatorMILBoosting::TrackerStateEstimatorMILBoosting(int nFeatures)
{
className = "BOOSTING";
trained = false;
numFeatures = nFeatures;
}
TrackerStateEstimatorMILBoosting::~TrackerStateEstimatorMILBoosting()
{
}
void TrackerStateEstimatorMILBoosting::setCurrentConfidenceMap(ConfidenceMap& confidenceMap)
{
currentConfidenceMap.clear();
currentConfidenceMap = confidenceMap;
}
uint TrackerStateEstimatorMILBoosting::max_idx(const std::vector<float>& v)
{
const float* findPtr = &(*std::max_element(v.begin(), v.end()));
const float* beginPtr = &(*v.begin());
return (uint)(findPtr - beginPtr);
}
Ptr<TrackerTargetState> TrackerStateEstimatorMILBoosting::estimateImpl(const std::vector<ConfidenceMap>& /*confidenceMaps*/)
{
//run ClfMilBoost classify in order to compute next location
if (currentConfidenceMap.empty())
return Ptr<TrackerTargetState>();
Mat positiveStates;
Mat negativeStates;
prepareData(currentConfidenceMap, positiveStates, negativeStates);
std::vector<float> prob = boostMILModel.classify(positiveStates);
int bestind = max_idx(prob);
//float resp = prob[bestind];
return currentConfidenceMap.at(bestind).first;
}
void TrackerStateEstimatorMILBoosting::prepareData(const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative)
{
int posCounter = 0;
int negCounter = 0;
for (size_t i = 0; i < confidenceMap.size(); i++)
{
Ptr<TrackerMILTargetState> currentTargetState = confidenceMap.at(i).first.staticCast<TrackerMILTargetState>();
CV_DbgAssert(currentTargetState);
if (currentTargetState->isTargetFg())
posCounter++;
else
negCounter++;
}
positive.create(posCounter, numFeatures, CV_32FC1);
negative.create(negCounter, numFeatures, CV_32FC1);
//TODO change with mat fast access
//initialize trainData (positive and negative)
int pc = 0;
int nc = 0;
for (size_t i = 0; i < confidenceMap.size(); i++)
{
Ptr<TrackerMILTargetState> currentTargetState = confidenceMap.at(i).first.staticCast<TrackerMILTargetState>();
Mat stateFeatures = currentTargetState->getFeatures();
if (currentTargetState->isTargetFg())
{
for (int j = 0; j < stateFeatures.rows; j++)
{
//fill the positive trainData with the value of the feature j for sample i
positive.at<float>(pc, j) = stateFeatures.at<float>(j, 0);
}
pc++;
}
else
{
for (int j = 0; j < stateFeatures.rows; j++)
{
//fill the negative trainData with the value of the feature j for sample i
negative.at<float>(nc, j) = stateFeatures.at<float>(j, 0);
}
nc++;
}
}
}
void TrackerStateEstimatorMILBoosting::updateImpl(std::vector<ConfidenceMap>& confidenceMaps)
{
if (!trained)
{
//this is the first time that the classifier is built
//init MIL
boostMILModel.init();
trained = true;
}
ConfidenceMap lastConfidenceMap = confidenceMaps.back();
Mat positiveStates;
Mat negativeStates;
prepareData(lastConfidenceMap, positiveStates, negativeStates);
//update MIL
boostMILModel.update(positiveStates, negativeStates);
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,87 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_MIL_STATE_HPP
#define OPENCV_VIDEO_DETAIL_TRACKING_MIL_STATE_HPP
#include "opencv2/video/detail/tracking.private.hpp"
#include "tracking_online_mil.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
/** @brief TrackerStateEstimator based on Boosting
*/
class CV_EXPORTS TrackerStateEstimatorMILBoosting : public TrackerStateEstimator
{
public:
/**
* Implementation of the target state for TrackerStateEstimatorMILBoosting
*/
class TrackerMILTargetState : public TrackerTargetState
{
public:
/**
* \brief Constructor
* \param position Top left corner of the bounding box
* \param width Width of the bounding box
* \param height Height of the bounding box
* \param foreground label for target or background
* \param features features extracted
*/
TrackerMILTargetState(const Point2f& position, int width, int height, bool foreground, const Mat& features);
~TrackerMILTargetState() {};
/** @brief Set label: true for target foreground, false for background
@param foreground Label for background/foreground
*/
void setTargetFg(bool foreground);
/** @brief Set the features extracted from TrackerFeatureSet
@param features The features extracted
*/
void setFeatures(const Mat& features);
/** @brief Get the label. Return true for target foreground, false for background
*/
bool isTargetFg() const;
/** @brief Get the features extracted
*/
Mat getFeatures() const;
private:
bool isTarget;
Mat targetFeatures;
};
/** @brief Constructor
@param nFeatures Number of features for each sample
*/
TrackerStateEstimatorMILBoosting(int nFeatures = 250);
~TrackerStateEstimatorMILBoosting();
/** @brief Set the current confidenceMap
@param confidenceMap The current :cConfidenceMap
*/
void setCurrentConfidenceMap(ConfidenceMap& confidenceMap);
protected:
Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) CV_OVERRIDE;
void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) CV_OVERRIDE;
private:
uint max_idx(const std::vector<float>& v);
void prepareData(const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative);
ClfMilBoost boostMILModel;
bool trained;
int numFeatures;
ConfidenceMap currentConfidenceMap;
};
}}} // namespace cv::detail::tracking
#endif

View File

@ -0,0 +1,132 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
TrackerModel::TrackerModel()
{
stateEstimator = Ptr<TrackerStateEstimator>();
maxCMLength = 10;
}
TrackerModel::~TrackerModel()
{
// nothing
}
bool TrackerModel::setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator)
{
if (stateEstimator.get())
{
return false;
}
stateEstimator = trackerStateEstimator;
return true;
}
Ptr<TrackerStateEstimator> TrackerModel::getTrackerStateEstimator() const
{
return stateEstimator;
}
void TrackerModel::modelEstimation(const std::vector<Mat>& responses)
{
modelEstimationImpl(responses);
}
void TrackerModel::clearCurrentConfidenceMap()
{
currentConfidenceMap.clear();
}
void TrackerModel::modelUpdate()
{
modelUpdateImpl();
if (maxCMLength != -1 && (int)confidenceMaps.size() >= maxCMLength - 1)
{
int l = maxCMLength / 2;
confidenceMaps.erase(confidenceMaps.begin(), confidenceMaps.begin() + l);
}
if (maxCMLength != -1 && (int)trajectory.size() >= maxCMLength - 1)
{
int l = maxCMLength / 2;
trajectory.erase(trajectory.begin(), trajectory.begin() + l);
}
confidenceMaps.push_back(currentConfidenceMap);
stateEstimator->update(confidenceMaps);
clearCurrentConfidenceMap();
}
bool TrackerModel::runStateEstimator()
{
if (!stateEstimator)
{
CV_Error(-1, "Tracker state estimator is not setted");
}
Ptr<TrackerTargetState> targetState = stateEstimator->estimate(confidenceMaps);
if (!targetState)
return false;
setLastTargetState(targetState);
return true;
}
void TrackerModel::setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState)
{
trajectory.push_back(lastTargetState);
}
Ptr<TrackerTargetState> TrackerModel::getLastTargetState() const
{
return trajectory.back();
}
const std::vector<ConfidenceMap>& TrackerModel::getConfidenceMaps() const
{
return confidenceMaps;
}
const ConfidenceMap& TrackerModel::getLastConfidenceMap() const
{
return confidenceMaps.back();
}
Point2f TrackerTargetState::getTargetPosition() const
{
return targetPosition;
}
void TrackerTargetState::setTargetPosition(const Point2f& position)
{
targetPosition = position;
}
int TrackerTargetState::getTargetWidth() const
{
return targetWidth;
}
void TrackerTargetState::setTargetWidth(int width)
{
targetWidth = width;
}
int TrackerTargetState::getTargetHeight() const
{
return targetHeight;
}
void TrackerTargetState::setTargetHeight(int height)
{
targetHeight = height;
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,68 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
TrackerSampler::TrackerSampler()
{
blockAddTrackerSampler = false;
}
TrackerSampler::~TrackerSampler()
{
// nothing
}
void TrackerSampler::sampling(const Mat& image, Rect boundingBox)
{
clearSamples();
for (size_t i = 0; i < samplers.size(); i++)
{
CV_DbgAssert(samplers[i]);
std::vector<Mat> current_samples;
samplers[i]->sampling(image, boundingBox, current_samples);
//push in samples all current_samples
for (size_t j = 0; j < current_samples.size(); j++)
{
std::vector<Mat>::iterator it = samples.end();
samples.insert(it, current_samples.at(j));
}
}
blockAddTrackerSampler = true;
}
bool TrackerSampler::addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler)
{
CV_Assert(!blockAddTrackerSampler);
CV_Assert(sampler);
samplers.push_back(sampler);
return true;
}
const std::vector<Ptr<TrackerSamplerAlgorithm>>& TrackerSampler::getSamplers() const
{
return samplers;
}
const std::vector<Mat>& TrackerSampler::getSamples() const
{
return samples;
}
void TrackerSampler::clearSamples()
{
samples.clear();
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,124 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
TrackerSamplerAlgorithm::~TrackerSamplerAlgorithm()
{
// nothing
}
TrackerSamplerCSC::Params::Params()
{
initInRad = 3;
initMaxNegNum = 65;
searchWinSize = 25;
trackInPosRad = 4;
trackMaxNegNum = 65;
trackMaxPosNum = 100000;
}
TrackerSamplerCSC::TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters)
: params(parameters)
{
mode = MODE_INIT_POS;
rng = theRNG();
}
TrackerSamplerCSC::~TrackerSamplerCSC()
{
// nothing
}
bool TrackerSamplerCSC::sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample)
{
CV_Assert(!image.empty());
float inrad = 0;
float outrad = 0;
int maxnum = 0;
switch (mode)
{
case MODE_INIT_POS:
inrad = params.initInRad;
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad);
break;
case MODE_INIT_NEG:
inrad = 2.0f * params.searchWinSize;
outrad = 1.5f * params.initInRad;
maxnum = params.initMaxNegNum;
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum);
break;
case MODE_TRACK_POS:
inrad = params.trackInPosRad;
outrad = 0;
maxnum = params.trackMaxPosNum;
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum);
break;
case MODE_TRACK_NEG:
inrad = 1.5f * params.searchWinSize;
outrad = params.trackInPosRad + 5;
maxnum = params.trackMaxNegNum;
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum);
break;
case MODE_DETECT:
inrad = params.searchWinSize;
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad);
break;
default:
inrad = params.initInRad;
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad);
break;
}
return false;
}
void TrackerSamplerCSC::setMode(int samplingMode)
{
mode = samplingMode;
}
std::vector<Mat> TrackerSamplerCSC::sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad, int maxnum)
{
int rowsz = img.rows - h - 1;
int colsz = img.cols - w - 1;
float inradsq = inrad * inrad;
float outradsq = outrad * outrad;
int dist;
uint minrow = max(0, (int)y - (int)inrad);
uint maxrow = min((int)rowsz - 1, (int)y + (int)inrad);
uint mincol = max(0, (int)x - (int)inrad);
uint maxcol = min((int)colsz - 1, (int)x + (int)inrad);
//fprintf(stderr,"inrad=%f minrow=%d maxrow=%d mincol=%d maxcol=%d\n",inrad,minrow,maxrow,mincol,maxcol);
std::vector<Mat> samples;
samples.resize((maxrow - minrow + 1) * (maxcol - mincol + 1));
int i = 0;
float prob = ((float)(maxnum)) / samples.size();
for (int r = minrow; r <= int(maxrow); r++)
for (int c = mincol; c <= int(maxcol); c++)
{
dist = (y - r) * (y - r) + (x - c) * (x - c);
if (float(rng.uniform(0.f, 1.f)) < prob && dist < inradsq && dist >= outradsq)
{
samples[i] = img(Rect(c, r, w, h));
i++;
}
}
samples.resize(min(i, maxnum));
return samples;
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,37 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
TrackerStateEstimator::~TrackerStateEstimator()
{
}
Ptr<TrackerTargetState> TrackerStateEstimator::estimate(const std::vector<ConfidenceMap>& confidenceMaps)
{
if (confidenceMaps.empty())
return Ptr<TrackerTargetState>();
return estimateImpl(confidenceMaps);
}
void TrackerStateEstimator::update(std::vector<ConfidenceMap>& confidenceMaps)
{
if (confidenceMaps.empty())
return;
return updateImpl(confidenceMaps);
}
String TrackerStateEstimator::getClassName() const
{
return className;
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,582 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "opencv2/video/detail/tracking.private.hpp"
#include "opencv2/video/detail/tracking_feature.private.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
/*
* TODO This implementation is based on apps/traincascade/
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
*/
CvParams::CvParams()
{
// nothing
}
//---------------------------- FeatureParams --------------------------------------
CvFeatureParams::CvFeatureParams()
: maxCatCount(0)
, featSize(1)
, numFeatures(1)
{
// nothing
}
//------------------------------------- FeatureEvaluator ---------------------------------------
void CvFeatureEvaluator::init(const CvFeatureParams* _featureParams, int _maxSampleCount, Size _winSize)
{
CV_Assert(_featureParams);
CV_Assert(_maxSampleCount > 0);
featureParams = (CvFeatureParams*)_featureParams;
winSize = _winSize;
numFeatures = _featureParams->numFeatures;
cls.create((int)_maxSampleCount, 1, CV_32FC1);
generateFeatures();
}
void CvFeatureEvaluator::setImage(const Mat& img, uchar clsLabel, int idx)
{
winSize.width = img.cols;
winSize.height = img.rows;
//CV_Assert( img.cols == winSize.width );
//CV_Assert( img.rows == winSize.height );
CV_Assert(idx < cls.rows);
cls.ptr<float>(idx)[0] = clsLabel;
}
CvHaarFeatureParams::CvHaarFeatureParams()
{
isIntegral = false;
}
//--------------------- HaarFeatureEvaluator ----------------
void CvHaarEvaluator::init(const CvFeatureParams* _featureParams, int /*_maxSampleCount*/, Size _winSize)
{
CV_Assert(_featureParams);
int cols = (_winSize.width + 1) * (_winSize.height + 1);
sum.create((int)1, cols, CV_32SC1);
isIntegral = ((CvHaarFeatureParams*)_featureParams)->isIntegral;
CvFeatureEvaluator::init(_featureParams, 1, _winSize);
}
void CvHaarEvaluator::setImage(const Mat& img, uchar /*clsLabel*/, int /*idx*/)
{
CV_DbgAssert(!sum.empty());
winSize.width = img.cols;
winSize.height = img.rows;
CvFeatureEvaluator::setImage(img, 1, 0);
if (!isIntegral)
{
std::vector<Mat_<float>> ii_imgs;
compute_integral(img, ii_imgs);
_ii_img = ii_imgs[0];
}
else
{
_ii_img = img;
}
}
void CvHaarEvaluator::generateFeatures()
{
generateFeatures(featureParams->numFeatures);
}
void CvHaarEvaluator::generateFeatures(int nFeatures)
{
for (int i = 0; i < nFeatures; i++)
{
CvHaarEvaluator::FeatureHaar feature(Size(winSize.width, winSize.height));
features.push_back(feature);
}
}
#define INITSIGMA(numAreas) (static_cast<float>(sqrt(256.0f * 256.0f / 12.0f * (numAreas))));
CvHaarEvaluator::FeatureHaar::FeatureHaar(Size patchSize)
{
try
{
generateRandomFeature(patchSize);
}
catch (...)
{
// FIXIT
throw;
}
}
void CvHaarEvaluator::FeatureHaar::generateRandomFeature(Size patchSize)
{
cv::Point2i position;
Size baseDim;
Size sizeFactor;
int area;
CV_Assert(!patchSize.empty());
//Size minSize = Size( 3, 3 );
int minArea = 9;
bool valid = false;
while (!valid)
{
//choose position and scale
position.y = rand() % (patchSize.height);
position.x = rand() % (patchSize.width);
baseDim.width = (int)((1 - sqrt(1 - (float)rand() * (float)(1.0 / RAND_MAX))) * patchSize.width);
baseDim.height = (int)((1 - sqrt(1 - (float)rand() * (float)(1.0 / RAND_MAX))) * patchSize.height);
//select types
//float probType[11] = {0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0950f};
float probType[11] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
float prob = (float)rand() * (float)(1.0 / RAND_MAX);
if (prob < probType[0])
{
//check if feature is valid
sizeFactor.height = 2;
sizeFactor.width = 1;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 1;
m_numAreas = 2;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x;
m_areas[1].y = position.y + baseDim.height;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1])
{
//check if feature is valid
sizeFactor.height = 1;
sizeFactor.width = 2;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 2;
m_numAreas = 2;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2])
{
//check if feature is valid
sizeFactor.height = 4;
sizeFactor.width = 1;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 3;
m_numAreas = 3;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -2;
m_weights[2] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x;
m_areas[1].y = position.y + baseDim.height;
m_areas[1].height = 2 * baseDim.height;
m_areas[1].width = baseDim.width;
m_areas[2].y = position.y + 3 * baseDim.height;
m_areas[2].x = position.x;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2] + probType[3])
{
//check if feature is valid
sizeFactor.height = 1;
sizeFactor.width = 4;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 3;
m_numAreas = 3;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -2;
m_weights[2] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y;
m_areas[1].height = baseDim.height;
m_areas[1].width = 2 * baseDim.width;
m_areas[2].y = position.y;
m_areas[2].x = position.x + 3 * baseDim.width;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4])
{
//check if feature is valid
sizeFactor.height = 2;
sizeFactor.width = 2;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 5;
m_numAreas = 4;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -1;
m_weights[2] = -1;
m_weights[3] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_areas[2].y = position.y + baseDim.height;
m_areas[2].x = position.x;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_areas[3].y = position.y + baseDim.height;
m_areas[3].x = position.x + baseDim.width;
m_areas[3].height = baseDim.height;
m_areas[3].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5])
{
//check if feature is valid
sizeFactor.height = 3;
sizeFactor.width = 3;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 6;
m_numAreas = 2;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -9;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = 3 * baseDim.height;
m_areas[0].width = 3 * baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y + baseDim.height;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_initMean = -8 * 128;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6])
{
//check if feature is valid
sizeFactor.height = 3;
sizeFactor.width = 1;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 7;
m_numAreas = 3;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -2;
m_weights[2] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x;
m_areas[1].y = position.y + baseDim.height;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_areas[2].y = position.y + baseDim.height * 2;
m_areas[2].x = position.x;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7])
{
//check if feature is valid
sizeFactor.height = 1;
sizeFactor.width = 3;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 8;
m_numAreas = 3;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -2;
m_weights[2] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_areas[2].y = position.y;
m_areas[2].x = position.x + 2 * baseDim.width;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7] + probType[8])
{
//check if feature is valid
sizeFactor.height = 3;
sizeFactor.width = 3;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 9;
m_numAreas = 2;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -2;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = 3 * baseDim.height;
m_areas[0].width = 3 * baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y + baseDim.height;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_initMean = 0;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob
< probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7] + probType[8] + probType[9])
{
//check if feature is valid
sizeFactor.height = 3;
sizeFactor.width = 1;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 10;
m_numAreas = 3;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -1;
m_weights[2] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x;
m_areas[1].y = position.y + baseDim.height;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_areas[2].y = position.y + baseDim.height * 2;
m_areas[2].x = position.x;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_initMean = 128;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else if (prob
< probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7] + probType[8] + probType[9]
+ probType[10])
{
//check if feature is valid
sizeFactor.height = 1;
sizeFactor.width = 3;
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
continue;
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
if (area < minArea)
continue;
m_type = 11;
m_numAreas = 3;
m_weights.resize(m_numAreas);
m_weights[0] = 1;
m_weights[1] = -1;
m_weights[2] = 1;
m_areas.resize(m_numAreas);
m_areas[0].x = position.x;
m_areas[0].y = position.y;
m_areas[0].height = baseDim.height;
m_areas[0].width = baseDim.width;
m_areas[1].x = position.x + baseDim.width;
m_areas[1].y = position.y;
m_areas[1].height = baseDim.height;
m_areas[1].width = baseDim.width;
m_areas[2].y = position.y;
m_areas[2].x = position.x + 2 * baseDim.width;
m_areas[2].height = baseDim.height;
m_areas[2].width = baseDim.width;
m_initMean = 128;
m_initSigma = INITSIGMA(m_numAreas);
valid = true;
}
else
CV_Error(Error::StsAssert, "");
}
m_initSize = patchSize;
m_curSize = m_initSize;
m_scaleFactorWidth = m_scaleFactorHeight = 1.0f;
m_scaleAreas.resize(m_numAreas);
m_scaleWeights.resize(m_numAreas);
for (int curArea = 0; curArea < m_numAreas; curArea++)
{
m_scaleAreas[curArea] = m_areas[curArea];
m_scaleWeights[curArea] = (float)m_weights[curArea] / (float)(m_areas[curArea].width * m_areas[curArea].height);
}
}
bool CvHaarEvaluator::FeatureHaar::eval(const Mat& image, Rect /*ROI*/, float* result) const
{
*result = 0.0f;
for (int curArea = 0; curArea < m_numAreas; curArea++)
{
*result += (float)getSum(image, Rect(m_areas[curArea].x, m_areas[curArea].y, m_areas[curArea].width, m_areas[curArea].height))
* m_scaleWeights[curArea];
}
/*
if( image->getUseVariance() )
{
float variance = (float) image->getVariance( ROI );
*result /= variance;
}
*/
return true;
}
float CvHaarEvaluator::FeatureHaar::getSum(const Mat& image, Rect imageROI) const
{
// left upper Origin
int OriginX = imageROI.x;
int OriginY = imageROI.y;
// Check and fix width and height
int Width = imageROI.width;
int Height = imageROI.height;
if (OriginX + Width >= image.cols - 1)
Width = (image.cols - 1) - OriginX;
if (OriginY + Height >= image.rows - 1)
Height = (image.rows - 1) - OriginY;
float value = 0;
int depth = image.depth();
if (depth == CV_8U || depth == CV_32S)
value = static_cast<float>(image.at<int>(OriginY + Height, OriginX + Width) + image.at<int>(OriginY, OriginX) - image.at<int>(OriginY, OriginX + Width)
- image.at<int>(OriginY + Height, OriginX));
else if (depth == CV_64F)
value = static_cast<float>(image.at<double>(OriginY + Height, OriginX + Width) + image.at<double>(OriginY, OriginX)
- image.at<double>(OriginY, OriginX + Width) - image.at<double>(OriginY + Height, OriginX));
else if (depth == CV_32F)
value = static_cast<float>(image.at<float>(OriginY + Height, OriginX + Width) + image.at<float>(OriginY, OriginX) - image.at<float>(OriginY, OriginX + Width)
- image.at<float>(OriginY + Height, OriginX));
return value;
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,356 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../../precomp.hpp"
#include "tracking_online_mil.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
#define sign(s) ((s > 0) ? 1 : ((s < 0) ? -1 : 0))
template <class T>
class SortableElementRev
{
public:
T _val;
int _ind;
SortableElementRev()
: _val(), _ind(0)
{
}
SortableElementRev(T val, int ind)
{
_val = val;
_ind = ind;
}
bool operator<(SortableElementRev<T>& b)
{
return (_val < b._val);
};
};
static bool CompareSortableElementRev(const SortableElementRev<float>& i, const SortableElementRev<float>& j)
{
return i._val < j._val;
}
template <class T>
void sort_order_des(std::vector<T>& v, std::vector<int>& order)
{
uint n = (uint)v.size();
std::vector<SortableElementRev<T>> v2;
v2.resize(n);
order.clear();
order.resize(n);
for (uint i = 0; i < n; i++)
{
v2[i]._ind = i;
v2[i]._val = v[i];
}
//std::sort( v2.begin(), v2.end() );
std::sort(v2.begin(), v2.end(), CompareSortableElementRev);
for (uint i = 0; i < n; i++)
{
order[i] = v2[i]._ind;
v[i] = v2[i]._val;
}
};
//implementations for strong classifier
ClfMilBoost::Params::Params()
{
_numSel = 50;
_numFeat = 250;
_lRate = 0.85f;
}
ClfMilBoost::ClfMilBoost()
: _numsamples(0)
, _counter(0)
{
_myParams = ClfMilBoost::Params();
_numsamples = 0;
}
ClfMilBoost::~ClfMilBoost()
{
_selectors.clear();
for (size_t i = 0; i < _weakclf.size(); i++)
delete _weakclf.at(i);
}
void ClfMilBoost::init(const ClfMilBoost::Params& parameters)
{
_myParams = parameters;
_numsamples = 0;
//_ftrs = Ftr::generate( _myParams->_ftrParams, _myParams->_numFeat );
// if( params->_storeFtrHistory )
// Ftr::toViz( _ftrs, "haarftrs" );
_weakclf.resize(_myParams._numFeat);
for (int k = 0; k < _myParams._numFeat; k++)
{
_weakclf[k] = new ClfOnlineStump(k);
_weakclf[k]->_lRate = _myParams._lRate;
}
_counter = 0;
}
void ClfMilBoost::update(const Mat& posx, const Mat& negx)
{
int numneg = negx.rows;
int numpos = posx.rows;
// compute ftrs
//if( !posx.ftrsComputed() )
// Ftr::compute( posx, _ftrs );
//if( !negx.ftrsComputed() )
// Ftr::compute( negx, _ftrs );
// initialize H
static std::vector<float> Hpos, Hneg;
Hpos.clear();
Hneg.clear();
Hpos.resize(posx.rows, 0.0f), Hneg.resize(negx.rows, 0.0f);
_selectors.clear();
std::vector<float> posw(posx.rows), negw(negx.rows);
std::vector<std::vector<float>> pospred(_weakclf.size()), negpred(_weakclf.size());
// train all weak classifiers without weights
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int m = 0; m < _myParams._numFeat; m++)
{
_weakclf[m]->update(posx, negx);
pospred[m] = _weakclf[m]->classifySetF(posx);
negpred[m] = _weakclf[m]->classifySetF(negx);
}
// pick the best features
for (int s = 0; s < _myParams._numSel; s++)
{
// compute errors/likl for all weak clfs
std::vector<float> poslikl(_weakclf.size(), 1.0f), neglikl(_weakclf.size()), likl(_weakclf.size());
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int w = 0; w < (int)_weakclf.size(); w++)
{
float lll = 1.0f;
for (int j = 0; j < numpos; j++)
lll *= (1 - sigmoid(Hpos[j] + pospred[w][j]));
poslikl[w] = (float)-log(1 - lll + 1e-5);
lll = 0.0f;
for (int j = 0; j < numneg; j++)
lll += (float)-log(1e-5f + 1 - sigmoid(Hneg[j] + negpred[w][j]));
neglikl[w] = lll;
likl[w] = poslikl[w] / numpos + neglikl[w] / numneg;
}
// pick best weak clf
std::vector<int> order;
sort_order_des(likl, order);
// find best weakclf that isn't already included
for (uint k = 0; k < order.size(); k++)
if (std::count(_selectors.begin(), _selectors.end(), order[k]) == 0)
{
_selectors.push_back(order[k]);
break;
}
// update H = H + h_m
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int k = 0; k < posx.rows; k++)
Hpos[k] += pospred[_selectors[s]][k];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int k = 0; k < negx.rows; k++)
Hneg[k] += negpred[_selectors[s]][k];
}
//if( _myParams->_storeFtrHistory )
//for ( uint j = 0; j < _selectors.size(); j++ )
// _ftrHist( _selectors[j], _counter ) = 1.0f / ( j + 1 );
_counter++;
/* */
return;
}
std::vector<float> ClfMilBoost::classify(const Mat& x, bool logR)
{
int numsamples = x.rows;
std::vector<float> res(numsamples);
std::vector<float> tr;
for (uint w = 0; w < _selectors.size(); w++)
{
tr = _weakclf[_selectors[w]]->classifySetF(x);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < numsamples; j++)
{
res[j] += tr[j];
}
}
// return probabilities or log odds ratio
if (!logR)
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < (int)res.size(); j++)
{
res[j] = sigmoid(res[j]);
}
}
return res;
}
//implementations for weak classifier
ClfOnlineStump::ClfOnlineStump()
: _mu0(0), _mu1(0), _sig0(0), _sig1(0)
, _q(0)
, _s(0)
, _log_n1(0), _log_n0(0)
, _e1(0), _e0(0)
, _lRate(0)
{
_trained = false;
_ind = -1;
init();
}
ClfOnlineStump::ClfOnlineStump(int ind)
: _mu0(0), _mu1(0), _sig0(0), _sig1(0)
, _q(0)
, _s(0)
, _log_n1(0), _log_n0(0)
, _e1(0), _e0(0)
, _lRate(0)
{
_trained = false;
_ind = ind;
init();
}
void ClfOnlineStump::init()
{
_mu0 = 0;
_mu1 = 0;
_sig0 = 1;
_sig1 = 1;
_lRate = 0.85f;
_trained = false;
}
void ClfOnlineStump::update(const Mat& posx, const Mat& negx, const Mat_<float>& /*posw*/, const Mat_<float>& /*negw*/)
{
//std::cout << " ClfOnlineStump::update" << _ind << std::endl;
float posmu = 0.0, negmu = 0.0;
if (posx.cols > 0)
posmu = float(mean(posx.col(_ind))[0]);
if (negx.cols > 0)
negmu = float(mean(negx.col(_ind))[0]);
if (_trained)
{
if (posx.cols > 0)
{
_mu1 = (_lRate * _mu1 + (1 - _lRate) * posmu);
cv::Mat diff = posx.col(_ind) - _mu1;
_sig1 = _lRate * _sig1 + (1 - _lRate) * float(mean(diff.mul(diff))[0]);
}
if (negx.cols > 0)
{
_mu0 = (_lRate * _mu0 + (1 - _lRate) * negmu);
cv::Mat diff = negx.col(_ind) - _mu0;
_sig0 = _lRate * _sig0 + (1 - _lRate) * float(mean(diff.mul(diff))[0]);
}
_q = (_mu1 - _mu0) / 2;
_s = sign(_mu1 - _mu0);
_log_n0 = std::log(float(1.0f / pow(_sig0, 0.5f)));
_log_n1 = std::log(float(1.0f / pow(_sig1, 0.5f)));
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
_e1 = -1.0f / (2.0f * _sig1 + std::numeric_limits<float>::min());
_e0 = -1.0f / (2.0f * _sig0 + std::numeric_limits<float>::min());
}
else
{
_trained = true;
if (posx.cols > 0)
{
_mu1 = posmu;
cv::Scalar scal_mean, scal_std_dev;
cv::meanStdDev(posx.col(_ind), scal_mean, scal_std_dev);
_sig1 = float(scal_std_dev[0]) * float(scal_std_dev[0]) + 1e-9f;
}
if (negx.cols > 0)
{
_mu0 = negmu;
cv::Scalar scal_mean, scal_std_dev;
cv::meanStdDev(negx.col(_ind), scal_mean, scal_std_dev);
_sig0 = float(scal_std_dev[0]) * float(scal_std_dev[0]) + 1e-9f;
}
_q = (_mu1 - _mu0) / 2;
_s = sign(_mu1 - _mu0);
_log_n0 = std::log(float(1.0f / pow(_sig0, 0.5f)));
_log_n1 = std::log(float(1.0f / pow(_sig1, 0.5f)));
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
_e1 = -1.0f / (2.0f * _sig1 + std::numeric_limits<float>::min());
_e0 = -1.0f / (2.0f * _sig0 + std::numeric_limits<float>::min());
}
}
bool ClfOnlineStump::classify(const Mat& x, int i)
{
float xx = x.at<float>(i, _ind);
double log_p0 = (xx - _mu0) * (xx - _mu0) * _e0 + _log_n0;
double log_p1 = (xx - _mu1) * (xx - _mu1) * _e1 + _log_n1;
return log_p1 > log_p0;
}
float ClfOnlineStump::classifyF(const Mat& x, int i)
{
float xx = x.at<float>(i, _ind);
double log_p0 = (xx - _mu0) * (xx - _mu0) * _e0 + _log_n0;
double log_p1 = (xx - _mu1) * (xx - _mu1) * _e1 + _log_n1;
return float(log_p1 - log_p0);
}
inline std::vector<float> ClfOnlineStump::classifySetF(const Mat& x)
{
std::vector<float> res(x.rows);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int k = 0; k < (int)res.size(); k++)
{
res[k] = classifyF(x, k);
}
return res;
}
}}} // namespace cv::detail::tracking

View File

@ -0,0 +1,79 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_ONLINE_MIL_HPP
#define OPENCV_VIDEO_DETAIL_TRACKING_ONLINE_MIL_HPP
#include <limits>
namespace cv {
namespace detail {
inline namespace tracking {
//! @addtogroup tracking_detail
//! @{
//TODO based on the original implementation
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
class ClfOnlineStump;
class CV_EXPORTS ClfMilBoost
{
public:
struct CV_EXPORTS Params
{
Params();
int _numSel;
int _numFeat;
float _lRate;
};
ClfMilBoost();
~ClfMilBoost();
void init(const ClfMilBoost::Params& parameters = ClfMilBoost::Params());
void update(const Mat& posx, const Mat& negx);
std::vector<float> classify(const Mat& x, bool logR = true);
inline float sigmoid(float x)
{
return 1.0f / (1.0f + exp(-x));
}
private:
uint _numsamples;
ClfMilBoost::Params _myParams;
std::vector<int> _selectors;
std::vector<ClfOnlineStump*> _weakclf;
uint _counter;
};
class ClfOnlineStump
{
public:
float _mu0, _mu1, _sig0, _sig1;
float _q;
int _s;
float _log_n1, _log_n0;
float _e1, _e0;
float _lRate;
ClfOnlineStump();
ClfOnlineStump(int ind);
void init();
void update(const Mat& posx, const Mat& negx, const cv::Mat_<float>& posw = cv::Mat_<float>(), const cv::Mat_<float>& negw = cv::Mat_<float>());
bool classify(const Mat& x, int i);
float classifyF(const Mat& x, int i);
std::vector<float> classifySetF(const Mat& x);
private:
bool _trained;
int _ind;
};
//! @}
}}} // namespace cv::detail::tracking
#endif

View File

@ -0,0 +1,19 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
namespace cv {
Tracker::Tracker()
{
// nothing
}
Tracker::~Tracker()
{
// nothing
}
} // namespace cv

View File

@ -0,0 +1,140 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#ifdef HAVE_OPENCV_DNN
#include "opencv2/dnn.hpp"
#endif
namespace cv {
TrackerGOTURN::TrackerGOTURN()
{
// nothing
}
TrackerGOTURN::~TrackerGOTURN()
{
// nothing
}
TrackerGOTURN::Params::Params()
{
modelTxt = "goturn.prototxt";
modelBin = "goturn.caffemodel";
}
#ifdef HAVE_OPENCV_DNN
class TrackerGOTURNImpl : public TrackerGOTURN
{
public:
TrackerGOTURNImpl(const TrackerGOTURN::Params& parameters)
: params(parameters)
{
// Load GOTURN architecture from *.prototxt and pretrained weights from *.caffemodel
net = dnn::readNetFromCaffe(params.modelTxt, params.modelBin);
CV_Assert(!net.empty());
}
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
void setBoudingBox(Rect boundingBox)
{
if (image_.empty())
CV_Error(Error::StsInternal, "Set image first");
boundingBox_ = boundingBox & Rect(Point(0, 0), image_.size());
}
TrackerGOTURN::Params params;
dnn::Net net;
Rect boundingBox_;
Mat image_;
};
void TrackerGOTURNImpl::init(InputArray image, const Rect& boundingBox)
{
image_ = image.getMat().clone();
setBoudingBox(boundingBox);
}
bool TrackerGOTURNImpl::update(InputArray image, Rect& boundingBox)
{
int INPUT_SIZE = 227;
//Using prevFrame & prevBB from model and curFrame GOTURN calculating curBB
InputArray curFrame = image;
Mat prevFrame = image_;
Rect2d prevBB = boundingBox_;
Rect curBB;
float padTargetPatch = 2.0;
Rect2f searchPatchRect, targetPatchRect;
Point2f currCenter, prevCenter;
Mat prevFramePadded, curFramePadded;
Mat searchPatch, targetPatch;
prevCenter.x = (float)(prevBB.x + prevBB.width / 2);
prevCenter.y = (float)(prevBB.y + prevBB.height / 2);
targetPatchRect.width = (float)(prevBB.width * padTargetPatch);
targetPatchRect.height = (float)(prevBB.height * padTargetPatch);
targetPatchRect.x = (float)(prevCenter.x - prevBB.width * padTargetPatch / 2.0 + targetPatchRect.width);
targetPatchRect.y = (float)(prevCenter.y - prevBB.height * padTargetPatch / 2.0 + targetPatchRect.height);
targetPatchRect.width = std::min(targetPatchRect.width, (float)prevFrame.cols);
targetPatchRect.height = std::min(targetPatchRect.height, (float)prevFrame.rows);
targetPatchRect.x = std::max(-prevFrame.cols * 0.5f, std::min(targetPatchRect.x, prevFrame.cols * 1.5f));
targetPatchRect.y = std::max(-prevFrame.rows * 0.5f, std::min(targetPatchRect.y, prevFrame.rows * 1.5f));
copyMakeBorder(prevFrame, prevFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
targetPatch = prevFramePadded(targetPatchRect).clone();
copyMakeBorder(curFrame, curFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
searchPatch = curFramePadded(targetPatchRect).clone();
// Preprocess
// Resize
resize(targetPatch, targetPatch, Size(INPUT_SIZE, INPUT_SIZE), 0, 0, INTER_LINEAR_EXACT);
resize(searchPatch, searchPatch, Size(INPUT_SIZE, INPUT_SIZE), 0, 0, INTER_LINEAR_EXACT);
// Convert to Float type and subtract mean
Mat targetBlob = dnn::blobFromImage(targetPatch, 1.0f, Size(), Scalar::all(128), false);
Mat searchBlob = dnn::blobFromImage(searchPatch, 1.0f, Size(), Scalar::all(128), false);
net.setInput(targetBlob, "data1");
net.setInput(searchBlob, "data2");
Mat resMat = net.forward("scale").reshape(1, 1);
curBB.x = cvRound(targetPatchRect.x + (resMat.at<float>(0) * targetPatchRect.width / INPUT_SIZE) - targetPatchRect.width);
curBB.y = cvRound(targetPatchRect.y + (resMat.at<float>(1) * targetPatchRect.height / INPUT_SIZE) - targetPatchRect.height);
curBB.width = cvRound((resMat.at<float>(2) - resMat.at<float>(0)) * targetPatchRect.width / INPUT_SIZE);
curBB.height = cvRound((resMat.at<float>(3) - resMat.at<float>(1)) * targetPatchRect.height / INPUT_SIZE);
// Predicted BB
boundingBox = curBB & Rect(Point(0, 0), image_.size());
// Set new model image and BB from current frame
image_ = image.getMat().clone();
setBoudingBox(curBB);
return true;
}
Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params& parameters)
{
return makePtr<TrackerGOTURNImpl>(parameters);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params& parameters)
{
(void)(parameters);
CV_Error(cv::Error::StsNotImplemented, "to use GOTURN, the tracking module needs to be built with opencv_dnn !");
}
#endif // OPENCV_HAVE_DNN
} // namespace cv

View File

@ -0,0 +1,227 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "detail/tracker_mil_model.hpp"
#include "detail/tracker_feature_haar.impl.hpp"
namespace cv {
inline namespace tracking {
namespace impl {
using cv::detail::tracking::internal::TrackerFeatureHAAR;
class TrackerMILImpl CV_FINAL : public TrackerMIL
{
public:
TrackerMILImpl(const TrackerMIL::Params& parameters);
virtual void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
virtual bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
void compute_integral(const Mat& img, Mat& ii_img);
TrackerMIL::Params params;
Ptr<TrackerMILModel> model;
Ptr<TrackerSampler> sampler;
Ptr<TrackerFeatureSet> featureSet;
};
TrackerMILImpl::TrackerMILImpl(const TrackerMIL::Params& parameters)
: params(parameters)
{
// nothing
}
void TrackerMILImpl::compute_integral(const Mat& img, Mat& ii_img)
{
Mat ii;
std::vector<Mat> ii_imgs;
integral(img, ii, CV_32F); // FIXIT split first
split(ii, ii_imgs);
ii_img = ii_imgs[0];
}
void TrackerMILImpl::init(InputArray image, const Rect& boundingBox)
{
sampler = makePtr<TrackerSampler>();
featureSet = makePtr<TrackerFeatureSet>();
Mat intImage;
compute_integral(image.getMat(), intImage);
TrackerSamplerCSC::Params CSCparameters;
CSCparameters.initInRad = params.samplerInitInRadius;
CSCparameters.searchWinSize = params.samplerSearchWinSize;
CSCparameters.initMaxNegNum = params.samplerInitMaxNegNum;
CSCparameters.trackInPosRad = params.samplerTrackInRadius;
CSCparameters.trackMaxPosNum = params.samplerTrackMaxPosNum;
CSCparameters.trackMaxNegNum = params.samplerTrackMaxNegNum;
Ptr<TrackerSamplerAlgorithm> CSCSampler = makePtr<TrackerSamplerCSC>(CSCparameters);
CV_Assert(sampler->addTrackerSamplerAlgorithm(CSCSampler));
//or add CSC sampler with default parameters
//sampler->addTrackerSamplerAlgorithm( "CSC" );
//Positive sampling
CSCSampler.staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_POS);
sampler->sampling(intImage, boundingBox);
std::vector<Mat> posSamples = sampler->getSamples();
//Negative sampling
CSCSampler.staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_NEG);
sampler->sampling(intImage, boundingBox);
std::vector<Mat> negSamples = sampler->getSamples();
CV_Assert(!posSamples.empty());
CV_Assert(!negSamples.empty());
//compute HAAR features
TrackerFeatureHAAR::Params HAARparameters;
HAARparameters.numFeatures = params.featureSetNumFeatures;
HAARparameters.rectSize = Size((int)boundingBox.width, (int)boundingBox.height);
HAARparameters.isIntegral = true;
Ptr<TrackerFeature> trackerFeature = makePtr<TrackerFeatureHAAR>(HAARparameters);
featureSet->addTrackerFeature(trackerFeature);
featureSet->extraction(posSamples);
const std::vector<Mat> posResponse = featureSet->getResponses();
featureSet->extraction(negSamples);
const std::vector<Mat> negResponse = featureSet->getResponses();
model = makePtr<TrackerMILModel>(boundingBox);
Ptr<TrackerStateEstimatorMILBoosting> stateEstimator = makePtr<TrackerStateEstimatorMILBoosting>(params.featureSetNumFeatures);
model->setTrackerStateEstimator(stateEstimator);
//Run model estimation and update
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_POSITIVE, posSamples);
model->modelEstimation(posResponse);
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_NEGATIVE, negSamples);
model->modelEstimation(negResponse);
model->modelUpdate();
}
bool TrackerMILImpl::update(InputArray image, Rect& boundingBox)
{
Mat intImage;
compute_integral(image.getMat(), intImage);
//get the last location [AAM] X(k-1)
Ptr<TrackerTargetState> lastLocation = model->getLastTargetState();
Rect lastBoundingBox((int)lastLocation->getTargetPosition().x, (int)lastLocation->getTargetPosition().y, lastLocation->getTargetWidth(),
lastLocation->getTargetHeight());
//sampling new frame based on last location
auto& samplers = sampler->getSamplers();
CV_Assert(!samplers.empty());
CV_Assert(samplers[0]);
samplers[0].staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_DETECT);
sampler->sampling(intImage, lastBoundingBox);
std::vector<Mat> detectSamples = sampler->getSamples();
if (detectSamples.empty())
return false;
/*//TODO debug samples
Mat f;
image.copyTo(f);
for( size_t i = 0; i < detectSamples.size(); i=i+10 )
{
Size sz;
Point off;
detectSamples.at(i).locateROI(sz, off);
rectangle(f, Rect(off.x,off.y,detectSamples.at(i).cols,detectSamples.at(i).rows), Scalar(255,0,0), 1);
}*/
//extract features from new samples
featureSet->extraction(detectSamples);
std::vector<Mat> response = featureSet->getResponses();
//predict new location
ConfidenceMap cmap;
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_ESTIMATON, detectSamples);
model.staticCast<TrackerMILModel>()->responseToConfidenceMap(response, cmap);
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorMILBoosting>()->setCurrentConfidenceMap(cmap);
if (!model->runStateEstimator())
{
return false;
}
Ptr<TrackerTargetState> currentState = model->getLastTargetState();
boundingBox = Rect((int)currentState->getTargetPosition().x, (int)currentState->getTargetPosition().y, currentState->getTargetWidth(),
currentState->getTargetHeight());
/*//TODO debug
rectangle(f, lastBoundingBox, Scalar(0,255,0), 1);
rectangle(f, boundingBox, Scalar(0,0,255), 1);
imshow("f", f);
//waitKey( 0 );*/
//sampling new frame based on new location
//Positive sampling
samplers[0].staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_POS);
sampler->sampling(intImage, boundingBox);
std::vector<Mat> posSamples = sampler->getSamples();
//Negative sampling
samplers[0].staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_NEG);
sampler->sampling(intImage, boundingBox);
std::vector<Mat> negSamples = sampler->getSamples();
if (posSamples.empty() || negSamples.empty())
return false;
//extract features
featureSet->extraction(posSamples);
std::vector<Mat> posResponse = featureSet->getResponses();
featureSet->extraction(negSamples);
std::vector<Mat> negResponse = featureSet->getResponses();
//model estimate
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_POSITIVE, posSamples);
model->modelEstimation(posResponse);
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_NEGATIVE, negSamples);
model->modelEstimation(negResponse);
//model update
model->modelUpdate();
return true;
}
}} // namespace tracking::impl
TrackerMIL::Params::Params()
{
samplerInitInRadius = 3;
samplerSearchWinSize = 25;
samplerInitMaxNegNum = 65;
samplerTrackInRadius = 4;
samplerTrackMaxPosNum = 100000;
samplerTrackMaxNegNum = 65;
featureSetNumFeatures = 250;
}
TrackerMIL::TrackerMIL()
{
// nothing
}
TrackerMIL::~TrackerMIL()
{
// nothing
}
Ptr<TrackerMIL> TrackerMIL::create(const TrackerMIL::Params& parameters)
{
return makePtr<tracking::impl::TrackerMILImpl>(parameters);
}
} // namespace cv

View File

@ -7,4 +7,19 @@
#include <hpx/hpx_main.hpp>
#endif
CV_TEST_MAIN("cv")
static
void initTests()
{
const char* extraTestDataPath =
#ifdef WINRT
NULL;
#else
getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
if (extraTestDataPath)
cvtest::addDataSearchPath(extraTestDataPath);
cvtest::addDataSearchSubDirectory(""); // override "cv" prefix below to access without "../dnn" hacks
}
CV_TEST_MAIN("cv", initTests())

View File

@ -0,0 +1,97 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
//#define DEBUG_TEST
#ifdef DEBUG_TEST
#include <opencv2/highgui.hpp>
#endif
namespace opencv_test { namespace {
//using namespace cv::tracking;
#define TESTSET_NAMES testing::Values("david", "dudek", "faceocc2")
const string TRACKING_DIR = "tracking";
const string FOLDER_IMG = "data";
const string FOLDER_OMIT_INIT = "initOmit";
#include "test_trackers.impl.hpp"
//[TESTDATA]
PARAM_TEST_CASE(DistanceAndOverlap, string)
{
string dataset;
virtual void SetUp()
{
dataset = GET_PARAM(0);
}
};
TEST_P(DistanceAndOverlap, MIL)
{
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .65f, NoTransform);
test.run();
}
TEST_P(DistanceAndOverlap, Shifted_Data_MIL)
{
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .6f, CenterShiftLeft);
test.run();
}
/***************************************************************************************/
//Tests with scaled initial window
TEST_P(DistanceAndOverlap, Scaled_Data_MIL)
{
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .7f, Scale_1_1);
test.run();
}
TEST_P(DistanceAndOverlap, GOTURN)
{
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
cv::TrackerGOTURN::Params params;
params.modelTxt = model;
params.modelBin = weights;
TrackerTest<Tracker, Rect> test(TrackerGOTURN::create(params), dataset, 35, .35f, NoTransform);
test.run();
}
INSTANTIATE_TEST_CASE_P(Tracking, DistanceAndOverlap, TESTSET_NAMES);
TEST(GOTURN, memory_usage)
{
cv::Rect roi(145, 70, 85, 85);
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
cv::TrackerGOTURN::Params params;
params.modelTxt = model;
params.modelBin = weights;
cv::Ptr<Tracker> tracker = TrackerGOTURN::create(params);
string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
cv::VideoCapture video(inputVideo);
ASSERT_TRUE(video.isOpened()) << inputVideo;
cv::Mat frame;
video >> frame;
ASSERT_FALSE(frame.empty()) << inputVideo;
tracker->init(frame, roi);
string ground_truth_bb;
for (int nframes = 0; nframes < 15; ++nframes)
{
std::cout << "Frame: " << nframes << std::endl;
video >> frame;
bool res = tracker->update(frame, roi);
ASSERT_TRUE(res);
std::cout << "Predicted ROI: " << roi << std::endl;
}
}
}} // namespace opencv_test::

View File

@ -0,0 +1,368 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
/*
* The Evaluation Methodologies are partially based on:
* ====================================================================================================================
* [OTB] Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," in Computer Vision and Pattern Recognition (CVPR), 2013
*
*/
enum BBTransformations
{
NoTransform = 0,
CenterShiftLeft = 1,
CenterShiftRight = 2,
CenterShiftUp = 3,
CenterShiftDown = 4,
CornerShiftTopLeft = 5,
CornerShiftTopRight = 6,
CornerShiftBottomLeft = 7,
CornerShiftBottomRight = 8,
Scale_0_8 = 9,
Scale_0_9 = 10,
Scale_1_1 = 11,
Scale_1_2 = 12
};
namespace {
std::vector<std::string> splitString(const std::string& s_, const std::string& delimiter)
{
std::string s = s_;
std::vector<string> token;
size_t pos = 0;
while ((pos = s.find(delimiter)) != std::string::npos)
{
token.push_back(s.substr(0, pos));
s.erase(0, pos + delimiter.length());
}
token.push_back(s);
return token;
}
float calcDistance(const Rect& a, const Rect& b)
{
Point2f p_a((float)(a.x + a.width / 2), (float)(a.y + a.height / 2));
Point2f p_b((float)(b.x + b.width / 2), (float)(b.y + b.height / 2));
return sqrt(pow(p_a.x - p_b.x, 2) + pow(p_a.y - p_b.y, 2));
}
float calcOverlap(const Rect& a, const Rect& b)
{
float rectIntersectionArea = (float)(a & b).area();
return rectIntersectionArea / (a.area() + b.area() - rectIntersectionArea);
}
} // namespace
template <typename Tracker, typename ROI_t = Rect2d>
class TrackerTest
{
public:
TrackerTest(const Ptr<Tracker>& tracker, const string& video, float distanceThreshold,
float overlapThreshold, int shift = NoTransform, int segmentIdx = 1, int numSegments = 10);
~TrackerTest() {}
void run();
protected:
void checkDataTest();
void distanceAndOverlapTest();
Ptr<Tracker> tracker;
string video;
std::vector<Rect> bbs;
int startFrame;
string suffix;
string prefix;
float overlapThreshold;
float distanceThreshold;
int segmentIdx;
int shift;
int numSegments;
int gtStartFrame;
int endFrame;
vector<int> validSequence;
private:
Rect applyShift(const Rect& bb);
};
template <typename Tracker, typename ROI_t>
TrackerTest<Tracker, ROI_t>::TrackerTest(const Ptr<Tracker>& _tracker, const string& _video, float _distanceThreshold,
float _overlapThreshold, int _shift, int _segmentIdx, int _numSegments)
: tracker(_tracker)
, video(_video)
, overlapThreshold(_overlapThreshold)
, distanceThreshold(_distanceThreshold)
, segmentIdx(_segmentIdx)
, shift(_shift)
, numSegments(_numSegments)
{
// nothing
}
template <typename Tracker, typename ROI_t>
Rect TrackerTest<Tracker, ROI_t>::applyShift(const Rect& bb_)
{
Rect bb = bb_;
Point center(bb.x + (bb.width / 2), bb.y + (bb.height / 2));
int xLimit = bb.x + bb.width - 1;
int yLimit = bb.y + bb.height - 1;
int h = 0;
int w = 0;
float ratio = 1.0;
switch (shift)
{
case CenterShiftLeft:
bb.x = bb.x - (int)ceil(0.1 * bb.width);
break;
case CenterShiftRight:
bb.x = bb.x + (int)ceil(0.1 * bb.width);
break;
case CenterShiftUp:
bb.y = bb.y - (int)ceil(0.1 * bb.height);
break;
case CenterShiftDown:
bb.y = bb.y + (int)ceil(0.1 * bb.height);
break;
case CornerShiftTopLeft:
bb.x = (int)cvRound(bb.x - 0.1 * bb.width);
bb.y = (int)cvRound(bb.y - 0.1 * bb.height);
bb.width = xLimit - bb.x + 1;
bb.height = yLimit - bb.y + 1;
break;
case CornerShiftTopRight:
xLimit = (int)cvRound(xLimit + 0.1 * bb.width);
bb.y = (int)cvRound(bb.y - 0.1 * bb.height);
bb.width = xLimit - bb.x + 1;
bb.height = yLimit - bb.y + 1;
break;
case CornerShiftBottomLeft:
bb.x = (int)cvRound(bb.x - 0.1 * bb.width);
yLimit = (int)cvRound(yLimit + 0.1 * bb.height);
bb.width = xLimit - bb.x + 1;
bb.height = yLimit - bb.y + 1;
break;
case CornerShiftBottomRight:
xLimit = (int)cvRound(xLimit + 0.1 * bb.width);
yLimit = (int)cvRound(yLimit + 0.1 * bb.height);
bb.width = xLimit - bb.x + 1;
bb.height = yLimit - bb.y + 1;
break;
case Scale_0_8:
ratio = 0.8f;
w = (int)(ratio * bb.width);
h = (int)(ratio * bb.height);
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
break;
case Scale_0_9:
ratio = 0.9f;
w = (int)(ratio * bb.width);
h = (int)(ratio * bb.height);
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
break;
case 11:
//scale 1.1
ratio = 1.1f;
w = (int)(ratio * bb.width);
h = (int)(ratio * bb.height);
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
break;
case 12:
//scale 1.2
ratio = 1.2f;
w = (int)(ratio * bb.width);
h = (int)(ratio * bb.height);
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
break;
default:
break;
}
return bb;
}
template <typename Tracker, typename ROI_t>
void TrackerTest<Tracker, ROI_t>::distanceAndOverlapTest()
{
bool initialized = false;
int fc = (startFrame - gtStartFrame);
bbs.at(fc) = applyShift(bbs.at(fc));
Rect currentBBi = bbs.at(fc);
ROI_t currentBB(currentBBi);
float sumDistance = 0;
float sumOverlap = 0;
string folder = cvtest::TS::ptr()->get_data_path() + "/" + TRACKING_DIR + "/" + video + "/" + FOLDER_IMG;
string videoPath = folder + "/" + video + ".webm";
VideoCapture c;
c.open(videoPath);
if (!c.isOpened())
throw SkipTestException("Can't open video file");
#if 0
c.set(CAP_PROP_POS_FRAMES, startFrame);
#else
if (startFrame)
std::cout << "startFrame = " << startFrame << std::endl;
for (int i = 0; i < startFrame; i++)
{
Mat dummy_frame;
c >> dummy_frame;
ASSERT_FALSE(dummy_frame.empty()) << i << ": " << videoPath;
}
#endif
for (int frameCounter = startFrame; frameCounter < endFrame; frameCounter++)
{
Mat frame;
c >> frame;
ASSERT_FALSE(frame.empty()) << "frameCounter=" << frameCounter << " video=" << videoPath;
if (!initialized)
{
tracker->init(frame, currentBB);
std::cout << "frame size = " << frame.size() << std::endl;
initialized = true;
}
else if (initialized)
{
if (frameCounter >= (int)bbs.size())
break;
tracker->update(frame, currentBB);
}
float curDistance = calcDistance(currentBB, bbs.at(fc));
float curOverlap = calcOverlap(currentBB, bbs.at(fc));
#ifdef DEBUG_TEST
Mat result;
repeat(frame, 1, 2, result);
rectangle(result, currentBB, Scalar(0, 255, 0), 1);
Rect roi2(frame.cols, 0, frame.cols, frame.rows);
rectangle(result(roi2), bbs.at(fc), Scalar(0, 0, 255), 1);
imshow("result", result);
waitKey(1);
#endif
sumDistance += curDistance;
sumOverlap += curOverlap;
fc++;
}
float meanDistance = sumDistance / (endFrame - startFrame);
float meanOverlap = sumOverlap / (endFrame - startFrame);
EXPECT_LE(meanDistance, distanceThreshold);
EXPECT_GE(meanOverlap, overlapThreshold);
}
template <typename Tracker, typename ROI_t>
void TrackerTest<Tracker, ROI_t>::checkDataTest()
{
FileStorage fs;
fs.open(cvtest::TS::ptr()->get_data_path() + TRACKING_DIR + "/" + video + "/" + video + ".yml", FileStorage::READ);
fs["start"] >> startFrame;
fs["prefix"] >> prefix;
fs["suffix"] >> suffix;
fs.release();
string gtFile = cvtest::TS::ptr()->get_data_path() + TRACKING_DIR + "/" + video + "/gt.txt";
std::ifstream gt;
//open the ground truth
gt.open(gtFile.c_str());
ASSERT_TRUE(gt.is_open()) << gtFile;
string line;
int bbCounter = 0;
while (getline(gt, line))
{
bbCounter++;
}
gt.close();
int seqLength = bbCounter;
for (int i = startFrame; i < seqLength; i++)
{
validSequence.push_back(i);
}
//exclude from the images sequence, the frames where the target is occluded or out of view
string omitFile = cvtest::TS::ptr()->get_data_path() + TRACKING_DIR + "/" + video + "/" + FOLDER_OMIT_INIT + "/" + video + ".txt";
std::ifstream omit;
omit.open(omitFile.c_str());
if (omit.is_open())
{
string omitLine;
while (getline(omit, omitLine))
{
vector<string> tokens = splitString(omitLine, " ");
int s_start = atoi(tokens.at(0).c_str());
int s_end = atoi(tokens.at(1).c_str());
for (int k = s_start; k <= s_end; k++)
{
std::vector<int>::iterator position = std::find(validSequence.begin(), validSequence.end(), k);
if (position != validSequence.end())
validSequence.erase(position);
}
}
}
omit.close();
gtStartFrame = startFrame;
//compute the start and the and for each segment
int numFrame = (int)(validSequence.size() / numSegments);
startFrame += (segmentIdx - 1) * numFrame;
endFrame = startFrame + numFrame;
std::ifstream gt2;
//open the ground truth
gt2.open(gtFile.c_str());
ASSERT_TRUE(gt2.is_open()) << gtFile;
string line2;
int bbCounter2 = 0;
while (getline(gt2, line2))
{
vector<string> tokens = splitString(line2, ",");
Rect bb(atoi(tokens.at(0).c_str()), atoi(tokens.at(1).c_str()), atoi(tokens.at(2).c_str()), atoi(tokens.at(3).c_str()));
ASSERT_EQ((size_t)4, tokens.size()) << "Incorrect ground truth file " << gtFile;
bbs.push_back(bb);
bbCounter2++;
}
gt2.close();
if (segmentIdx == numSegments)
endFrame = (int)bbs.size();
}
template <typename Tracker, typename ROI_t>
void TrackerTest<Tracker, ROI_t>::run()
{
srand(1); // FIXIT remove that, ensure that there is no "rand()" in implementation
ASSERT_TRUE(tracker);
checkDataTest();
//check for failure
if (::testing::Test::HasFatalFailure())
return;
distanceAndOverlapTest();
}

80
samples/python/tracker.py Normal file
View File

@ -0,0 +1,80 @@
#!/usr/bin/env python
'''
Tracker demo
USAGE:
tracker.py [<video_source>]
'''
# Python 2/3 compatibility
from __future__ import print_function
import sys
import numpy as np
import cv2 as cv
from video import create_capture, presets
class App(object):
def initializeTracker(self, image):
while True:
print('==> Select object ROI for tracker ...')
bbox = cv.selectROI('tracking', image)
print('ROI: {}'.format(bbox))
tracker = cv.TrackerMIL_create()
try:
tracker.init(image, bbox)
except Exception as e:
print('Unable to initialize tracker with requested bounding box. Is there any object?')
print(e)
print('Try again ...')
continue
return tracker
def run(self):
videoPath = sys.argv[1] if len(sys.argv) >= 2 else 'vtest.avi'
camera = create_capture(videoPath, presets['cube'])
if not camera.isOpened():
sys.exit("Can't open video stream: {}".format(videoPath))
ok, image = camera.read()
if not ok:
sys.exit("Can't read first frame")
assert image is not None
cv.namedWindow('tracking')
tracker = self.initializeTracker(image)
print("==> Tracking is started. Press 'SPACE' to re-initialize tracker or 'ESC' for exit...")
while camera.isOpened():
ok, image = camera.read()
if not ok:
print("Can't read frame")
break
ok, newbox = tracker.update(image)
#print(ok, newbox)
if ok:
cv.rectangle(image, newbox, (200,0,0))
cv.imshow("tracking", image)
k = cv.waitKey(1)
if k == 32: # SPACE
tracker = self.initializeTracker(image)
if k == 27: # ESC
break
print('Done')
if __name__ == '__main__':
print(__doc__)
App().run()
cv.destroyAllWindows()