mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
Merge pull request #18838 from alalek:video_tracking_api
Tracking API: move to video/tracking.hpp * video(tracking): moved code from opencv_contrib/tracking module - Tracker API - MIL, GOTURN trackers - applied clang-format * video(tracking): cleanup unused code * samples: add tracker.py sample * video(tracking): avoid div by zero * static analyzer
This commit is contained in:
parent
94e8a08d1d
commit
aab6362705
@ -1,2 +1,12 @@
|
||||
set(the_description "Video Analysis")
|
||||
ocv_define_module(video opencv_imgproc OPTIONAL opencv_calib3d WRAP java objc python js)
|
||||
ocv_define_module(video
|
||||
opencv_imgproc
|
||||
OPTIONAL
|
||||
opencv_calib3d
|
||||
opencv_dnn
|
||||
WRAP
|
||||
java
|
||||
objc
|
||||
python
|
||||
js
|
||||
)
|
||||
|
@ -1,6 +1,44 @@
|
||||
@article{AAM,
|
||||
title={Adaptive appearance modeling for video tracking: survey and evaluation},
|
||||
author={Salti, Samuele and Cavallaro, Andrea and Di Stefano, Luigi},
|
||||
journal={Image Processing, IEEE Transactions on},
|
||||
volume={21},
|
||||
number={10},
|
||||
pages={4334--4348},
|
||||
year={2012},
|
||||
publisher={IEEE}
|
||||
}
|
||||
|
||||
@article{AMVOT,
|
||||
title={A survey of appearance models in visual object tracking},
|
||||
author={Li, Xi and Hu, Weiming and Shen, Chunhua and Zhang, Zhongfei and Dick, Anthony and Hengel, Anton Van Den},
|
||||
journal={ACM Transactions on Intelligent Systems and Technology (TIST)},
|
||||
volume={4},
|
||||
number={4},
|
||||
pages={58},
|
||||
year={2013},
|
||||
publisher={ACM}
|
||||
}
|
||||
|
||||
@inproceedings{GOTURN,
|
||||
title={Learning to Track at 100 FPS with Deep Regression Networks},
|
||||
author={Held, David and Thrun, Sebastian and Savarese, Silvio},
|
||||
booktitle={European Conference Computer Vision (ECCV)},
|
||||
year={2016}
|
||||
}
|
||||
|
||||
@inproceedings{Kroeger2016,
|
||||
author={Till Kroeger and Radu Timofte and Dengxin Dai and Luc Van Gool},
|
||||
title={Fast Optical Flow using Dense Inverse Search},
|
||||
booktitle={Proceedings of the European Conference on Computer Vision ({ECCV})},
|
||||
year = {2016}
|
||||
year={2016}
|
||||
}
|
||||
|
||||
@inproceedings{MIL,
|
||||
title={Visual tracking with online multiple instance learning},
|
||||
author={Babenko, Boris and Yang, Ming-Hsuan and Belongie, Serge},
|
||||
booktitle={Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on},
|
||||
pages={983--990},
|
||||
year={2009},
|
||||
organization={IEEE}
|
||||
}
|
||||
|
406
modules/video/include/opencv2/video/detail/tracking.private.hpp
Normal file
406
modules/video/include/opencv2/video/detail/tracking.private.hpp
Normal file
@ -0,0 +1,406 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
||||
#define OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
||||
|
||||
/*
|
||||
* Partially based on:
|
||||
* ====================================================================================================================
|
||||
* - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
|
||||
* - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
|
||||
*
|
||||
* This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
|
||||
*
|
||||
*/
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
/** @addtogroup tracking_detail
|
||||
@{
|
||||
*/
|
||||
|
||||
/************************************ TrackerFeature Base Classes ************************************/
|
||||
|
||||
/** @brief Abstract base class for TrackerFeature that represents the feature.
|
||||
*/
|
||||
class CV_EXPORTS TrackerFeature
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerFeature();
|
||||
|
||||
/** @brief Compute the features in the images collection
|
||||
@param images The images
|
||||
@param response The output response
|
||||
*/
|
||||
void compute(const std::vector<Mat>& images, Mat& response);
|
||||
|
||||
protected:
|
||||
virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
|
||||
};
|
||||
|
||||
/** @brief Class that manages the extraction and selection of features
|
||||
|
||||
@cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
|
||||
See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
|
||||
section 3.1 - 3.2)
|
||||
|
||||
TrackerFeatureSet is an aggregation of TrackerFeature
|
||||
|
||||
@sa
|
||||
TrackerFeature
|
||||
|
||||
*/
|
||||
class CV_EXPORTS TrackerFeatureSet
|
||||
{
|
||||
public:
|
||||
TrackerFeatureSet();
|
||||
|
||||
~TrackerFeatureSet();
|
||||
|
||||
/** @brief Extract features from the images collection
|
||||
@param images The input images
|
||||
*/
|
||||
void extraction(const std::vector<Mat>& images);
|
||||
|
||||
/** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
|
||||
@param feature The TrackerFeature class
|
||||
*/
|
||||
bool addTrackerFeature(const Ptr<TrackerFeature>& feature);
|
||||
|
||||
/** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
|
||||
*/
|
||||
const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
|
||||
|
||||
/** @brief Get the responses
|
||||
@note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses
|
||||
*/
|
||||
const std::vector<Mat>& getResponses() const;
|
||||
|
||||
private:
|
||||
void clearResponses();
|
||||
bool blockAddTrackerFeature;
|
||||
|
||||
std::vector<Ptr<TrackerFeature>> features; // list of features
|
||||
std::vector<Mat> responses; // list of response after compute
|
||||
};
|
||||
|
||||
/************************************ TrackerSampler Base Classes ************************************/
|
||||
|
||||
/** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
|
||||
sampler.
|
||||
*/
|
||||
class CV_EXPORTS TrackerSamplerAlgorithm
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerSamplerAlgorithm();
|
||||
|
||||
/** @brief Computes the regions starting from a position in an image.
|
||||
|
||||
Return true if samples are computed, false otherwise
|
||||
|
||||
@param image The current frame
|
||||
@param boundingBox The bounding box from which regions can be calculated
|
||||
|
||||
@param sample The computed samples @cite AAM Fig. 1 variable Sk
|
||||
*/
|
||||
virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Class that manages the sampler in order to select regions for the update the model of the tracker
|
||||
* [AAM] Sampling e Labeling. See table I and section III B
|
||||
*/
|
||||
|
||||
/** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
|
||||
|
||||
@cite AAM Sampling e Labeling. See table I and section III B
|
||||
|
||||
TrackerSampler is an aggregation of TrackerSamplerAlgorithm
|
||||
@sa
|
||||
TrackerSamplerAlgorithm
|
||||
*/
|
||||
class CV_EXPORTS TrackerSampler
|
||||
{
|
||||
public:
|
||||
TrackerSampler();
|
||||
|
||||
~TrackerSampler();
|
||||
|
||||
/** @brief Computes the regions starting from a position in an image
|
||||
@param image The current frame
|
||||
@param boundingBox The bounding box from which regions can be calculated
|
||||
*/
|
||||
void sampling(const Mat& image, Rect boundingBox);
|
||||
|
||||
/** @brief Return the collection of the TrackerSamplerAlgorithm
|
||||
*/
|
||||
const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
|
||||
|
||||
/** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
|
||||
*/
|
||||
const std::vector<Mat>& getSamples() const;
|
||||
|
||||
/** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
|
||||
@param sampler The TrackerSamplerAlgorithm
|
||||
*/
|
||||
bool addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler);
|
||||
|
||||
private:
|
||||
std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
|
||||
std::vector<Mat> samples;
|
||||
bool blockAddTrackerSampler;
|
||||
|
||||
void clearSamples();
|
||||
};
|
||||
|
||||
/************************************ TrackerModel Base Classes ************************************/
|
||||
|
||||
/** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
|
||||
|
||||
See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
|
||||
|
||||
Inherits this class with your Target state, In own implementation you can add scale variation,
|
||||
width, height, orientation, etc.
|
||||
*/
|
||||
class CV_EXPORTS TrackerTargetState
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerTargetState() {};
|
||||
/** @brief Get the position
|
||||
* @return The position
|
||||
*/
|
||||
Point2f getTargetPosition() const;
|
||||
|
||||
/** @brief Set the position
|
||||
* @param position The position
|
||||
*/
|
||||
void setTargetPosition(const Point2f& position);
|
||||
/** @brief Get the width of the target
|
||||
* @return The width of the target
|
||||
*/
|
||||
int getTargetWidth() const;
|
||||
|
||||
/** @brief Set the width of the target
|
||||
* @param width The width of the target
|
||||
*/
|
||||
void setTargetWidth(int width);
|
||||
/** @brief Get the height of the target
|
||||
* @return The height of the target
|
||||
*/
|
||||
int getTargetHeight() const;
|
||||
|
||||
/** @brief Set the height of the target
|
||||
* @param height The height of the target
|
||||
*/
|
||||
void setTargetHeight(int height);
|
||||
|
||||
protected:
|
||||
Point2f targetPosition;
|
||||
int targetWidth;
|
||||
int targetHeight;
|
||||
};
|
||||
|
||||
/** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
|
||||
|
||||
See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
|
||||
@sa TrackerTargetState
|
||||
*/
|
||||
typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
|
||||
|
||||
/** @brief Represents the estimate states for all frames
|
||||
|
||||
@cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
|
||||
|
||||
@sa TrackerTargetState
|
||||
*/
|
||||
typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
|
||||
|
||||
/** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
|
||||
|
||||
See @cite AAM State estimator
|
||||
|
||||
See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
|
||||
*/
|
||||
class CV_EXPORTS TrackerStateEstimator
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerStateEstimator();
|
||||
|
||||
/** @brief Estimate the most likely target state, return the estimated state
|
||||
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
|
||||
*/
|
||||
Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
|
||||
|
||||
/** @brief Update the ConfidenceMap with the scores
|
||||
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
|
||||
*/
|
||||
void update(std::vector<ConfidenceMap>& confidenceMaps);
|
||||
|
||||
/** @brief Create TrackerStateEstimator by tracker state estimator type
|
||||
@param trackeStateEstimatorType The TrackerStateEstimator name
|
||||
|
||||
The modes available now:
|
||||
|
||||
- "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
|
||||
|
||||
The modes available soon:
|
||||
|
||||
- "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
|
||||
*/
|
||||
static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
|
||||
|
||||
/** @brief Get the name of the specific TrackerStateEstimator
|
||||
*/
|
||||
String getClassName() const;
|
||||
|
||||
protected:
|
||||
virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
|
||||
virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
|
||||
String className;
|
||||
};
|
||||
|
||||
/** @brief Abstract class that represents the model of the target.
|
||||
|
||||
It must be instantiated by specialized tracker
|
||||
|
||||
See @cite AAM Ak
|
||||
|
||||
Inherits this with your TrackerModel
|
||||
*/
|
||||
class CV_EXPORTS TrackerModel
|
||||
{
|
||||
public:
|
||||
TrackerModel();
|
||||
|
||||
virtual ~TrackerModel();
|
||||
|
||||
/** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
|
||||
@param trackerStateEstimator The TrackerStateEstimator
|
||||
@note You can add only one TrackerStateEstimator
|
||||
*/
|
||||
bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator);
|
||||
|
||||
/** @brief Estimate the most likely target location
|
||||
|
||||
@cite AAM ME, Model Estimation table I
|
||||
@param responses Features extracted from TrackerFeatureSet
|
||||
*/
|
||||
void modelEstimation(const std::vector<Mat>& responses);
|
||||
|
||||
/** @brief Update the model
|
||||
|
||||
@cite AAM MU, Model Update table I
|
||||
*/
|
||||
void modelUpdate();
|
||||
|
||||
/** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
|
||||
*/
|
||||
bool runStateEstimator();
|
||||
|
||||
/** @brief Set the current TrackerTargetState in the Trajectory
|
||||
@param lastTargetState The current TrackerTargetState
|
||||
*/
|
||||
void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
|
||||
|
||||
/** @brief Get the last TrackerTargetState from Trajectory
|
||||
*/
|
||||
Ptr<TrackerTargetState> getLastTargetState() const;
|
||||
|
||||
/** @brief Get the list of the ConfidenceMap
|
||||
*/
|
||||
const std::vector<ConfidenceMap>& getConfidenceMaps() const;
|
||||
|
||||
/** @brief Get the last ConfidenceMap for the current frame
|
||||
*/
|
||||
const ConfidenceMap& getLastConfidenceMap() const;
|
||||
|
||||
/** @brief Get the TrackerStateEstimator
|
||||
*/
|
||||
Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
|
||||
|
||||
private:
|
||||
void clearCurrentConfidenceMap();
|
||||
|
||||
protected:
|
||||
std::vector<ConfidenceMap> confidenceMaps;
|
||||
Ptr<TrackerStateEstimator> stateEstimator;
|
||||
ConfidenceMap currentConfidenceMap;
|
||||
Trajectory trajectory;
|
||||
int maxCMLength;
|
||||
|
||||
virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
|
||||
virtual void modelUpdateImpl() = 0;
|
||||
};
|
||||
|
||||
/************************************ Specific TrackerStateEstimator Classes ************************************/
|
||||
|
||||
// None
|
||||
|
||||
/************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
|
||||
|
||||
/** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
|
||||
*/
|
||||
class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
|
||||
{
|
||||
public:
|
||||
~TrackerSamplerCSC();
|
||||
|
||||
enum MODE
|
||||
{
|
||||
MODE_INIT_POS = 1, //!< mode for init positive samples
|
||||
MODE_INIT_NEG = 2, //!< mode for init negative samples
|
||||
MODE_TRACK_POS = 3, //!< mode for update positive samples
|
||||
MODE_TRACK_NEG = 4, //!< mode for update negative samples
|
||||
MODE_DETECT = 5 //!< mode for detect samples
|
||||
};
|
||||
|
||||
struct CV_EXPORTS Params
|
||||
{
|
||||
Params();
|
||||
float initInRad; //!< radius for gathering positive instances during init
|
||||
float trackInPosRad; //!< radius for gathering positive instances during tracking
|
||||
float searchWinSize; //!< size of search window
|
||||
int initMaxNegNum; //!< # negative samples to use during init
|
||||
int trackMaxPosNum; //!< # positive samples to use during training
|
||||
int trackMaxNegNum; //!< # negative samples to use during training
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
|
||||
*/
|
||||
TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters = TrackerSamplerCSC::Params());
|
||||
|
||||
/** @brief Set the sampling mode of TrackerSamplerCSC
|
||||
@param samplingMode The sampling mode
|
||||
|
||||
The modes are:
|
||||
|
||||
- "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
|
||||
- "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
|
||||
- "MODE_TRACK_POS = 3" -- for the positive sampling in update step
|
||||
- "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
|
||||
- "MODE_DETECT = 5" -- for the sampling in detection step
|
||||
*/
|
||||
void setMode(int samplingMode);
|
||||
|
||||
bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
Params params;
|
||||
int mode;
|
||||
RNG rng;
|
||||
|
||||
std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
||||
|
||||
#endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
@ -0,0 +1,168 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_FEATURE_HPP
|
||||
#define OPENCV_VIDEO_DETAIL_TRACKING_FEATURE_HPP
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
/*
|
||||
* TODO This implementation is based on apps/traincascade/
|
||||
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
|
||||
*/
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
//! @addtogroup tracking_detail
|
||||
//! @{
|
||||
|
||||
inline namespace feature {
|
||||
|
||||
class CvParams
|
||||
{
|
||||
public:
|
||||
CvParams();
|
||||
virtual ~CvParams()
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
class CvFeatureParams : public CvParams
|
||||
{
|
||||
public:
|
||||
enum FeatureType
|
||||
{
|
||||
HAAR = 0,
|
||||
LBP = 1,
|
||||
HOG = 2
|
||||
};
|
||||
|
||||
CvFeatureParams();
|
||||
static Ptr<CvFeatureParams> create(CvFeatureParams::FeatureType featureType);
|
||||
int maxCatCount; // 0 in case of numerical features
|
||||
int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
|
||||
int numFeatures;
|
||||
};
|
||||
|
||||
class CvFeatureEvaluator
|
||||
{
|
||||
public:
|
||||
virtual ~CvFeatureEvaluator()
|
||||
{
|
||||
}
|
||||
virtual void init(const CvFeatureParams* _featureParams, int _maxSampleCount, Size _winSize);
|
||||
virtual void setImage(const Mat& img, uchar clsLabel, int idx);
|
||||
static Ptr<CvFeatureEvaluator> create(CvFeatureParams::FeatureType type);
|
||||
|
||||
int getNumFeatures() const
|
||||
{
|
||||
return numFeatures;
|
||||
}
|
||||
int getMaxCatCount() const
|
||||
{
|
||||
return featureParams->maxCatCount;
|
||||
}
|
||||
int getFeatureSize() const
|
||||
{
|
||||
return featureParams->featSize;
|
||||
}
|
||||
const Mat& getCls() const
|
||||
{
|
||||
return cls;
|
||||
}
|
||||
float getCls(int si) const
|
||||
{
|
||||
return cls.at<float>(si, 0);
|
||||
}
|
||||
|
||||
protected:
|
||||
virtual void generateFeatures() = 0;
|
||||
|
||||
int npos, nneg;
|
||||
int numFeatures;
|
||||
Size winSize;
|
||||
CvFeatureParams* featureParams;
|
||||
Mat cls;
|
||||
};
|
||||
|
||||
class CvHaarFeatureParams : public CvFeatureParams
|
||||
{
|
||||
public:
|
||||
CvHaarFeatureParams();
|
||||
bool isIntegral;
|
||||
};
|
||||
|
||||
class CvHaarEvaluator : public CvFeatureEvaluator
|
||||
{
|
||||
public:
|
||||
class FeatureHaar
|
||||
{
|
||||
|
||||
public:
|
||||
FeatureHaar(Size patchSize);
|
||||
bool eval(const Mat& image, Rect ROI, float* result) const;
|
||||
inline int getNumAreas() const { return m_numAreas; }
|
||||
inline const std::vector<float>& getWeights() const { return m_weights; }
|
||||
inline const std::vector<Rect>& getAreas() const { return m_areas; }
|
||||
|
||||
private:
|
||||
int m_type;
|
||||
int m_numAreas;
|
||||
std::vector<float> m_weights;
|
||||
float m_initMean;
|
||||
float m_initSigma;
|
||||
void generateRandomFeature(Size imageSize);
|
||||
float getSum(const Mat& image, Rect imgROI) const;
|
||||
std::vector<Rect> m_areas; // areas within the patch over which to compute the feature
|
||||
cv::Size m_initSize; // size of the patch used during training
|
||||
cv::Size m_curSize; // size of the patches currently under investigation
|
||||
float m_scaleFactorHeight; // scaling factor in vertical direction
|
||||
float m_scaleFactorWidth; // scaling factor in horizontal direction
|
||||
std::vector<Rect> m_scaleAreas; // areas after scaling
|
||||
std::vector<float> m_scaleWeights; // weights after scaling
|
||||
};
|
||||
|
||||
virtual void init(const CvFeatureParams* _featureParams, int _maxSampleCount, Size _winSize) CV_OVERRIDE;
|
||||
virtual void setImage(const Mat& img, uchar clsLabel = 0, int idx = 1) CV_OVERRIDE;
|
||||
inline const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const { return features; }
|
||||
inline CvHaarEvaluator::FeatureHaar& getFeatures(int idx)
|
||||
{
|
||||
return features[idx];
|
||||
}
|
||||
inline void setWinSize(Size patchSize) { winSize = patchSize; }
|
||||
inline Size getWinSize() const { return winSize; }
|
||||
virtual void generateFeatures() CV_OVERRIDE;
|
||||
|
||||
/**
|
||||
* \brief Overload the original generateFeatures in order to limit the number of the features
|
||||
* @param numFeatures Number of the features
|
||||
*/
|
||||
virtual void generateFeatures(int numFeatures);
|
||||
|
||||
protected:
|
||||
bool isIntegral;
|
||||
|
||||
/* TODO Added from MIL implementation */
|
||||
Mat _ii_img;
|
||||
void compute_integral(const cv::Mat& img, std::vector<cv::Mat_<float>>& ii_imgs)
|
||||
{
|
||||
Mat ii_img;
|
||||
integral(img, ii_img, CV_32F);
|
||||
split(ii_img, ii_imgs);
|
||||
}
|
||||
|
||||
std::vector<FeatureHaar> features;
|
||||
Mat sum; /* sum images (each row represents image) */
|
||||
};
|
||||
|
||||
} // namespace feature
|
||||
|
||||
//! @}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
||||
|
||||
#endif
|
@ -705,6 +705,121 @@ public:
|
||||
double minEigThreshold = 1e-4);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/** @brief Base abstract class for the long-term tracker
|
||||
*/
|
||||
class CV_EXPORTS_W Tracker
|
||||
{
|
||||
protected:
|
||||
Tracker();
|
||||
public:
|
||||
virtual ~Tracker();
|
||||
|
||||
/** @brief Initialize the tracker with a known bounding box that surrounded the target
|
||||
@param image The initial frame
|
||||
@param boundingBox The initial bounding box
|
||||
*/
|
||||
CV_WRAP virtual
|
||||
void init(InputArray image, const Rect& boundingBox) = 0;
|
||||
|
||||
/** @brief Update the tracker, find the new most likely bounding box for the target
|
||||
@param image The current frame
|
||||
@param boundingBox The bounding box that represent the new target location, if true was returned, not
|
||||
modified otherwise
|
||||
|
||||
@return True means that target was located and false means that tracker cannot locate target in
|
||||
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
|
||||
missing from the frame (say, out of sight)
|
||||
*/
|
||||
CV_WRAP virtual
|
||||
bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
|
||||
background.
|
||||
|
||||
Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
|
||||
based on @cite MIL .
|
||||
|
||||
Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
|
||||
*/
|
||||
class CV_EXPORTS_W TrackerMIL : public Tracker
|
||||
{
|
||||
protected:
|
||||
TrackerMIL(); // use ::create()
|
||||
public:
|
||||
virtual ~TrackerMIL() CV_OVERRIDE;
|
||||
|
||||
struct CV_EXPORTS_W_SIMPLE Params
|
||||
{
|
||||
CV_WRAP Params();
|
||||
//parameters for sampler
|
||||
CV_PROP_RW float samplerInitInRadius; //!< radius for gathering positive instances during init
|
||||
CV_PROP_RW int samplerInitMaxNegNum; //!< # negative samples to use during init
|
||||
CV_PROP_RW float samplerSearchWinSize; //!< size of search window
|
||||
CV_PROP_RW float samplerTrackInRadius; //!< radius for gathering positive instances during tracking
|
||||
CV_PROP_RW int samplerTrackMaxPosNum; //!< # positive samples to use during tracking
|
||||
CV_PROP_RW int samplerTrackMaxNegNum; //!< # negative samples to use during tracking
|
||||
CV_PROP_RW int featureSetNumFeatures; //!< # features
|
||||
};
|
||||
|
||||
/** @brief Create MIL tracker instance
|
||||
* @param parameters MIL parameters TrackerMIL::Params
|
||||
*/
|
||||
static CV_WRAP
|
||||
Ptr<TrackerMIL> create(const TrackerMIL::Params ¶meters = TrackerMIL::Params());
|
||||
|
||||
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
|
||||
*
|
||||
* GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
|
||||
* GOTURN is much faster due to offline training without online fine-tuning nature.
|
||||
* GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
|
||||
* we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
|
||||
* robust to viewpoint changes, lighting changes, and deformations.
|
||||
* Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
|
||||
* Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
|
||||
* Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
|
||||
* As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
|
||||
* Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
|
||||
* <https://github.com/Auron-X/GOTURN_Training_Toolkit>
|
||||
* GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
|
||||
*/
|
||||
class CV_EXPORTS_W TrackerGOTURN : public Tracker
|
||||
{
|
||||
protected:
|
||||
TrackerGOTURN(); // use ::create()
|
||||
public:
|
||||
virtual ~TrackerGOTURN() CV_OVERRIDE;
|
||||
|
||||
struct CV_EXPORTS_W_SIMPLE Params
|
||||
{
|
||||
CV_WRAP Params();
|
||||
CV_PROP_RW std::string modelTxt;
|
||||
CV_PROP_RW std::string modelBin;
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters GOTURN parameters TrackerGOTURN::Params
|
||||
*/
|
||||
static CV_WRAP
|
||||
Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
|
||||
|
||||
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
|
||||
};
|
||||
|
||||
|
||||
|
||||
//! @} video_track
|
||||
|
||||
} // cv
|
||||
|
32
modules/video/misc/java/test/TrackerCreateTest.java
Normal file
32
modules/video/misc/java/test/TrackerCreateTest.java
Normal file
@ -0,0 +1,32 @@
|
||||
package org.opencv.test.video;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvException;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
import org.opencv.video.Tracker;
|
||||
import org.opencv.video.TrackerGOTURN;
|
||||
import org.opencv.video.TrackerMIL;
|
||||
|
||||
public class TrackerCreateTest extends OpenCVTestCase {
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
}
|
||||
|
||||
|
||||
public void testCreateTrackerGOTURN() {
|
||||
try {
|
||||
Tracker tracker = TrackerGOTURN.create();
|
||||
assert(tracker != null);
|
||||
} catch (CvException e) {
|
||||
// expected, model files may be missing
|
||||
}
|
||||
}
|
||||
|
||||
public void testCreateTrackerMIL() {
|
||||
Tracker tracker = TrackerMIL.create();
|
||||
}
|
||||
|
||||
}
|
4
modules/video/misc/python/pyopencv_video.hpp
Normal file
4
modules/video/misc/python/pyopencv_video.hpp
Normal file
@ -0,0 +1,4 @@
|
||||
#ifdef HAVE_OPENCV_VIDEO
|
||||
typedef TrackerMIL::Params TrackerMIL_Params;
|
||||
typedef TrackerGOTURN::Params TrackerGOTURN_Params;
|
||||
#endif
|
19
modules/video/misc/python/test/test_tracking.py
Normal file
19
modules/video/misc/python/test/test_tracking.py
Normal file
@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
import os
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests, unittest
|
||||
|
||||
class tracking_test(NewOpenCVTests):
|
||||
|
||||
def test_createTracker(self):
|
||||
t = cv.TrackerMIL_create()
|
||||
try:
|
||||
t = cv.TrackerGOTURN_create()
|
||||
except cv.error as e:
|
||||
pass # may fail due to missing DL model files
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
@ -4,4 +4,19 @@
|
||||
#include <hpx/hpx_main.hpp>
|
||||
#endif
|
||||
|
||||
CV_PERF_TEST_MAIN(video)
|
||||
static
|
||||
void initTests()
|
||||
{
|
||||
const char* extraTestDataPath =
|
||||
#ifdef WINRT
|
||||
NULL;
|
||||
#else
|
||||
getenv("OPENCV_DNN_TEST_DATA_PATH");
|
||||
#endif
|
||||
if (extraTestDataPath)
|
||||
cvtest::addDataSearchPath(extraTestDataPath);
|
||||
|
||||
cvtest::addDataSearchSubDirectory(""); // override "cv" prefix below to access without "../dnn" hacks
|
||||
}
|
||||
|
||||
CV_PERF_TEST_MAIN(video, initTests())
|
||||
|
104
modules/video/perf/perf_trackers.cpp
Normal file
104
modules/video/perf/perf_trackers.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
using namespace perf;
|
||||
|
||||
typedef tuple<string, int, Rect> TrackingParams_t;
|
||||
|
||||
std::vector<TrackingParams_t> getTrackingParams()
|
||||
{
|
||||
std::vector<TrackingParams_t> params {
|
||||
TrackingParams_t("david/data/david.webm", 300, Rect(163,62,47,56)),
|
||||
TrackingParams_t("dudek/data/dudek.webm", 1, Rect(123,87,132,176)),
|
||||
TrackingParams_t("faceocc2/data/faceocc2.webm", 1, Rect(118,57,82,98))
|
||||
};
|
||||
return params;
|
||||
}
|
||||
|
||||
class Tracking : public perf::TestBaseWithParam<TrackingParams_t>
|
||||
{
|
||||
public:
|
||||
template<typename ROI_t = Rect2d, typename Tracker>
|
||||
void runTrackingTest(const Ptr<Tracker>& tracker, const TrackingParams_t& params);
|
||||
};
|
||||
|
||||
template<typename ROI_t, typename Tracker>
|
||||
void Tracking::runTrackingTest(const Ptr<Tracker>& tracker, const TrackingParams_t& params)
|
||||
{
|
||||
const int N = 10;
|
||||
string video = get<0>(params);
|
||||
int startFrame = get<1>(params);
|
||||
//int endFrame = startFrame + N;
|
||||
Rect boundingBox = get<2>(params);
|
||||
|
||||
string videoPath = findDataFile(std::string("cv/tracking/") + video);
|
||||
|
||||
VideoCapture c;
|
||||
c.open(videoPath);
|
||||
if (!c.isOpened())
|
||||
throw SkipTestException("Can't open video file");
|
||||
#if 0
|
||||
// c.set(CAP_PROP_POS_FRAMES, startFrame);
|
||||
#else
|
||||
if (startFrame)
|
||||
std::cout << "startFrame = " << startFrame << std::endl;
|
||||
for (int i = 0; i < startFrame; i++)
|
||||
{
|
||||
Mat dummy_frame;
|
||||
c >> dummy_frame;
|
||||
ASSERT_FALSE(dummy_frame.empty()) << i << ": " << videoPath;
|
||||
}
|
||||
#endif
|
||||
|
||||
// decode frames into memory (don't measure decoding performance)
|
||||
std::vector<Mat> frames;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
Mat frame;
|
||||
c >> frame;
|
||||
ASSERT_FALSE(frame.empty()) << "i=" << i;
|
||||
frames.push_back(frame);
|
||||
}
|
||||
|
||||
std::cout << "frame size = " << frames[0].size() << std::endl;
|
||||
|
||||
PERF_SAMPLE_BEGIN();
|
||||
{
|
||||
tracker->init(frames[0], (ROI_t)boundingBox);
|
||||
for (int i = 1; i < N; ++i)
|
||||
{
|
||||
ROI_t rc;
|
||||
tracker->update(frames[i], rc);
|
||||
ASSERT_FALSE(rc.empty());
|
||||
}
|
||||
}
|
||||
PERF_SAMPLE_END();
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
|
||||
//==================================================================================================
|
||||
|
||||
PERF_TEST_P(Tracking, MIL, testing::ValuesIn(getTrackingParams()))
|
||||
{
|
||||
auto tracker = TrackerMIL::create();
|
||||
runTrackingTest<Rect>(tracker, GetParam());
|
||||
}
|
||||
|
||||
PERF_TEST_P(Tracking, GOTURN, testing::ValuesIn(getTrackingParams()))
|
||||
{
|
||||
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
|
||||
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
|
||||
TrackerGOTURN::Params params;
|
||||
params.modelTxt = model;
|
||||
params.modelBin = weights;
|
||||
auto tracker = TrackerGOTURN::create(params);
|
||||
runTrackingTest<Rect>(tracker, GetParam());
|
||||
}
|
||||
|
||||
}} // namespace
|
25
modules/video/src/tracking/detail/tracker_feature.cpp
Normal file
25
modules/video/src/tracking/detail/tracker_feature.cpp
Normal file
@ -0,0 +1,25 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
TrackerFeature::~TrackerFeature()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
void TrackerFeature::compute(const std::vector<Mat>& images, Mat& response)
|
||||
{
|
||||
if (images.empty())
|
||||
return;
|
||||
|
||||
computeImpl(images, response);
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
121
modules/video/src/tracking/detail/tracker_feature_haar.impl.hpp
Normal file
121
modules/video/src/tracking/detail/tracker_feature_haar.impl.hpp
Normal file
@ -0,0 +1,121 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
#include "opencv2/video/detail/tracking_feature.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
inline namespace internal {
|
||||
|
||||
class TrackerFeatureHAAR : public TrackerFeature
|
||||
{
|
||||
public:
|
||||
struct Params
|
||||
{
|
||||
Params();
|
||||
int numFeatures; //!< # of rects
|
||||
Size rectSize; //!< rect size
|
||||
bool isIntegral; //!< true if input images are integral, false otherwise
|
||||
};
|
||||
|
||||
TrackerFeatureHAAR(const TrackerFeatureHAAR::Params& parameters = TrackerFeatureHAAR::Params());
|
||||
|
||||
virtual ~TrackerFeatureHAAR() CV_OVERRIDE {}
|
||||
|
||||
protected:
|
||||
bool computeImpl(const std::vector<Mat>& images, Mat& response) CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
Params params;
|
||||
Ptr<CvHaarEvaluator> featureEvaluator;
|
||||
};
|
||||
|
||||
/**
|
||||
* Parameters
|
||||
*/
|
||||
|
||||
TrackerFeatureHAAR::Params::Params()
|
||||
{
|
||||
numFeatures = 250;
|
||||
rectSize = Size(100, 100);
|
||||
isIntegral = false;
|
||||
}
|
||||
|
||||
TrackerFeatureHAAR::TrackerFeatureHAAR(const TrackerFeatureHAAR::Params& parameters)
|
||||
: params(parameters)
|
||||
{
|
||||
CvHaarFeatureParams haarParams;
|
||||
haarParams.numFeatures = params.numFeatures;
|
||||
haarParams.isIntegral = params.isIntegral;
|
||||
featureEvaluator = makePtr<CvHaarEvaluator>();
|
||||
featureEvaluator->init(&haarParams, 1, params.rectSize);
|
||||
}
|
||||
|
||||
class Parallel_compute : public cv::ParallelLoopBody
|
||||
{
|
||||
private:
|
||||
Ptr<CvHaarEvaluator> featureEvaluator;
|
||||
std::vector<Mat> images;
|
||||
Mat response;
|
||||
//std::vector<CvHaarEvaluator::FeatureHaar> features;
|
||||
public:
|
||||
Parallel_compute(Ptr<CvHaarEvaluator>& fe, const std::vector<Mat>& img, Mat& resp)
|
||||
: featureEvaluator(fe)
|
||||
, images(img)
|
||||
, response(resp)
|
||||
{
|
||||
|
||||
//features = featureEvaluator->getFeatures();
|
||||
}
|
||||
|
||||
virtual void operator()(const cv::Range& r) const CV_OVERRIDE
|
||||
{
|
||||
for (int jf = r.start; jf != r.end; ++jf)
|
||||
{
|
||||
int cols = images[jf].cols;
|
||||
int rows = images[jf].rows;
|
||||
for (int j = 0; j < featureEvaluator->getNumFeatures(); j++)
|
||||
{
|
||||
float res = 0;
|
||||
featureEvaluator->getFeatures()[j].eval(images[jf], Rect(0, 0, cols, rows), &res);
|
||||
(Mat_<float>(response))(j, jf) = res;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
bool TrackerFeatureHAAR::computeImpl(const std::vector<Mat>& images, Mat& response)
|
||||
{
|
||||
if (images.empty())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
int numFeatures = featureEvaluator->getNumFeatures();
|
||||
|
||||
response = Mat_<float>(Size((int)images.size(), numFeatures));
|
||||
|
||||
std::vector<CvHaarEvaluator::FeatureHaar> f = featureEvaluator->getFeatures();
|
||||
//for each sample compute #n_feature -> put each feature (n Rect) in response
|
||||
parallel_for_(Range(0, (int)images.size()), Parallel_compute(featureEvaluator, images, response));
|
||||
|
||||
/*for ( size_t i = 0; i < images.size(); i++ )
|
||||
{
|
||||
int c = images[i].cols;
|
||||
int r = images[i].rows;
|
||||
for ( int j = 0; j < numFeatures; j++ )
|
||||
{
|
||||
float res = 0;
|
||||
featureEvaluator->getFeatures( j ).eval( images[i], Rect( 0, 0, c, r ), &res );
|
||||
( Mat_<float>( response ) )( j, i ) = res;
|
||||
}
|
||||
}*/
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
}}}} // namespace cv::detail::tracking::internal
|
60
modules/video/src/tracking/detail/tracker_feature_set.cpp
Normal file
60
modules/video/src/tracking/detail/tracker_feature_set.cpp
Normal file
@ -0,0 +1,60 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
TrackerFeatureSet::TrackerFeatureSet()
|
||||
{
|
||||
blockAddTrackerFeature = false;
|
||||
}
|
||||
|
||||
TrackerFeatureSet::~TrackerFeatureSet()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
void TrackerFeatureSet::extraction(const std::vector<Mat>& images)
|
||||
{
|
||||
blockAddTrackerFeature = true;
|
||||
|
||||
clearResponses();
|
||||
responses.resize(features.size());
|
||||
|
||||
for (size_t i = 0; i < features.size(); i++)
|
||||
{
|
||||
CV_DbgAssert(features[i]);
|
||||
features[i]->compute(images, responses[i]);
|
||||
}
|
||||
}
|
||||
|
||||
bool TrackerFeatureSet::addTrackerFeature(const Ptr<TrackerFeature>& feature)
|
||||
{
|
||||
CV_Assert(!blockAddTrackerFeature);
|
||||
CV_Assert(feature);
|
||||
|
||||
features.push_back(feature);
|
||||
return true;
|
||||
}
|
||||
|
||||
const std::vector<Ptr<TrackerFeature>>& TrackerFeatureSet::getTrackerFeatures() const
|
||||
{
|
||||
return features;
|
||||
}
|
||||
|
||||
const std::vector<Mat>& TrackerFeatureSet::getResponses() const
|
||||
{
|
||||
return responses;
|
||||
}
|
||||
|
||||
void TrackerFeatureSet::clearResponses()
|
||||
{
|
||||
responses.clear();
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
85
modules/video/src/tracking/detail/tracker_mil_model.cpp
Normal file
85
modules/video/src/tracking/detail/tracker_mil_model.cpp
Normal file
@ -0,0 +1,85 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "tracker_mil_model.hpp"
|
||||
|
||||
/**
|
||||
* TrackerMILModel
|
||||
*/
|
||||
|
||||
namespace cv {
|
||||
inline namespace tracking {
|
||||
namespace impl {
|
||||
|
||||
TrackerMILModel::TrackerMILModel(const Rect& boundingBox)
|
||||
{
|
||||
currentSample.clear();
|
||||
mode = MODE_POSITIVE;
|
||||
width = boundingBox.width;
|
||||
height = boundingBox.height;
|
||||
|
||||
Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState> initState = Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState>(
|
||||
new TrackerStateEstimatorMILBoosting::TrackerMILTargetState(Point2f((float)boundingBox.x, (float)boundingBox.y), boundingBox.width, boundingBox.height,
|
||||
true, Mat()));
|
||||
trajectory.push_back(initState);
|
||||
}
|
||||
|
||||
void TrackerMILModel::responseToConfidenceMap(const std::vector<Mat>& responses, ConfidenceMap& confidenceMap)
|
||||
{
|
||||
if (currentSample.empty())
|
||||
{
|
||||
CV_Error(-1, "The samples in Model estimation are empty");
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < responses.size(); i++)
|
||||
{
|
||||
//for each column (one sample) there are #num_feature
|
||||
//get informations from currentSample
|
||||
for (int j = 0; j < responses.at(i).cols; j++)
|
||||
{
|
||||
|
||||
Size currentSize;
|
||||
Point currentOfs;
|
||||
currentSample.at(j).locateROI(currentSize, currentOfs);
|
||||
bool foreground = false;
|
||||
if (mode == MODE_POSITIVE || mode == MODE_ESTIMATON)
|
||||
{
|
||||
foreground = true;
|
||||
}
|
||||
else if (mode == MODE_NEGATIVE)
|
||||
{
|
||||
foreground = false;
|
||||
}
|
||||
|
||||
//get the column of the HAAR responses
|
||||
Mat singleResponse = responses.at(i).col(j);
|
||||
|
||||
//create the state
|
||||
Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState> currentState = Ptr<TrackerStateEstimatorMILBoosting::TrackerMILTargetState>(
|
||||
new TrackerStateEstimatorMILBoosting::TrackerMILTargetState(currentOfs, width, height, foreground, singleResponse));
|
||||
|
||||
confidenceMap.push_back(std::make_pair(currentState, 0.0f));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void TrackerMILModel::modelEstimationImpl(const std::vector<Mat>& responses)
|
||||
{
|
||||
responseToConfidenceMap(responses, currentConfidenceMap);
|
||||
}
|
||||
|
||||
void TrackerMILModel::modelUpdateImpl()
|
||||
{
|
||||
}
|
||||
|
||||
void TrackerMILModel::setMode(int trainingMode, const std::vector<Mat>& samples)
|
||||
{
|
||||
currentSample.clear();
|
||||
currentSample = samples;
|
||||
|
||||
mode = trainingMode;
|
||||
}
|
||||
|
||||
}}} // namespace cv::tracking::impl
|
67
modules/video/src/tracking/detail/tracker_mil_model.hpp
Normal file
67
modules/video/src/tracking/detail/tracker_mil_model.hpp
Normal file
@ -0,0 +1,67 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef __OPENCV_TRACKER_MIL_MODEL_HPP__
|
||||
#define __OPENCV_TRACKER_MIL_MODEL_HPP__
|
||||
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
#include "tracker_mil_state.hpp"
|
||||
|
||||
namespace cv {
|
||||
inline namespace tracking {
|
||||
namespace impl {
|
||||
|
||||
using namespace cv::detail::tracking;
|
||||
|
||||
/**
|
||||
* \brief Implementation of TrackerModel for MIL algorithm
|
||||
*/
|
||||
class TrackerMILModel : public detail::TrackerModel
|
||||
{
|
||||
public:
|
||||
enum
|
||||
{
|
||||
MODE_POSITIVE = 1, // mode for positive features
|
||||
MODE_NEGATIVE = 2, // mode for negative features
|
||||
MODE_ESTIMATON = 3 // mode for estimation step
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Constructor
|
||||
* \param boundingBox The first boundingBox
|
||||
*/
|
||||
TrackerMILModel(const Rect& boundingBox);
|
||||
|
||||
/**
|
||||
* \brief Destructor
|
||||
*/
|
||||
~TrackerMILModel() {};
|
||||
|
||||
/**
|
||||
* \brief Set the mode
|
||||
*/
|
||||
void setMode(int trainingMode, const std::vector<Mat>& samples);
|
||||
|
||||
/**
|
||||
* \brief Create the ConfidenceMap from a list of responses
|
||||
* \param responses The list of the responses
|
||||
* \param confidenceMap The output
|
||||
*/
|
||||
void responseToConfidenceMap(const std::vector<Mat>& responses, ConfidenceMap& confidenceMap);
|
||||
|
||||
protected:
|
||||
void modelEstimationImpl(const std::vector<Mat>& responses) CV_OVERRIDE;
|
||||
void modelUpdateImpl() CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
int mode;
|
||||
std::vector<Mat> currentSample;
|
||||
|
||||
int width; //initial width of the boundingBox
|
||||
int height; //initial height of the boundingBox
|
||||
};
|
||||
|
||||
}}} // namespace cv::tracking::impl
|
||||
|
||||
#endif
|
159
modules/video/src/tracking/detail/tracker_mil_state.cpp
Normal file
159
modules/video/src/tracking/detail/tracker_mil_state.cpp
Normal file
@ -0,0 +1,159 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
#include "tracker_mil_state.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
/**
|
||||
* TrackerStateEstimatorMILBoosting::TrackerMILTargetState
|
||||
*/
|
||||
TrackerStateEstimatorMILBoosting::TrackerMILTargetState::TrackerMILTargetState(const Point2f& position, int width, int height, bool foreground,
|
||||
const Mat& features)
|
||||
{
|
||||
setTargetPosition(position);
|
||||
setTargetWidth(width);
|
||||
setTargetHeight(height);
|
||||
setTargetFg(foreground);
|
||||
setFeatures(features);
|
||||
}
|
||||
|
||||
void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setTargetFg(bool foreground)
|
||||
{
|
||||
isTarget = foreground;
|
||||
}
|
||||
|
||||
void TrackerStateEstimatorMILBoosting::TrackerMILTargetState::setFeatures(const Mat& features)
|
||||
{
|
||||
targetFeatures = features;
|
||||
}
|
||||
|
||||
bool TrackerStateEstimatorMILBoosting::TrackerMILTargetState::isTargetFg() const
|
||||
{
|
||||
return isTarget;
|
||||
}
|
||||
|
||||
Mat TrackerStateEstimatorMILBoosting::TrackerMILTargetState::getFeatures() const
|
||||
{
|
||||
return targetFeatures;
|
||||
}
|
||||
|
||||
TrackerStateEstimatorMILBoosting::TrackerStateEstimatorMILBoosting(int nFeatures)
|
||||
{
|
||||
className = "BOOSTING";
|
||||
trained = false;
|
||||
numFeatures = nFeatures;
|
||||
}
|
||||
|
||||
TrackerStateEstimatorMILBoosting::~TrackerStateEstimatorMILBoosting()
|
||||
{
|
||||
}
|
||||
|
||||
void TrackerStateEstimatorMILBoosting::setCurrentConfidenceMap(ConfidenceMap& confidenceMap)
|
||||
{
|
||||
currentConfidenceMap.clear();
|
||||
currentConfidenceMap = confidenceMap;
|
||||
}
|
||||
|
||||
uint TrackerStateEstimatorMILBoosting::max_idx(const std::vector<float>& v)
|
||||
{
|
||||
const float* findPtr = &(*std::max_element(v.begin(), v.end()));
|
||||
const float* beginPtr = &(*v.begin());
|
||||
return (uint)(findPtr - beginPtr);
|
||||
}
|
||||
|
||||
Ptr<TrackerTargetState> TrackerStateEstimatorMILBoosting::estimateImpl(const std::vector<ConfidenceMap>& /*confidenceMaps*/)
|
||||
{
|
||||
//run ClfMilBoost classify in order to compute next location
|
||||
if (currentConfidenceMap.empty())
|
||||
return Ptr<TrackerTargetState>();
|
||||
|
||||
Mat positiveStates;
|
||||
Mat negativeStates;
|
||||
|
||||
prepareData(currentConfidenceMap, positiveStates, negativeStates);
|
||||
|
||||
std::vector<float> prob = boostMILModel.classify(positiveStates);
|
||||
|
||||
int bestind = max_idx(prob);
|
||||
//float resp = prob[bestind];
|
||||
|
||||
return currentConfidenceMap.at(bestind).first;
|
||||
}
|
||||
|
||||
void TrackerStateEstimatorMILBoosting::prepareData(const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative)
|
||||
{
|
||||
|
||||
int posCounter = 0;
|
||||
int negCounter = 0;
|
||||
|
||||
for (size_t i = 0; i < confidenceMap.size(); i++)
|
||||
{
|
||||
Ptr<TrackerMILTargetState> currentTargetState = confidenceMap.at(i).first.staticCast<TrackerMILTargetState>();
|
||||
CV_DbgAssert(currentTargetState);
|
||||
if (currentTargetState->isTargetFg())
|
||||
posCounter++;
|
||||
else
|
||||
negCounter++;
|
||||
}
|
||||
|
||||
positive.create(posCounter, numFeatures, CV_32FC1);
|
||||
negative.create(negCounter, numFeatures, CV_32FC1);
|
||||
|
||||
//TODO change with mat fast access
|
||||
//initialize trainData (positive and negative)
|
||||
|
||||
int pc = 0;
|
||||
int nc = 0;
|
||||
for (size_t i = 0; i < confidenceMap.size(); i++)
|
||||
{
|
||||
Ptr<TrackerMILTargetState> currentTargetState = confidenceMap.at(i).first.staticCast<TrackerMILTargetState>();
|
||||
Mat stateFeatures = currentTargetState->getFeatures();
|
||||
|
||||
if (currentTargetState->isTargetFg())
|
||||
{
|
||||
for (int j = 0; j < stateFeatures.rows; j++)
|
||||
{
|
||||
//fill the positive trainData with the value of the feature j for sample i
|
||||
positive.at<float>(pc, j) = stateFeatures.at<float>(j, 0);
|
||||
}
|
||||
pc++;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int j = 0; j < stateFeatures.rows; j++)
|
||||
{
|
||||
//fill the negative trainData with the value of the feature j for sample i
|
||||
negative.at<float>(nc, j) = stateFeatures.at<float>(j, 0);
|
||||
}
|
||||
nc++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void TrackerStateEstimatorMILBoosting::updateImpl(std::vector<ConfidenceMap>& confidenceMaps)
|
||||
{
|
||||
|
||||
if (!trained)
|
||||
{
|
||||
//this is the first time that the classifier is built
|
||||
//init MIL
|
||||
boostMILModel.init();
|
||||
trained = true;
|
||||
}
|
||||
|
||||
ConfidenceMap lastConfidenceMap = confidenceMaps.back();
|
||||
Mat positiveStates;
|
||||
Mat negativeStates;
|
||||
|
||||
prepareData(lastConfidenceMap, positiveStates, negativeStates);
|
||||
//update MIL
|
||||
boostMILModel.update(positiveStates, negativeStates);
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
87
modules/video/src/tracking/detail/tracker_mil_state.hpp
Normal file
87
modules/video/src/tracking/detail/tracker_mil_state.hpp
Normal file
@ -0,0 +1,87 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_MIL_STATE_HPP
|
||||
#define OPENCV_VIDEO_DETAIL_TRACKING_MIL_STATE_HPP
|
||||
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
#include "tracking_online_mil.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
/** @brief TrackerStateEstimator based on Boosting
|
||||
*/
|
||||
class CV_EXPORTS TrackerStateEstimatorMILBoosting : public TrackerStateEstimator
|
||||
{
|
||||
public:
|
||||
/**
|
||||
* Implementation of the target state for TrackerStateEstimatorMILBoosting
|
||||
*/
|
||||
class TrackerMILTargetState : public TrackerTargetState
|
||||
{
|
||||
|
||||
public:
|
||||
/**
|
||||
* \brief Constructor
|
||||
* \param position Top left corner of the bounding box
|
||||
* \param width Width of the bounding box
|
||||
* \param height Height of the bounding box
|
||||
* \param foreground label for target or background
|
||||
* \param features features extracted
|
||||
*/
|
||||
TrackerMILTargetState(const Point2f& position, int width, int height, bool foreground, const Mat& features);
|
||||
|
||||
~TrackerMILTargetState() {};
|
||||
|
||||
/** @brief Set label: true for target foreground, false for background
|
||||
@param foreground Label for background/foreground
|
||||
*/
|
||||
void setTargetFg(bool foreground);
|
||||
/** @brief Set the features extracted from TrackerFeatureSet
|
||||
@param features The features extracted
|
||||
*/
|
||||
void setFeatures(const Mat& features);
|
||||
/** @brief Get the label. Return true for target foreground, false for background
|
||||
*/
|
||||
bool isTargetFg() const;
|
||||
/** @brief Get the features extracted
|
||||
*/
|
||||
Mat getFeatures() const;
|
||||
|
||||
private:
|
||||
bool isTarget;
|
||||
Mat targetFeatures;
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param nFeatures Number of features for each sample
|
||||
*/
|
||||
TrackerStateEstimatorMILBoosting(int nFeatures = 250);
|
||||
~TrackerStateEstimatorMILBoosting();
|
||||
|
||||
/** @brief Set the current confidenceMap
|
||||
@param confidenceMap The current :cConfidenceMap
|
||||
*/
|
||||
void setCurrentConfidenceMap(ConfidenceMap& confidenceMap);
|
||||
|
||||
protected:
|
||||
Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) CV_OVERRIDE;
|
||||
void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
uint max_idx(const std::vector<float>& v);
|
||||
void prepareData(const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative);
|
||||
|
||||
ClfMilBoost boostMILModel;
|
||||
bool trained;
|
||||
int numFeatures;
|
||||
|
||||
ConfidenceMap currentConfidenceMap;
|
||||
};
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
||||
|
||||
#endif
|
132
modules/video/src/tracking/detail/tracker_model.cpp
Normal file
132
modules/video/src/tracking/detail/tracker_model.cpp
Normal file
@ -0,0 +1,132 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
TrackerModel::TrackerModel()
|
||||
{
|
||||
stateEstimator = Ptr<TrackerStateEstimator>();
|
||||
maxCMLength = 10;
|
||||
}
|
||||
|
||||
TrackerModel::~TrackerModel()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
bool TrackerModel::setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator)
|
||||
{
|
||||
if (stateEstimator.get())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
stateEstimator = trackerStateEstimator;
|
||||
return true;
|
||||
}
|
||||
|
||||
Ptr<TrackerStateEstimator> TrackerModel::getTrackerStateEstimator() const
|
||||
{
|
||||
return stateEstimator;
|
||||
}
|
||||
|
||||
void TrackerModel::modelEstimation(const std::vector<Mat>& responses)
|
||||
{
|
||||
modelEstimationImpl(responses);
|
||||
}
|
||||
|
||||
void TrackerModel::clearCurrentConfidenceMap()
|
||||
{
|
||||
currentConfidenceMap.clear();
|
||||
}
|
||||
|
||||
void TrackerModel::modelUpdate()
|
||||
{
|
||||
modelUpdateImpl();
|
||||
|
||||
if (maxCMLength != -1 && (int)confidenceMaps.size() >= maxCMLength - 1)
|
||||
{
|
||||
int l = maxCMLength / 2;
|
||||
confidenceMaps.erase(confidenceMaps.begin(), confidenceMaps.begin() + l);
|
||||
}
|
||||
if (maxCMLength != -1 && (int)trajectory.size() >= maxCMLength - 1)
|
||||
{
|
||||
int l = maxCMLength / 2;
|
||||
trajectory.erase(trajectory.begin(), trajectory.begin() + l);
|
||||
}
|
||||
confidenceMaps.push_back(currentConfidenceMap);
|
||||
stateEstimator->update(confidenceMaps);
|
||||
|
||||
clearCurrentConfidenceMap();
|
||||
}
|
||||
|
||||
bool TrackerModel::runStateEstimator()
|
||||
{
|
||||
if (!stateEstimator)
|
||||
{
|
||||
CV_Error(-1, "Tracker state estimator is not setted");
|
||||
}
|
||||
Ptr<TrackerTargetState> targetState = stateEstimator->estimate(confidenceMaps);
|
||||
if (!targetState)
|
||||
return false;
|
||||
|
||||
setLastTargetState(targetState);
|
||||
return true;
|
||||
}
|
||||
|
||||
void TrackerModel::setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState)
|
||||
{
|
||||
trajectory.push_back(lastTargetState);
|
||||
}
|
||||
|
||||
Ptr<TrackerTargetState> TrackerModel::getLastTargetState() const
|
||||
{
|
||||
return trajectory.back();
|
||||
}
|
||||
|
||||
const std::vector<ConfidenceMap>& TrackerModel::getConfidenceMaps() const
|
||||
{
|
||||
return confidenceMaps;
|
||||
}
|
||||
|
||||
const ConfidenceMap& TrackerModel::getLastConfidenceMap() const
|
||||
{
|
||||
return confidenceMaps.back();
|
||||
}
|
||||
|
||||
Point2f TrackerTargetState::getTargetPosition() const
|
||||
{
|
||||
return targetPosition;
|
||||
}
|
||||
|
||||
void TrackerTargetState::setTargetPosition(const Point2f& position)
|
||||
{
|
||||
targetPosition = position;
|
||||
}
|
||||
|
||||
int TrackerTargetState::getTargetWidth() const
|
||||
{
|
||||
return targetWidth;
|
||||
}
|
||||
|
||||
void TrackerTargetState::setTargetWidth(int width)
|
||||
{
|
||||
targetWidth = width;
|
||||
}
|
||||
int TrackerTargetState::getTargetHeight() const
|
||||
{
|
||||
return targetHeight;
|
||||
}
|
||||
|
||||
void TrackerTargetState::setTargetHeight(int height)
|
||||
{
|
||||
targetHeight = height;
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
68
modules/video/src/tracking/detail/tracker_sampler.cpp
Normal file
68
modules/video/src/tracking/detail/tracker_sampler.cpp
Normal file
@ -0,0 +1,68 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
TrackerSampler::TrackerSampler()
|
||||
{
|
||||
blockAddTrackerSampler = false;
|
||||
}
|
||||
|
||||
TrackerSampler::~TrackerSampler()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
void TrackerSampler::sampling(const Mat& image, Rect boundingBox)
|
||||
{
|
||||
clearSamples();
|
||||
|
||||
for (size_t i = 0; i < samplers.size(); i++)
|
||||
{
|
||||
CV_DbgAssert(samplers[i]);
|
||||
std::vector<Mat> current_samples;
|
||||
samplers[i]->sampling(image, boundingBox, current_samples);
|
||||
|
||||
//push in samples all current_samples
|
||||
for (size_t j = 0; j < current_samples.size(); j++)
|
||||
{
|
||||
std::vector<Mat>::iterator it = samples.end();
|
||||
samples.insert(it, current_samples.at(j));
|
||||
}
|
||||
}
|
||||
|
||||
blockAddTrackerSampler = true;
|
||||
}
|
||||
|
||||
bool TrackerSampler::addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler)
|
||||
{
|
||||
CV_Assert(!blockAddTrackerSampler);
|
||||
CV_Assert(sampler);
|
||||
|
||||
samplers.push_back(sampler);
|
||||
return true;
|
||||
}
|
||||
|
||||
const std::vector<Ptr<TrackerSamplerAlgorithm>>& TrackerSampler::getSamplers() const
|
||||
{
|
||||
return samplers;
|
||||
}
|
||||
|
||||
const std::vector<Mat>& TrackerSampler::getSamples() const
|
||||
{
|
||||
return samples;
|
||||
}
|
||||
|
||||
void TrackerSampler::clearSamples()
|
||||
{
|
||||
samples.clear();
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
124
modules/video/src/tracking/detail/tracker_sampler_algorithm.cpp
Normal file
124
modules/video/src/tracking/detail/tracker_sampler_algorithm.cpp
Normal file
@ -0,0 +1,124 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
TrackerSamplerAlgorithm::~TrackerSamplerAlgorithm()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
TrackerSamplerCSC::Params::Params()
|
||||
{
|
||||
initInRad = 3;
|
||||
initMaxNegNum = 65;
|
||||
searchWinSize = 25;
|
||||
trackInPosRad = 4;
|
||||
trackMaxNegNum = 65;
|
||||
trackMaxPosNum = 100000;
|
||||
}
|
||||
|
||||
TrackerSamplerCSC::TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters)
|
||||
: params(parameters)
|
||||
{
|
||||
mode = MODE_INIT_POS;
|
||||
rng = theRNG();
|
||||
}
|
||||
|
||||
TrackerSamplerCSC::~TrackerSamplerCSC()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
bool TrackerSamplerCSC::sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample)
|
||||
{
|
||||
CV_Assert(!image.empty());
|
||||
|
||||
float inrad = 0;
|
||||
float outrad = 0;
|
||||
int maxnum = 0;
|
||||
|
||||
switch (mode)
|
||||
{
|
||||
case MODE_INIT_POS:
|
||||
inrad = params.initInRad;
|
||||
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad);
|
||||
break;
|
||||
case MODE_INIT_NEG:
|
||||
inrad = 2.0f * params.searchWinSize;
|
||||
outrad = 1.5f * params.initInRad;
|
||||
maxnum = params.initMaxNegNum;
|
||||
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum);
|
||||
break;
|
||||
case MODE_TRACK_POS:
|
||||
inrad = params.trackInPosRad;
|
||||
outrad = 0;
|
||||
maxnum = params.trackMaxPosNum;
|
||||
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum);
|
||||
break;
|
||||
case MODE_TRACK_NEG:
|
||||
inrad = 1.5f * params.searchWinSize;
|
||||
outrad = params.trackInPosRad + 5;
|
||||
maxnum = params.trackMaxNegNum;
|
||||
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad, outrad, maxnum);
|
||||
break;
|
||||
case MODE_DETECT:
|
||||
inrad = params.searchWinSize;
|
||||
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad);
|
||||
break;
|
||||
default:
|
||||
inrad = params.initInRad;
|
||||
sample = sampleImage(image, boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height, inrad);
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void TrackerSamplerCSC::setMode(int samplingMode)
|
||||
{
|
||||
mode = samplingMode;
|
||||
}
|
||||
|
||||
std::vector<Mat> TrackerSamplerCSC::sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad, int maxnum)
|
||||
{
|
||||
int rowsz = img.rows - h - 1;
|
||||
int colsz = img.cols - w - 1;
|
||||
float inradsq = inrad * inrad;
|
||||
float outradsq = outrad * outrad;
|
||||
int dist;
|
||||
|
||||
uint minrow = max(0, (int)y - (int)inrad);
|
||||
uint maxrow = min((int)rowsz - 1, (int)y + (int)inrad);
|
||||
uint mincol = max(0, (int)x - (int)inrad);
|
||||
uint maxcol = min((int)colsz - 1, (int)x + (int)inrad);
|
||||
|
||||
//fprintf(stderr,"inrad=%f minrow=%d maxrow=%d mincol=%d maxcol=%d\n",inrad,minrow,maxrow,mincol,maxcol);
|
||||
|
||||
std::vector<Mat> samples;
|
||||
samples.resize((maxrow - minrow + 1) * (maxcol - mincol + 1));
|
||||
int i = 0;
|
||||
|
||||
float prob = ((float)(maxnum)) / samples.size();
|
||||
|
||||
for (int r = minrow; r <= int(maxrow); r++)
|
||||
for (int c = mincol; c <= int(maxcol); c++)
|
||||
{
|
||||
dist = (y - r) * (y - r) + (x - c) * (x - c);
|
||||
if (float(rng.uniform(0.f, 1.f)) < prob && dist < inradsq && dist >= outradsq)
|
||||
{
|
||||
samples[i] = img(Rect(c, r, w, h));
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
samples.resize(min(i, maxnum));
|
||||
return samples;
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
@ -0,0 +1,37 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
TrackerStateEstimator::~TrackerStateEstimator()
|
||||
{
|
||||
}
|
||||
|
||||
Ptr<TrackerTargetState> TrackerStateEstimator::estimate(const std::vector<ConfidenceMap>& confidenceMaps)
|
||||
{
|
||||
if (confidenceMaps.empty())
|
||||
return Ptr<TrackerTargetState>();
|
||||
|
||||
return estimateImpl(confidenceMaps);
|
||||
}
|
||||
|
||||
void TrackerStateEstimator::update(std::vector<ConfidenceMap>& confidenceMaps)
|
||||
{
|
||||
if (confidenceMaps.empty())
|
||||
return;
|
||||
|
||||
return updateImpl(confidenceMaps);
|
||||
}
|
||||
|
||||
String TrackerStateEstimator::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
582
modules/video/src/tracking/detail/tracking_feature.cpp
Normal file
582
modules/video/src/tracking/detail/tracking_feature.cpp
Normal file
@ -0,0 +1,582 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "opencv2/video/detail/tracking.private.hpp"
|
||||
#include "opencv2/video/detail/tracking_feature.private.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
/*
|
||||
* TODO This implementation is based on apps/traincascade/
|
||||
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
|
||||
*/
|
||||
|
||||
CvParams::CvParams()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
//---------------------------- FeatureParams --------------------------------------
|
||||
|
||||
CvFeatureParams::CvFeatureParams()
|
||||
: maxCatCount(0)
|
||||
, featSize(1)
|
||||
, numFeatures(1)
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
//------------------------------------- FeatureEvaluator ---------------------------------------
|
||||
|
||||
void CvFeatureEvaluator::init(const CvFeatureParams* _featureParams, int _maxSampleCount, Size _winSize)
|
||||
{
|
||||
CV_Assert(_featureParams);
|
||||
CV_Assert(_maxSampleCount > 0);
|
||||
featureParams = (CvFeatureParams*)_featureParams;
|
||||
winSize = _winSize;
|
||||
numFeatures = _featureParams->numFeatures;
|
||||
cls.create((int)_maxSampleCount, 1, CV_32FC1);
|
||||
generateFeatures();
|
||||
}
|
||||
|
||||
void CvFeatureEvaluator::setImage(const Mat& img, uchar clsLabel, int idx)
|
||||
{
|
||||
winSize.width = img.cols;
|
||||
winSize.height = img.rows;
|
||||
//CV_Assert( img.cols == winSize.width );
|
||||
//CV_Assert( img.rows == winSize.height );
|
||||
CV_Assert(idx < cls.rows);
|
||||
cls.ptr<float>(idx)[0] = clsLabel;
|
||||
}
|
||||
|
||||
CvHaarFeatureParams::CvHaarFeatureParams()
|
||||
{
|
||||
isIntegral = false;
|
||||
}
|
||||
|
||||
//--------------------- HaarFeatureEvaluator ----------------
|
||||
|
||||
void CvHaarEvaluator::init(const CvFeatureParams* _featureParams, int /*_maxSampleCount*/, Size _winSize)
|
||||
{
|
||||
CV_Assert(_featureParams);
|
||||
int cols = (_winSize.width + 1) * (_winSize.height + 1);
|
||||
sum.create((int)1, cols, CV_32SC1);
|
||||
isIntegral = ((CvHaarFeatureParams*)_featureParams)->isIntegral;
|
||||
CvFeatureEvaluator::init(_featureParams, 1, _winSize);
|
||||
}
|
||||
|
||||
void CvHaarEvaluator::setImage(const Mat& img, uchar /*clsLabel*/, int /*idx*/)
|
||||
{
|
||||
CV_DbgAssert(!sum.empty());
|
||||
|
||||
winSize.width = img.cols;
|
||||
winSize.height = img.rows;
|
||||
|
||||
CvFeatureEvaluator::setImage(img, 1, 0);
|
||||
if (!isIntegral)
|
||||
{
|
||||
std::vector<Mat_<float>> ii_imgs;
|
||||
compute_integral(img, ii_imgs);
|
||||
_ii_img = ii_imgs[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
_ii_img = img;
|
||||
}
|
||||
}
|
||||
|
||||
void CvHaarEvaluator::generateFeatures()
|
||||
{
|
||||
generateFeatures(featureParams->numFeatures);
|
||||
}
|
||||
|
||||
void CvHaarEvaluator::generateFeatures(int nFeatures)
|
||||
{
|
||||
for (int i = 0; i < nFeatures; i++)
|
||||
{
|
||||
CvHaarEvaluator::FeatureHaar feature(Size(winSize.width, winSize.height));
|
||||
features.push_back(feature);
|
||||
}
|
||||
}
|
||||
|
||||
#define INITSIGMA(numAreas) (static_cast<float>(sqrt(256.0f * 256.0f / 12.0f * (numAreas))));
|
||||
|
||||
CvHaarEvaluator::FeatureHaar::FeatureHaar(Size patchSize)
|
||||
{
|
||||
try
|
||||
{
|
||||
generateRandomFeature(patchSize);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
// FIXIT
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
void CvHaarEvaluator::FeatureHaar::generateRandomFeature(Size patchSize)
|
||||
{
|
||||
cv::Point2i position;
|
||||
Size baseDim;
|
||||
Size sizeFactor;
|
||||
int area;
|
||||
|
||||
CV_Assert(!patchSize.empty());
|
||||
|
||||
//Size minSize = Size( 3, 3 );
|
||||
int minArea = 9;
|
||||
|
||||
bool valid = false;
|
||||
while (!valid)
|
||||
{
|
||||
//choose position and scale
|
||||
position.y = rand() % (patchSize.height);
|
||||
position.x = rand() % (patchSize.width);
|
||||
|
||||
baseDim.width = (int)((1 - sqrt(1 - (float)rand() * (float)(1.0 / RAND_MAX))) * patchSize.width);
|
||||
baseDim.height = (int)((1 - sqrt(1 - (float)rand() * (float)(1.0 / RAND_MAX))) * patchSize.height);
|
||||
|
||||
//select types
|
||||
//float probType[11] = {0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0909f, 0.0950f};
|
||||
float probType[11] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
|
||||
float prob = (float)rand() * (float)(1.0 / RAND_MAX);
|
||||
|
||||
if (prob < probType[0])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 2;
|
||||
sizeFactor.width = 1;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 1;
|
||||
m_numAreas = 2;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x;
|
||||
m_areas[1].y = position.y + baseDim.height;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 1;
|
||||
sizeFactor.width = 2;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 2;
|
||||
m_numAreas = 2;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 4;
|
||||
sizeFactor.width = 1;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 3;
|
||||
m_numAreas = 3;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -2;
|
||||
m_weights[2] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x;
|
||||
m_areas[1].y = position.y + baseDim.height;
|
||||
m_areas[1].height = 2 * baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_areas[2].y = position.y + 3 * baseDim.height;
|
||||
m_areas[2].x = position.x;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2] + probType[3])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 1;
|
||||
sizeFactor.width = 4;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 3;
|
||||
m_numAreas = 3;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -2;
|
||||
m_weights[2] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = 2 * baseDim.width;
|
||||
m_areas[2].y = position.y;
|
||||
m_areas[2].x = position.x + 3 * baseDim.width;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 2;
|
||||
sizeFactor.width = 2;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 5;
|
||||
m_numAreas = 4;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -1;
|
||||
m_weights[2] = -1;
|
||||
m_weights[3] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_areas[2].y = position.y + baseDim.height;
|
||||
m_areas[2].x = position.x;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_areas[3].y = position.y + baseDim.height;
|
||||
m_areas[3].x = position.x + baseDim.width;
|
||||
m_areas[3].height = baseDim.height;
|
||||
m_areas[3].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 3;
|
||||
sizeFactor.width = 3;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 6;
|
||||
m_numAreas = 2;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -9;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = 3 * baseDim.height;
|
||||
m_areas[0].width = 3 * baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y + baseDim.height;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_initMean = -8 * 128;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 3;
|
||||
sizeFactor.width = 1;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 7;
|
||||
m_numAreas = 3;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -2;
|
||||
m_weights[2] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x;
|
||||
m_areas[1].y = position.y + baseDim.height;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_areas[2].y = position.y + baseDim.height * 2;
|
||||
m_areas[2].x = position.x;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 1;
|
||||
sizeFactor.width = 3;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 8;
|
||||
m_numAreas = 3;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -2;
|
||||
m_weights[2] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_areas[2].y = position.y;
|
||||
m_areas[2].x = position.x + 2 * baseDim.width;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob < probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7] + probType[8])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 3;
|
||||
sizeFactor.width = 3;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 9;
|
||||
m_numAreas = 2;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -2;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = 3 * baseDim.height;
|
||||
m_areas[0].width = 3 * baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y + baseDim.height;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_initMean = 0;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob
|
||||
< probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7] + probType[8] + probType[9])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 3;
|
||||
sizeFactor.width = 1;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 10;
|
||||
m_numAreas = 3;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -1;
|
||||
m_weights[2] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x;
|
||||
m_areas[1].y = position.y + baseDim.height;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_areas[2].y = position.y + baseDim.height * 2;
|
||||
m_areas[2].x = position.x;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_initMean = 128;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else if (prob
|
||||
< probType[0] + probType[1] + probType[2] + probType[3] + probType[4] + probType[5] + probType[6] + probType[7] + probType[8] + probType[9]
|
||||
+ probType[10])
|
||||
{
|
||||
//check if feature is valid
|
||||
sizeFactor.height = 1;
|
||||
sizeFactor.width = 3;
|
||||
if (position.y + baseDim.height * sizeFactor.height >= patchSize.height || position.x + baseDim.width * sizeFactor.width >= patchSize.width)
|
||||
continue;
|
||||
area = baseDim.height * sizeFactor.height * baseDim.width * sizeFactor.width;
|
||||
if (area < minArea)
|
||||
continue;
|
||||
|
||||
m_type = 11;
|
||||
m_numAreas = 3;
|
||||
m_weights.resize(m_numAreas);
|
||||
m_weights[0] = 1;
|
||||
m_weights[1] = -1;
|
||||
m_weights[2] = 1;
|
||||
m_areas.resize(m_numAreas);
|
||||
m_areas[0].x = position.x;
|
||||
m_areas[0].y = position.y;
|
||||
m_areas[0].height = baseDim.height;
|
||||
m_areas[0].width = baseDim.width;
|
||||
m_areas[1].x = position.x + baseDim.width;
|
||||
m_areas[1].y = position.y;
|
||||
m_areas[1].height = baseDim.height;
|
||||
m_areas[1].width = baseDim.width;
|
||||
m_areas[2].y = position.y;
|
||||
m_areas[2].x = position.x + 2 * baseDim.width;
|
||||
m_areas[2].height = baseDim.height;
|
||||
m_areas[2].width = baseDim.width;
|
||||
m_initMean = 128;
|
||||
m_initSigma = INITSIGMA(m_numAreas);
|
||||
valid = true;
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsAssert, "");
|
||||
}
|
||||
|
||||
m_initSize = patchSize;
|
||||
m_curSize = m_initSize;
|
||||
m_scaleFactorWidth = m_scaleFactorHeight = 1.0f;
|
||||
m_scaleAreas.resize(m_numAreas);
|
||||
m_scaleWeights.resize(m_numAreas);
|
||||
for (int curArea = 0; curArea < m_numAreas; curArea++)
|
||||
{
|
||||
m_scaleAreas[curArea] = m_areas[curArea];
|
||||
m_scaleWeights[curArea] = (float)m_weights[curArea] / (float)(m_areas[curArea].width * m_areas[curArea].height);
|
||||
}
|
||||
}
|
||||
|
||||
bool CvHaarEvaluator::FeatureHaar::eval(const Mat& image, Rect /*ROI*/, float* result) const
|
||||
{
|
||||
|
||||
*result = 0.0f;
|
||||
|
||||
for (int curArea = 0; curArea < m_numAreas; curArea++)
|
||||
{
|
||||
*result += (float)getSum(image, Rect(m_areas[curArea].x, m_areas[curArea].y, m_areas[curArea].width, m_areas[curArea].height))
|
||||
* m_scaleWeights[curArea];
|
||||
}
|
||||
|
||||
/*
|
||||
if( image->getUseVariance() )
|
||||
{
|
||||
float variance = (float) image->getVariance( ROI );
|
||||
*result /= variance;
|
||||
}
|
||||
*/
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float CvHaarEvaluator::FeatureHaar::getSum(const Mat& image, Rect imageROI) const
|
||||
{
|
||||
// left upper Origin
|
||||
int OriginX = imageROI.x;
|
||||
int OriginY = imageROI.y;
|
||||
|
||||
// Check and fix width and height
|
||||
int Width = imageROI.width;
|
||||
int Height = imageROI.height;
|
||||
|
||||
if (OriginX + Width >= image.cols - 1)
|
||||
Width = (image.cols - 1) - OriginX;
|
||||
if (OriginY + Height >= image.rows - 1)
|
||||
Height = (image.rows - 1) - OriginY;
|
||||
|
||||
float value = 0;
|
||||
int depth = image.depth();
|
||||
|
||||
if (depth == CV_8U || depth == CV_32S)
|
||||
value = static_cast<float>(image.at<int>(OriginY + Height, OriginX + Width) + image.at<int>(OriginY, OriginX) - image.at<int>(OriginY, OriginX + Width)
|
||||
- image.at<int>(OriginY + Height, OriginX));
|
||||
else if (depth == CV_64F)
|
||||
value = static_cast<float>(image.at<double>(OriginY + Height, OriginX + Width) + image.at<double>(OriginY, OriginX)
|
||||
- image.at<double>(OriginY, OriginX + Width) - image.at<double>(OriginY + Height, OriginX));
|
||||
else if (depth == CV_32F)
|
||||
value = static_cast<float>(image.at<float>(OriginY + Height, OriginX + Width) + image.at<float>(OriginY, OriginX) - image.at<float>(OriginY, OriginX + Width)
|
||||
- image.at<float>(OriginY + Height, OriginX));
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
356
modules/video/src/tracking/detail/tracking_online_mil.cpp
Normal file
356
modules/video/src/tracking/detail/tracking_online_mil.cpp
Normal file
@ -0,0 +1,356 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../../precomp.hpp"
|
||||
#include "tracking_online_mil.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
#define sign(s) ((s > 0) ? 1 : ((s < 0) ? -1 : 0))
|
||||
|
||||
template <class T>
|
||||
class SortableElementRev
|
||||
{
|
||||
public:
|
||||
T _val;
|
||||
int _ind;
|
||||
SortableElementRev()
|
||||
: _val(), _ind(0)
|
||||
{
|
||||
}
|
||||
SortableElementRev(T val, int ind)
|
||||
{
|
||||
_val = val;
|
||||
_ind = ind;
|
||||
}
|
||||
bool operator<(SortableElementRev<T>& b)
|
||||
{
|
||||
return (_val < b._val);
|
||||
};
|
||||
};
|
||||
|
||||
static bool CompareSortableElementRev(const SortableElementRev<float>& i, const SortableElementRev<float>& j)
|
||||
{
|
||||
return i._val < j._val;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void sort_order_des(std::vector<T>& v, std::vector<int>& order)
|
||||
{
|
||||
uint n = (uint)v.size();
|
||||
std::vector<SortableElementRev<T>> v2;
|
||||
v2.resize(n);
|
||||
order.clear();
|
||||
order.resize(n);
|
||||
for (uint i = 0; i < n; i++)
|
||||
{
|
||||
v2[i]._ind = i;
|
||||
v2[i]._val = v[i];
|
||||
}
|
||||
//std::sort( v2.begin(), v2.end() );
|
||||
std::sort(v2.begin(), v2.end(), CompareSortableElementRev);
|
||||
for (uint i = 0; i < n; i++)
|
||||
{
|
||||
order[i] = v2[i]._ind;
|
||||
v[i] = v2[i]._val;
|
||||
}
|
||||
};
|
||||
|
||||
//implementations for strong classifier
|
||||
|
||||
ClfMilBoost::Params::Params()
|
||||
{
|
||||
_numSel = 50;
|
||||
_numFeat = 250;
|
||||
_lRate = 0.85f;
|
||||
}
|
||||
|
||||
ClfMilBoost::ClfMilBoost()
|
||||
: _numsamples(0)
|
||||
, _counter(0)
|
||||
{
|
||||
_myParams = ClfMilBoost::Params();
|
||||
_numsamples = 0;
|
||||
}
|
||||
|
||||
ClfMilBoost::~ClfMilBoost()
|
||||
{
|
||||
_selectors.clear();
|
||||
for (size_t i = 0; i < _weakclf.size(); i++)
|
||||
delete _weakclf.at(i);
|
||||
}
|
||||
|
||||
void ClfMilBoost::init(const ClfMilBoost::Params& parameters)
|
||||
{
|
||||
_myParams = parameters;
|
||||
_numsamples = 0;
|
||||
|
||||
//_ftrs = Ftr::generate( _myParams->_ftrParams, _myParams->_numFeat );
|
||||
// if( params->_storeFtrHistory )
|
||||
// Ftr::toViz( _ftrs, "haarftrs" );
|
||||
_weakclf.resize(_myParams._numFeat);
|
||||
for (int k = 0; k < _myParams._numFeat; k++)
|
||||
{
|
||||
_weakclf[k] = new ClfOnlineStump(k);
|
||||
_weakclf[k]->_lRate = _myParams._lRate;
|
||||
}
|
||||
_counter = 0;
|
||||
}
|
||||
|
||||
void ClfMilBoost::update(const Mat& posx, const Mat& negx)
|
||||
{
|
||||
int numneg = negx.rows;
|
||||
int numpos = posx.rows;
|
||||
|
||||
// compute ftrs
|
||||
//if( !posx.ftrsComputed() )
|
||||
// Ftr::compute( posx, _ftrs );
|
||||
//if( !negx.ftrsComputed() )
|
||||
// Ftr::compute( negx, _ftrs );
|
||||
|
||||
// initialize H
|
||||
static std::vector<float> Hpos, Hneg;
|
||||
Hpos.clear();
|
||||
Hneg.clear();
|
||||
Hpos.resize(posx.rows, 0.0f), Hneg.resize(negx.rows, 0.0f);
|
||||
|
||||
_selectors.clear();
|
||||
std::vector<float> posw(posx.rows), negw(negx.rows);
|
||||
std::vector<std::vector<float>> pospred(_weakclf.size()), negpred(_weakclf.size());
|
||||
|
||||
// train all weak classifiers without weights
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int m = 0; m < _myParams._numFeat; m++)
|
||||
{
|
||||
_weakclf[m]->update(posx, negx);
|
||||
pospred[m] = _weakclf[m]->classifySetF(posx);
|
||||
negpred[m] = _weakclf[m]->classifySetF(negx);
|
||||
}
|
||||
|
||||
// pick the best features
|
||||
for (int s = 0; s < _myParams._numSel; s++)
|
||||
{
|
||||
|
||||
// compute errors/likl for all weak clfs
|
||||
std::vector<float> poslikl(_weakclf.size(), 1.0f), neglikl(_weakclf.size()), likl(_weakclf.size());
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int w = 0; w < (int)_weakclf.size(); w++)
|
||||
{
|
||||
float lll = 1.0f;
|
||||
for (int j = 0; j < numpos; j++)
|
||||
lll *= (1 - sigmoid(Hpos[j] + pospred[w][j]));
|
||||
poslikl[w] = (float)-log(1 - lll + 1e-5);
|
||||
|
||||
lll = 0.0f;
|
||||
for (int j = 0; j < numneg; j++)
|
||||
lll += (float)-log(1e-5f + 1 - sigmoid(Hneg[j] + negpred[w][j]));
|
||||
neglikl[w] = lll;
|
||||
|
||||
likl[w] = poslikl[w] / numpos + neglikl[w] / numneg;
|
||||
}
|
||||
|
||||
// pick best weak clf
|
||||
std::vector<int> order;
|
||||
sort_order_des(likl, order);
|
||||
|
||||
// find best weakclf that isn't already included
|
||||
for (uint k = 0; k < order.size(); k++)
|
||||
if (std::count(_selectors.begin(), _selectors.end(), order[k]) == 0)
|
||||
{
|
||||
_selectors.push_back(order[k]);
|
||||
break;
|
||||
}
|
||||
|
||||
// update H = H + h_m
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int k = 0; k < posx.rows; k++)
|
||||
Hpos[k] += pospred[_selectors[s]][k];
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int k = 0; k < negx.rows; k++)
|
||||
Hneg[k] += negpred[_selectors[s]][k];
|
||||
}
|
||||
|
||||
//if( _myParams->_storeFtrHistory )
|
||||
//for ( uint j = 0; j < _selectors.size(); j++ )
|
||||
// _ftrHist( _selectors[j], _counter ) = 1.0f / ( j + 1 );
|
||||
|
||||
_counter++;
|
||||
/* */
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<float> ClfMilBoost::classify(const Mat& x, bool logR)
|
||||
{
|
||||
int numsamples = x.rows;
|
||||
std::vector<float> res(numsamples);
|
||||
std::vector<float> tr;
|
||||
|
||||
for (uint w = 0; w < _selectors.size(); w++)
|
||||
{
|
||||
tr = _weakclf[_selectors[w]]->classifySetF(x);
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int j = 0; j < numsamples; j++)
|
||||
{
|
||||
res[j] += tr[j];
|
||||
}
|
||||
}
|
||||
|
||||
// return probabilities or log odds ratio
|
||||
if (!logR)
|
||||
{
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int j = 0; j < (int)res.size(); j++)
|
||||
{
|
||||
res[j] = sigmoid(res[j]);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
//implementations for weak classifier
|
||||
|
||||
ClfOnlineStump::ClfOnlineStump()
|
||||
: _mu0(0), _mu1(0), _sig0(0), _sig1(0)
|
||||
, _q(0)
|
||||
, _s(0)
|
||||
, _log_n1(0), _log_n0(0)
|
||||
, _e1(0), _e0(0)
|
||||
, _lRate(0)
|
||||
{
|
||||
_trained = false;
|
||||
_ind = -1;
|
||||
init();
|
||||
}
|
||||
|
||||
ClfOnlineStump::ClfOnlineStump(int ind)
|
||||
: _mu0(0), _mu1(0), _sig0(0), _sig1(0)
|
||||
, _q(0)
|
||||
, _s(0)
|
||||
, _log_n1(0), _log_n0(0)
|
||||
, _e1(0), _e0(0)
|
||||
, _lRate(0)
|
||||
{
|
||||
_trained = false;
|
||||
_ind = ind;
|
||||
init();
|
||||
}
|
||||
void ClfOnlineStump::init()
|
||||
{
|
||||
_mu0 = 0;
|
||||
_mu1 = 0;
|
||||
_sig0 = 1;
|
||||
_sig1 = 1;
|
||||
_lRate = 0.85f;
|
||||
_trained = false;
|
||||
}
|
||||
|
||||
void ClfOnlineStump::update(const Mat& posx, const Mat& negx, const Mat_<float>& /*posw*/, const Mat_<float>& /*negw*/)
|
||||
{
|
||||
//std::cout << " ClfOnlineStump::update" << _ind << std::endl;
|
||||
float posmu = 0.0, negmu = 0.0;
|
||||
if (posx.cols > 0)
|
||||
posmu = float(mean(posx.col(_ind))[0]);
|
||||
if (negx.cols > 0)
|
||||
negmu = float(mean(negx.col(_ind))[0]);
|
||||
|
||||
if (_trained)
|
||||
{
|
||||
if (posx.cols > 0)
|
||||
{
|
||||
_mu1 = (_lRate * _mu1 + (1 - _lRate) * posmu);
|
||||
cv::Mat diff = posx.col(_ind) - _mu1;
|
||||
_sig1 = _lRate * _sig1 + (1 - _lRate) * float(mean(diff.mul(diff))[0]);
|
||||
}
|
||||
if (negx.cols > 0)
|
||||
{
|
||||
_mu0 = (_lRate * _mu0 + (1 - _lRate) * negmu);
|
||||
cv::Mat diff = negx.col(_ind) - _mu0;
|
||||
_sig0 = _lRate * _sig0 + (1 - _lRate) * float(mean(diff.mul(diff))[0]);
|
||||
}
|
||||
|
||||
_q = (_mu1 - _mu0) / 2;
|
||||
_s = sign(_mu1 - _mu0);
|
||||
_log_n0 = std::log(float(1.0f / pow(_sig0, 0.5f)));
|
||||
_log_n1 = std::log(float(1.0f / pow(_sig1, 0.5f)));
|
||||
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
|
||||
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
|
||||
_e1 = -1.0f / (2.0f * _sig1 + std::numeric_limits<float>::min());
|
||||
_e0 = -1.0f / (2.0f * _sig0 + std::numeric_limits<float>::min());
|
||||
}
|
||||
else
|
||||
{
|
||||
_trained = true;
|
||||
if (posx.cols > 0)
|
||||
{
|
||||
_mu1 = posmu;
|
||||
cv::Scalar scal_mean, scal_std_dev;
|
||||
cv::meanStdDev(posx.col(_ind), scal_mean, scal_std_dev);
|
||||
_sig1 = float(scal_std_dev[0]) * float(scal_std_dev[0]) + 1e-9f;
|
||||
}
|
||||
|
||||
if (negx.cols > 0)
|
||||
{
|
||||
_mu0 = negmu;
|
||||
cv::Scalar scal_mean, scal_std_dev;
|
||||
cv::meanStdDev(negx.col(_ind), scal_mean, scal_std_dev);
|
||||
_sig0 = float(scal_std_dev[0]) * float(scal_std_dev[0]) + 1e-9f;
|
||||
}
|
||||
|
||||
_q = (_mu1 - _mu0) / 2;
|
||||
_s = sign(_mu1 - _mu0);
|
||||
_log_n0 = std::log(float(1.0f / pow(_sig0, 0.5f)));
|
||||
_log_n1 = std::log(float(1.0f / pow(_sig1, 0.5f)));
|
||||
//_e1 = -1.0f/(2.0f*_sig1+1e-99f);
|
||||
//_e0 = -1.0f/(2.0f*_sig0+1e-99f);
|
||||
_e1 = -1.0f / (2.0f * _sig1 + std::numeric_limits<float>::min());
|
||||
_e0 = -1.0f / (2.0f * _sig0 + std::numeric_limits<float>::min());
|
||||
}
|
||||
}
|
||||
|
||||
bool ClfOnlineStump::classify(const Mat& x, int i)
|
||||
{
|
||||
float xx = x.at<float>(i, _ind);
|
||||
double log_p0 = (xx - _mu0) * (xx - _mu0) * _e0 + _log_n0;
|
||||
double log_p1 = (xx - _mu1) * (xx - _mu1) * _e1 + _log_n1;
|
||||
return log_p1 > log_p0;
|
||||
}
|
||||
|
||||
float ClfOnlineStump::classifyF(const Mat& x, int i)
|
||||
{
|
||||
float xx = x.at<float>(i, _ind);
|
||||
double log_p0 = (xx - _mu0) * (xx - _mu0) * _e0 + _log_n0;
|
||||
double log_p1 = (xx - _mu1) * (xx - _mu1) * _e1 + _log_n1;
|
||||
return float(log_p1 - log_p0);
|
||||
}
|
||||
|
||||
inline std::vector<float> ClfOnlineStump::classifySetF(const Mat& x)
|
||||
{
|
||||
std::vector<float> res(x.rows);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int k = 0; k < (int)res.size(); k++)
|
||||
{
|
||||
res[k] = classifyF(x, k);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
79
modules/video/src/tracking/detail/tracking_online_mil.hpp
Normal file
79
modules/video/src/tracking/detail/tracking_online_mil.hpp
Normal file
@ -0,0 +1,79 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_ONLINE_MIL_HPP
|
||||
#define OPENCV_VIDEO_DETAIL_TRACKING_ONLINE_MIL_HPP
|
||||
|
||||
#include <limits>
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
//! @addtogroup tracking_detail
|
||||
//! @{
|
||||
|
||||
//TODO based on the original implementation
|
||||
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
|
||||
|
||||
class ClfOnlineStump;
|
||||
|
||||
class CV_EXPORTS ClfMilBoost
|
||||
{
|
||||
public:
|
||||
struct CV_EXPORTS Params
|
||||
{
|
||||
Params();
|
||||
int _numSel;
|
||||
int _numFeat;
|
||||
float _lRate;
|
||||
};
|
||||
|
||||
ClfMilBoost();
|
||||
~ClfMilBoost();
|
||||
void init(const ClfMilBoost::Params& parameters = ClfMilBoost::Params());
|
||||
void update(const Mat& posx, const Mat& negx);
|
||||
std::vector<float> classify(const Mat& x, bool logR = true);
|
||||
|
||||
inline float sigmoid(float x)
|
||||
{
|
||||
return 1.0f / (1.0f + exp(-x));
|
||||
}
|
||||
|
||||
private:
|
||||
uint _numsamples;
|
||||
ClfMilBoost::Params _myParams;
|
||||
std::vector<int> _selectors;
|
||||
std::vector<ClfOnlineStump*> _weakclf;
|
||||
uint _counter;
|
||||
};
|
||||
|
||||
class ClfOnlineStump
|
||||
{
|
||||
public:
|
||||
float _mu0, _mu1, _sig0, _sig1;
|
||||
float _q;
|
||||
int _s;
|
||||
float _log_n1, _log_n0;
|
||||
float _e1, _e0;
|
||||
float _lRate;
|
||||
|
||||
ClfOnlineStump();
|
||||
ClfOnlineStump(int ind);
|
||||
void init();
|
||||
void update(const Mat& posx, const Mat& negx, const cv::Mat_<float>& posw = cv::Mat_<float>(), const cv::Mat_<float>& negw = cv::Mat_<float>());
|
||||
bool classify(const Mat& x, int i);
|
||||
float classifyF(const Mat& x, int i);
|
||||
std::vector<float> classifySetF(const Mat& x);
|
||||
|
||||
private:
|
||||
bool _trained;
|
||||
int _ind;
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
||||
|
||||
#endif
|
19
modules/video/src/tracking/tracker.cpp
Normal file
19
modules/video/src/tracking/tracker.cpp
Normal file
@ -0,0 +1,19 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
|
||||
namespace cv {
|
||||
|
||||
Tracker::Tracker()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
Tracker::~Tracker()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
} // namespace cv
|
140
modules/video/src/tracking/tracker_goturn.cpp
Normal file
140
modules/video/src/tracking/tracker_goturn.cpp
Normal file
@ -0,0 +1,140 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCV_DNN
|
||||
#include "opencv2/dnn.hpp"
|
||||
#endif
|
||||
|
||||
namespace cv {
|
||||
|
||||
TrackerGOTURN::TrackerGOTURN()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
TrackerGOTURN::~TrackerGOTURN()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
TrackerGOTURN::Params::Params()
|
||||
{
|
||||
modelTxt = "goturn.prototxt";
|
||||
modelBin = "goturn.caffemodel";
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCV_DNN
|
||||
|
||||
class TrackerGOTURNImpl : public TrackerGOTURN
|
||||
{
|
||||
public:
|
||||
TrackerGOTURNImpl(const TrackerGOTURN::Params& parameters)
|
||||
: params(parameters)
|
||||
{
|
||||
// Load GOTURN architecture from *.prototxt and pretrained weights from *.caffemodel
|
||||
net = dnn::readNetFromCaffe(params.modelTxt, params.modelBin);
|
||||
CV_Assert(!net.empty());
|
||||
}
|
||||
|
||||
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
|
||||
|
||||
void setBoudingBox(Rect boundingBox)
|
||||
{
|
||||
if (image_.empty())
|
||||
CV_Error(Error::StsInternal, "Set image first");
|
||||
boundingBox_ = boundingBox & Rect(Point(0, 0), image_.size());
|
||||
}
|
||||
|
||||
TrackerGOTURN::Params params;
|
||||
|
||||
dnn::Net net;
|
||||
Rect boundingBox_;
|
||||
Mat image_;
|
||||
};
|
||||
|
||||
void TrackerGOTURNImpl::init(InputArray image, const Rect& boundingBox)
|
||||
{
|
||||
image_ = image.getMat().clone();
|
||||
setBoudingBox(boundingBox);
|
||||
}
|
||||
|
||||
bool TrackerGOTURNImpl::update(InputArray image, Rect& boundingBox)
|
||||
{
|
||||
int INPUT_SIZE = 227;
|
||||
//Using prevFrame & prevBB from model and curFrame GOTURN calculating curBB
|
||||
InputArray curFrame = image;
|
||||
Mat prevFrame = image_;
|
||||
Rect2d prevBB = boundingBox_;
|
||||
Rect curBB;
|
||||
|
||||
float padTargetPatch = 2.0;
|
||||
Rect2f searchPatchRect, targetPatchRect;
|
||||
Point2f currCenter, prevCenter;
|
||||
Mat prevFramePadded, curFramePadded;
|
||||
Mat searchPatch, targetPatch;
|
||||
|
||||
prevCenter.x = (float)(prevBB.x + prevBB.width / 2);
|
||||
prevCenter.y = (float)(prevBB.y + prevBB.height / 2);
|
||||
|
||||
targetPatchRect.width = (float)(prevBB.width * padTargetPatch);
|
||||
targetPatchRect.height = (float)(prevBB.height * padTargetPatch);
|
||||
targetPatchRect.x = (float)(prevCenter.x - prevBB.width * padTargetPatch / 2.0 + targetPatchRect.width);
|
||||
targetPatchRect.y = (float)(prevCenter.y - prevBB.height * padTargetPatch / 2.0 + targetPatchRect.height);
|
||||
|
||||
targetPatchRect.width = std::min(targetPatchRect.width, (float)prevFrame.cols);
|
||||
targetPatchRect.height = std::min(targetPatchRect.height, (float)prevFrame.rows);
|
||||
targetPatchRect.x = std::max(-prevFrame.cols * 0.5f, std::min(targetPatchRect.x, prevFrame.cols * 1.5f));
|
||||
targetPatchRect.y = std::max(-prevFrame.rows * 0.5f, std::min(targetPatchRect.y, prevFrame.rows * 1.5f));
|
||||
|
||||
copyMakeBorder(prevFrame, prevFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
|
||||
targetPatch = prevFramePadded(targetPatchRect).clone();
|
||||
|
||||
copyMakeBorder(curFrame, curFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
|
||||
searchPatch = curFramePadded(targetPatchRect).clone();
|
||||
|
||||
// Preprocess
|
||||
// Resize
|
||||
resize(targetPatch, targetPatch, Size(INPUT_SIZE, INPUT_SIZE), 0, 0, INTER_LINEAR_EXACT);
|
||||
resize(searchPatch, searchPatch, Size(INPUT_SIZE, INPUT_SIZE), 0, 0, INTER_LINEAR_EXACT);
|
||||
|
||||
// Convert to Float type and subtract mean
|
||||
Mat targetBlob = dnn::blobFromImage(targetPatch, 1.0f, Size(), Scalar::all(128), false);
|
||||
Mat searchBlob = dnn::blobFromImage(searchPatch, 1.0f, Size(), Scalar::all(128), false);
|
||||
|
||||
net.setInput(targetBlob, "data1");
|
||||
net.setInput(searchBlob, "data2");
|
||||
|
||||
Mat resMat = net.forward("scale").reshape(1, 1);
|
||||
|
||||
curBB.x = cvRound(targetPatchRect.x + (resMat.at<float>(0) * targetPatchRect.width / INPUT_SIZE) - targetPatchRect.width);
|
||||
curBB.y = cvRound(targetPatchRect.y + (resMat.at<float>(1) * targetPatchRect.height / INPUT_SIZE) - targetPatchRect.height);
|
||||
curBB.width = cvRound((resMat.at<float>(2) - resMat.at<float>(0)) * targetPatchRect.width / INPUT_SIZE);
|
||||
curBB.height = cvRound((resMat.at<float>(3) - resMat.at<float>(1)) * targetPatchRect.height / INPUT_SIZE);
|
||||
|
||||
// Predicted BB
|
||||
boundingBox = curBB & Rect(Point(0, 0), image_.size());
|
||||
|
||||
// Set new model image and BB from current frame
|
||||
image_ = image.getMat().clone();
|
||||
setBoudingBox(curBB);
|
||||
return true;
|
||||
}
|
||||
|
||||
Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params& parameters)
|
||||
{
|
||||
return makePtr<TrackerGOTURNImpl>(parameters);
|
||||
}
|
||||
|
||||
#else // OPENCV_HAVE_DNN
|
||||
Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params& parameters)
|
||||
{
|
||||
(void)(parameters);
|
||||
CV_Error(cv::Error::StsNotImplemented, "to use GOTURN, the tracking module needs to be built with opencv_dnn !");
|
||||
}
|
||||
#endif // OPENCV_HAVE_DNN
|
||||
|
||||
} // namespace cv
|
227
modules/video/src/tracking/tracker_mil.cpp
Normal file
227
modules/video/src/tracking/tracker_mil.cpp
Normal file
@ -0,0 +1,227 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include "detail/tracker_mil_model.hpp"
|
||||
|
||||
#include "detail/tracker_feature_haar.impl.hpp"
|
||||
|
||||
namespace cv {
|
||||
inline namespace tracking {
|
||||
namespace impl {
|
||||
|
||||
using cv::detail::tracking::internal::TrackerFeatureHAAR;
|
||||
|
||||
|
||||
class TrackerMILImpl CV_FINAL : public TrackerMIL
|
||||
{
|
||||
public:
|
||||
TrackerMILImpl(const TrackerMIL::Params& parameters);
|
||||
|
||||
virtual void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
virtual bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
|
||||
|
||||
void compute_integral(const Mat& img, Mat& ii_img);
|
||||
|
||||
TrackerMIL::Params params;
|
||||
|
||||
Ptr<TrackerMILModel> model;
|
||||
Ptr<TrackerSampler> sampler;
|
||||
Ptr<TrackerFeatureSet> featureSet;
|
||||
};
|
||||
|
||||
TrackerMILImpl::TrackerMILImpl(const TrackerMIL::Params& parameters)
|
||||
: params(parameters)
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
void TrackerMILImpl::compute_integral(const Mat& img, Mat& ii_img)
|
||||
{
|
||||
Mat ii;
|
||||
std::vector<Mat> ii_imgs;
|
||||
integral(img, ii, CV_32F); // FIXIT split first
|
||||
split(ii, ii_imgs);
|
||||
ii_img = ii_imgs[0];
|
||||
}
|
||||
|
||||
void TrackerMILImpl::init(InputArray image, const Rect& boundingBox)
|
||||
{
|
||||
sampler = makePtr<TrackerSampler>();
|
||||
featureSet = makePtr<TrackerFeatureSet>();
|
||||
|
||||
Mat intImage;
|
||||
compute_integral(image.getMat(), intImage);
|
||||
TrackerSamplerCSC::Params CSCparameters;
|
||||
CSCparameters.initInRad = params.samplerInitInRadius;
|
||||
CSCparameters.searchWinSize = params.samplerSearchWinSize;
|
||||
CSCparameters.initMaxNegNum = params.samplerInitMaxNegNum;
|
||||
CSCparameters.trackInPosRad = params.samplerTrackInRadius;
|
||||
CSCparameters.trackMaxPosNum = params.samplerTrackMaxPosNum;
|
||||
CSCparameters.trackMaxNegNum = params.samplerTrackMaxNegNum;
|
||||
|
||||
Ptr<TrackerSamplerAlgorithm> CSCSampler = makePtr<TrackerSamplerCSC>(CSCparameters);
|
||||
CV_Assert(sampler->addTrackerSamplerAlgorithm(CSCSampler));
|
||||
|
||||
//or add CSC sampler with default parameters
|
||||
//sampler->addTrackerSamplerAlgorithm( "CSC" );
|
||||
|
||||
//Positive sampling
|
||||
CSCSampler.staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_POS);
|
||||
sampler->sampling(intImage, boundingBox);
|
||||
std::vector<Mat> posSamples = sampler->getSamples();
|
||||
|
||||
//Negative sampling
|
||||
CSCSampler.staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_NEG);
|
||||
sampler->sampling(intImage, boundingBox);
|
||||
std::vector<Mat> negSamples = sampler->getSamples();
|
||||
|
||||
CV_Assert(!posSamples.empty());
|
||||
CV_Assert(!negSamples.empty());
|
||||
|
||||
//compute HAAR features
|
||||
TrackerFeatureHAAR::Params HAARparameters;
|
||||
HAARparameters.numFeatures = params.featureSetNumFeatures;
|
||||
HAARparameters.rectSize = Size((int)boundingBox.width, (int)boundingBox.height);
|
||||
HAARparameters.isIntegral = true;
|
||||
Ptr<TrackerFeature> trackerFeature = makePtr<TrackerFeatureHAAR>(HAARparameters);
|
||||
featureSet->addTrackerFeature(trackerFeature);
|
||||
|
||||
featureSet->extraction(posSamples);
|
||||
const std::vector<Mat> posResponse = featureSet->getResponses();
|
||||
|
||||
featureSet->extraction(negSamples);
|
||||
const std::vector<Mat> negResponse = featureSet->getResponses();
|
||||
|
||||
model = makePtr<TrackerMILModel>(boundingBox);
|
||||
Ptr<TrackerStateEstimatorMILBoosting> stateEstimator = makePtr<TrackerStateEstimatorMILBoosting>(params.featureSetNumFeatures);
|
||||
model->setTrackerStateEstimator(stateEstimator);
|
||||
|
||||
//Run model estimation and update
|
||||
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_POSITIVE, posSamples);
|
||||
model->modelEstimation(posResponse);
|
||||
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_NEGATIVE, negSamples);
|
||||
model->modelEstimation(negResponse);
|
||||
model->modelUpdate();
|
||||
}
|
||||
|
||||
bool TrackerMILImpl::update(InputArray image, Rect& boundingBox)
|
||||
{
|
||||
Mat intImage;
|
||||
compute_integral(image.getMat(), intImage);
|
||||
|
||||
//get the last location [AAM] X(k-1)
|
||||
Ptr<TrackerTargetState> lastLocation = model->getLastTargetState();
|
||||
Rect lastBoundingBox((int)lastLocation->getTargetPosition().x, (int)lastLocation->getTargetPosition().y, lastLocation->getTargetWidth(),
|
||||
lastLocation->getTargetHeight());
|
||||
|
||||
//sampling new frame based on last location
|
||||
auto& samplers = sampler->getSamplers();
|
||||
CV_Assert(!samplers.empty());
|
||||
CV_Assert(samplers[0]);
|
||||
samplers[0].staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_DETECT);
|
||||
sampler->sampling(intImage, lastBoundingBox);
|
||||
std::vector<Mat> detectSamples = sampler->getSamples();
|
||||
if (detectSamples.empty())
|
||||
return false;
|
||||
|
||||
/*//TODO debug samples
|
||||
Mat f;
|
||||
image.copyTo(f);
|
||||
|
||||
for( size_t i = 0; i < detectSamples.size(); i=i+10 )
|
||||
{
|
||||
Size sz;
|
||||
Point off;
|
||||
detectSamples.at(i).locateROI(sz, off);
|
||||
rectangle(f, Rect(off.x,off.y,detectSamples.at(i).cols,detectSamples.at(i).rows), Scalar(255,0,0), 1);
|
||||
}*/
|
||||
|
||||
//extract features from new samples
|
||||
featureSet->extraction(detectSamples);
|
||||
std::vector<Mat> response = featureSet->getResponses();
|
||||
|
||||
//predict new location
|
||||
ConfidenceMap cmap;
|
||||
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_ESTIMATON, detectSamples);
|
||||
model.staticCast<TrackerMILModel>()->responseToConfidenceMap(response, cmap);
|
||||
model->getTrackerStateEstimator().staticCast<TrackerStateEstimatorMILBoosting>()->setCurrentConfidenceMap(cmap);
|
||||
|
||||
if (!model->runStateEstimator())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
Ptr<TrackerTargetState> currentState = model->getLastTargetState();
|
||||
boundingBox = Rect((int)currentState->getTargetPosition().x, (int)currentState->getTargetPosition().y, currentState->getTargetWidth(),
|
||||
currentState->getTargetHeight());
|
||||
|
||||
/*//TODO debug
|
||||
rectangle(f, lastBoundingBox, Scalar(0,255,0), 1);
|
||||
rectangle(f, boundingBox, Scalar(0,0,255), 1);
|
||||
imshow("f", f);
|
||||
//waitKey( 0 );*/
|
||||
|
||||
//sampling new frame based on new location
|
||||
//Positive sampling
|
||||
samplers[0].staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_POS);
|
||||
sampler->sampling(intImage, boundingBox);
|
||||
std::vector<Mat> posSamples = sampler->getSamples();
|
||||
|
||||
//Negative sampling
|
||||
samplers[0].staticCast<TrackerSamplerCSC>()->setMode(TrackerSamplerCSC::MODE_INIT_NEG);
|
||||
sampler->sampling(intImage, boundingBox);
|
||||
std::vector<Mat> negSamples = sampler->getSamples();
|
||||
|
||||
if (posSamples.empty() || negSamples.empty())
|
||||
return false;
|
||||
|
||||
//extract features
|
||||
featureSet->extraction(posSamples);
|
||||
std::vector<Mat> posResponse = featureSet->getResponses();
|
||||
|
||||
featureSet->extraction(negSamples);
|
||||
std::vector<Mat> negResponse = featureSet->getResponses();
|
||||
|
||||
//model estimate
|
||||
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_POSITIVE, posSamples);
|
||||
model->modelEstimation(posResponse);
|
||||
model.staticCast<TrackerMILModel>()->setMode(TrackerMILModel::MODE_NEGATIVE, negSamples);
|
||||
model->modelEstimation(negResponse);
|
||||
|
||||
//model update
|
||||
model->modelUpdate();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
}} // namespace tracking::impl
|
||||
|
||||
TrackerMIL::Params::Params()
|
||||
{
|
||||
samplerInitInRadius = 3;
|
||||
samplerSearchWinSize = 25;
|
||||
samplerInitMaxNegNum = 65;
|
||||
samplerTrackInRadius = 4;
|
||||
samplerTrackMaxPosNum = 100000;
|
||||
samplerTrackMaxNegNum = 65;
|
||||
featureSetNumFeatures = 250;
|
||||
}
|
||||
|
||||
TrackerMIL::TrackerMIL()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
TrackerMIL::~TrackerMIL()
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
Ptr<TrackerMIL> TrackerMIL::create(const TrackerMIL::Params& parameters)
|
||||
{
|
||||
return makePtr<tracking::impl::TrackerMILImpl>(parameters);
|
||||
}
|
||||
|
||||
} // namespace cv
|
@ -7,4 +7,19 @@
|
||||
#include <hpx/hpx_main.hpp>
|
||||
#endif
|
||||
|
||||
CV_TEST_MAIN("cv")
|
||||
static
|
||||
void initTests()
|
||||
{
|
||||
const char* extraTestDataPath =
|
||||
#ifdef WINRT
|
||||
NULL;
|
||||
#else
|
||||
getenv("OPENCV_DNN_TEST_DATA_PATH");
|
||||
#endif
|
||||
if (extraTestDataPath)
|
||||
cvtest::addDataSearchPath(extraTestDataPath);
|
||||
|
||||
cvtest::addDataSearchSubDirectory(""); // override "cv" prefix below to access without "../dnn" hacks
|
||||
}
|
||||
|
||||
CV_TEST_MAIN("cv", initTests())
|
||||
|
97
modules/video/test/test_trackers.cpp
Normal file
97
modules/video/test/test_trackers.cpp
Normal file
@ -0,0 +1,97 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
//#define DEBUG_TEST
|
||||
#ifdef DEBUG_TEST
|
||||
#include <opencv2/highgui.hpp>
|
||||
#endif
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
//using namespace cv::tracking;
|
||||
|
||||
#define TESTSET_NAMES testing::Values("david", "dudek", "faceocc2")
|
||||
|
||||
const string TRACKING_DIR = "tracking";
|
||||
const string FOLDER_IMG = "data";
|
||||
const string FOLDER_OMIT_INIT = "initOmit";
|
||||
|
||||
#include "test_trackers.impl.hpp"
|
||||
|
||||
//[TESTDATA]
|
||||
PARAM_TEST_CASE(DistanceAndOverlap, string)
|
||||
{
|
||||
string dataset;
|
||||
virtual void SetUp()
|
||||
{
|
||||
dataset = GET_PARAM(0);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(DistanceAndOverlap, MIL)
|
||||
{
|
||||
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .65f, NoTransform);
|
||||
test.run();
|
||||
}
|
||||
|
||||
TEST_P(DistanceAndOverlap, Shifted_Data_MIL)
|
||||
{
|
||||
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .6f, CenterShiftLeft);
|
||||
test.run();
|
||||
}
|
||||
|
||||
/***************************************************************************************/
|
||||
//Tests with scaled initial window
|
||||
|
||||
TEST_P(DistanceAndOverlap, Scaled_Data_MIL)
|
||||
{
|
||||
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .7f, Scale_1_1);
|
||||
test.run();
|
||||
}
|
||||
|
||||
TEST_P(DistanceAndOverlap, GOTURN)
|
||||
{
|
||||
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
|
||||
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
|
||||
cv::TrackerGOTURN::Params params;
|
||||
params.modelTxt = model;
|
||||
params.modelBin = weights;
|
||||
TrackerTest<Tracker, Rect> test(TrackerGOTURN::create(params), dataset, 35, .35f, NoTransform);
|
||||
test.run();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Tracking, DistanceAndOverlap, TESTSET_NAMES);
|
||||
|
||||
TEST(GOTURN, memory_usage)
|
||||
{
|
||||
cv::Rect roi(145, 70, 85, 85);
|
||||
|
||||
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
|
||||
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
|
||||
cv::TrackerGOTURN::Params params;
|
||||
params.modelTxt = model;
|
||||
params.modelBin = weights;
|
||||
cv::Ptr<Tracker> tracker = TrackerGOTURN::create(params);
|
||||
|
||||
string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
|
||||
cv::VideoCapture video(inputVideo);
|
||||
ASSERT_TRUE(video.isOpened()) << inputVideo;
|
||||
|
||||
cv::Mat frame;
|
||||
video >> frame;
|
||||
ASSERT_FALSE(frame.empty()) << inputVideo;
|
||||
tracker->init(frame, roi);
|
||||
string ground_truth_bb;
|
||||
for (int nframes = 0; nframes < 15; ++nframes)
|
||||
{
|
||||
std::cout << "Frame: " << nframes << std::endl;
|
||||
video >> frame;
|
||||
bool res = tracker->update(frame, roi);
|
||||
ASSERT_TRUE(res);
|
||||
std::cout << "Predicted ROI: " << roi << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
}} // namespace opencv_test::
|
368
modules/video/test/test_trackers.impl.hpp
Normal file
368
modules/video/test/test_trackers.impl.hpp
Normal file
@ -0,0 +1,368 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
/*
|
||||
* The Evaluation Methodologies are partially based on:
|
||||
* ====================================================================================================================
|
||||
* [OTB] Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," in Computer Vision and Pattern Recognition (CVPR), 2013
|
||||
*
|
||||
*/
|
||||
|
||||
enum BBTransformations
|
||||
{
|
||||
NoTransform = 0,
|
||||
CenterShiftLeft = 1,
|
||||
CenterShiftRight = 2,
|
||||
CenterShiftUp = 3,
|
||||
CenterShiftDown = 4,
|
||||
CornerShiftTopLeft = 5,
|
||||
CornerShiftTopRight = 6,
|
||||
CornerShiftBottomLeft = 7,
|
||||
CornerShiftBottomRight = 8,
|
||||
Scale_0_8 = 9,
|
||||
Scale_0_9 = 10,
|
||||
Scale_1_1 = 11,
|
||||
Scale_1_2 = 12
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
std::vector<std::string> splitString(const std::string& s_, const std::string& delimiter)
|
||||
{
|
||||
std::string s = s_;
|
||||
std::vector<string> token;
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(delimiter)) != std::string::npos)
|
||||
{
|
||||
token.push_back(s.substr(0, pos));
|
||||
s.erase(0, pos + delimiter.length());
|
||||
}
|
||||
token.push_back(s);
|
||||
return token;
|
||||
}
|
||||
|
||||
float calcDistance(const Rect& a, const Rect& b)
|
||||
{
|
||||
Point2f p_a((float)(a.x + a.width / 2), (float)(a.y + a.height / 2));
|
||||
Point2f p_b((float)(b.x + b.width / 2), (float)(b.y + b.height / 2));
|
||||
return sqrt(pow(p_a.x - p_b.x, 2) + pow(p_a.y - p_b.y, 2));
|
||||
}
|
||||
|
||||
float calcOverlap(const Rect& a, const Rect& b)
|
||||
{
|
||||
float rectIntersectionArea = (float)(a & b).area();
|
||||
return rectIntersectionArea / (a.area() + b.area() - rectIntersectionArea);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
template <typename Tracker, typename ROI_t = Rect2d>
|
||||
class TrackerTest
|
||||
{
|
||||
public:
|
||||
TrackerTest(const Ptr<Tracker>& tracker, const string& video, float distanceThreshold,
|
||||
float overlapThreshold, int shift = NoTransform, int segmentIdx = 1, int numSegments = 10);
|
||||
~TrackerTest() {}
|
||||
void run();
|
||||
|
||||
protected:
|
||||
void checkDataTest();
|
||||
|
||||
void distanceAndOverlapTest();
|
||||
|
||||
Ptr<Tracker> tracker;
|
||||
string video;
|
||||
std::vector<Rect> bbs;
|
||||
int startFrame;
|
||||
string suffix;
|
||||
string prefix;
|
||||
float overlapThreshold;
|
||||
float distanceThreshold;
|
||||
int segmentIdx;
|
||||
int shift;
|
||||
int numSegments;
|
||||
|
||||
int gtStartFrame;
|
||||
int endFrame;
|
||||
vector<int> validSequence;
|
||||
|
||||
private:
|
||||
Rect applyShift(const Rect& bb);
|
||||
};
|
||||
|
||||
template <typename Tracker, typename ROI_t>
|
||||
TrackerTest<Tracker, ROI_t>::TrackerTest(const Ptr<Tracker>& _tracker, const string& _video, float _distanceThreshold,
|
||||
float _overlapThreshold, int _shift, int _segmentIdx, int _numSegments)
|
||||
: tracker(_tracker)
|
||||
, video(_video)
|
||||
, overlapThreshold(_overlapThreshold)
|
||||
, distanceThreshold(_distanceThreshold)
|
||||
, segmentIdx(_segmentIdx)
|
||||
, shift(_shift)
|
||||
, numSegments(_numSegments)
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
|
||||
template <typename Tracker, typename ROI_t>
|
||||
Rect TrackerTest<Tracker, ROI_t>::applyShift(const Rect& bb_)
|
||||
{
|
||||
Rect bb = bb_;
|
||||
Point center(bb.x + (bb.width / 2), bb.y + (bb.height / 2));
|
||||
|
||||
int xLimit = bb.x + bb.width - 1;
|
||||
int yLimit = bb.y + bb.height - 1;
|
||||
|
||||
int h = 0;
|
||||
int w = 0;
|
||||
float ratio = 1.0;
|
||||
|
||||
switch (shift)
|
||||
{
|
||||
case CenterShiftLeft:
|
||||
bb.x = bb.x - (int)ceil(0.1 * bb.width);
|
||||
break;
|
||||
case CenterShiftRight:
|
||||
bb.x = bb.x + (int)ceil(0.1 * bb.width);
|
||||
break;
|
||||
case CenterShiftUp:
|
||||
bb.y = bb.y - (int)ceil(0.1 * bb.height);
|
||||
break;
|
||||
case CenterShiftDown:
|
||||
bb.y = bb.y + (int)ceil(0.1 * bb.height);
|
||||
break;
|
||||
case CornerShiftTopLeft:
|
||||
bb.x = (int)cvRound(bb.x - 0.1 * bb.width);
|
||||
bb.y = (int)cvRound(bb.y - 0.1 * bb.height);
|
||||
|
||||
bb.width = xLimit - bb.x + 1;
|
||||
bb.height = yLimit - bb.y + 1;
|
||||
break;
|
||||
case CornerShiftTopRight:
|
||||
xLimit = (int)cvRound(xLimit + 0.1 * bb.width);
|
||||
|
||||
bb.y = (int)cvRound(bb.y - 0.1 * bb.height);
|
||||
bb.width = xLimit - bb.x + 1;
|
||||
bb.height = yLimit - bb.y + 1;
|
||||
break;
|
||||
case CornerShiftBottomLeft:
|
||||
bb.x = (int)cvRound(bb.x - 0.1 * bb.width);
|
||||
yLimit = (int)cvRound(yLimit + 0.1 * bb.height);
|
||||
|
||||
bb.width = xLimit - bb.x + 1;
|
||||
bb.height = yLimit - bb.y + 1;
|
||||
break;
|
||||
case CornerShiftBottomRight:
|
||||
xLimit = (int)cvRound(xLimit + 0.1 * bb.width);
|
||||
yLimit = (int)cvRound(yLimit + 0.1 * bb.height);
|
||||
|
||||
bb.width = xLimit - bb.x + 1;
|
||||
bb.height = yLimit - bb.y + 1;
|
||||
break;
|
||||
case Scale_0_8:
|
||||
ratio = 0.8f;
|
||||
w = (int)(ratio * bb.width);
|
||||
h = (int)(ratio * bb.height);
|
||||
|
||||
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
|
||||
break;
|
||||
case Scale_0_9:
|
||||
ratio = 0.9f;
|
||||
w = (int)(ratio * bb.width);
|
||||
h = (int)(ratio * bb.height);
|
||||
|
||||
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
|
||||
break;
|
||||
case 11:
|
||||
//scale 1.1
|
||||
ratio = 1.1f;
|
||||
w = (int)(ratio * bb.width);
|
||||
h = (int)(ratio * bb.height);
|
||||
|
||||
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
|
||||
break;
|
||||
case 12:
|
||||
//scale 1.2
|
||||
ratio = 1.2f;
|
||||
w = (int)(ratio * bb.width);
|
||||
h = (int)(ratio * bb.height);
|
||||
|
||||
bb = Rect(center.x - (w / 2), center.y - (h / 2), w, h);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return bb;
|
||||
}
|
||||
|
||||
template <typename Tracker, typename ROI_t>
|
||||
void TrackerTest<Tracker, ROI_t>::distanceAndOverlapTest()
|
||||
{
|
||||
bool initialized = false;
|
||||
|
||||
int fc = (startFrame - gtStartFrame);
|
||||
|
||||
bbs.at(fc) = applyShift(bbs.at(fc));
|
||||
Rect currentBBi = bbs.at(fc);
|
||||
ROI_t currentBB(currentBBi);
|
||||
float sumDistance = 0;
|
||||
float sumOverlap = 0;
|
||||
|
||||
string folder = cvtest::TS::ptr()->get_data_path() + "/" + TRACKING_DIR + "/" + video + "/" + FOLDER_IMG;
|
||||
string videoPath = folder + "/" + video + ".webm";
|
||||
|
||||
VideoCapture c;
|
||||
c.open(videoPath);
|
||||
if (!c.isOpened())
|
||||
throw SkipTestException("Can't open video file");
|
||||
#if 0
|
||||
c.set(CAP_PROP_POS_FRAMES, startFrame);
|
||||
#else
|
||||
if (startFrame)
|
||||
std::cout << "startFrame = " << startFrame << std::endl;
|
||||
for (int i = 0; i < startFrame; i++)
|
||||
{
|
||||
Mat dummy_frame;
|
||||
c >> dummy_frame;
|
||||
ASSERT_FALSE(dummy_frame.empty()) << i << ": " << videoPath;
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int frameCounter = startFrame; frameCounter < endFrame; frameCounter++)
|
||||
{
|
||||
Mat frame;
|
||||
c >> frame;
|
||||
|
||||
ASSERT_FALSE(frame.empty()) << "frameCounter=" << frameCounter << " video=" << videoPath;
|
||||
if (!initialized)
|
||||
{
|
||||
tracker->init(frame, currentBB);
|
||||
std::cout << "frame size = " << frame.size() << std::endl;
|
||||
initialized = true;
|
||||
}
|
||||
else if (initialized)
|
||||
{
|
||||
if (frameCounter >= (int)bbs.size())
|
||||
break;
|
||||
tracker->update(frame, currentBB);
|
||||
}
|
||||
float curDistance = calcDistance(currentBB, bbs.at(fc));
|
||||
float curOverlap = calcOverlap(currentBB, bbs.at(fc));
|
||||
|
||||
#ifdef DEBUG_TEST
|
||||
Mat result;
|
||||
repeat(frame, 1, 2, result);
|
||||
rectangle(result, currentBB, Scalar(0, 255, 0), 1);
|
||||
Rect roi2(frame.cols, 0, frame.cols, frame.rows);
|
||||
rectangle(result(roi2), bbs.at(fc), Scalar(0, 0, 255), 1);
|
||||
imshow("result", result);
|
||||
waitKey(1);
|
||||
#endif
|
||||
|
||||
sumDistance += curDistance;
|
||||
sumOverlap += curOverlap;
|
||||
fc++;
|
||||
}
|
||||
|
||||
float meanDistance = sumDistance / (endFrame - startFrame);
|
||||
float meanOverlap = sumOverlap / (endFrame - startFrame);
|
||||
|
||||
EXPECT_LE(meanDistance, distanceThreshold);
|
||||
EXPECT_GE(meanOverlap, overlapThreshold);
|
||||
}
|
||||
|
||||
template <typename Tracker, typename ROI_t>
|
||||
void TrackerTest<Tracker, ROI_t>::checkDataTest()
|
||||
{
|
||||
|
||||
FileStorage fs;
|
||||
fs.open(cvtest::TS::ptr()->get_data_path() + TRACKING_DIR + "/" + video + "/" + video + ".yml", FileStorage::READ);
|
||||
fs["start"] >> startFrame;
|
||||
fs["prefix"] >> prefix;
|
||||
fs["suffix"] >> suffix;
|
||||
fs.release();
|
||||
|
||||
string gtFile = cvtest::TS::ptr()->get_data_path() + TRACKING_DIR + "/" + video + "/gt.txt";
|
||||
std::ifstream gt;
|
||||
//open the ground truth
|
||||
gt.open(gtFile.c_str());
|
||||
ASSERT_TRUE(gt.is_open()) << gtFile;
|
||||
string line;
|
||||
int bbCounter = 0;
|
||||
while (getline(gt, line))
|
||||
{
|
||||
bbCounter++;
|
||||
}
|
||||
gt.close();
|
||||
|
||||
int seqLength = bbCounter;
|
||||
for (int i = startFrame; i < seqLength; i++)
|
||||
{
|
||||
validSequence.push_back(i);
|
||||
}
|
||||
|
||||
//exclude from the images sequence, the frames where the target is occluded or out of view
|
||||
string omitFile = cvtest::TS::ptr()->get_data_path() + TRACKING_DIR + "/" + video + "/" + FOLDER_OMIT_INIT + "/" + video + ".txt";
|
||||
std::ifstream omit;
|
||||
omit.open(omitFile.c_str());
|
||||
if (omit.is_open())
|
||||
{
|
||||
string omitLine;
|
||||
while (getline(omit, omitLine))
|
||||
{
|
||||
vector<string> tokens = splitString(omitLine, " ");
|
||||
int s_start = atoi(tokens.at(0).c_str());
|
||||
int s_end = atoi(tokens.at(1).c_str());
|
||||
for (int k = s_start; k <= s_end; k++)
|
||||
{
|
||||
std::vector<int>::iterator position = std::find(validSequence.begin(), validSequence.end(), k);
|
||||
if (position != validSequence.end())
|
||||
validSequence.erase(position);
|
||||
}
|
||||
}
|
||||
}
|
||||
omit.close();
|
||||
gtStartFrame = startFrame;
|
||||
//compute the start and the and for each segment
|
||||
int numFrame = (int)(validSequence.size() / numSegments);
|
||||
startFrame += (segmentIdx - 1) * numFrame;
|
||||
endFrame = startFrame + numFrame;
|
||||
|
||||
std::ifstream gt2;
|
||||
//open the ground truth
|
||||
gt2.open(gtFile.c_str());
|
||||
ASSERT_TRUE(gt2.is_open()) << gtFile;
|
||||
string line2;
|
||||
int bbCounter2 = 0;
|
||||
while (getline(gt2, line2))
|
||||
{
|
||||
vector<string> tokens = splitString(line2, ",");
|
||||
Rect bb(atoi(tokens.at(0).c_str()), atoi(tokens.at(1).c_str()), atoi(tokens.at(2).c_str()), atoi(tokens.at(3).c_str()));
|
||||
ASSERT_EQ((size_t)4, tokens.size()) << "Incorrect ground truth file " << gtFile;
|
||||
|
||||
bbs.push_back(bb);
|
||||
bbCounter2++;
|
||||
}
|
||||
gt2.close();
|
||||
|
||||
if (segmentIdx == numSegments)
|
||||
endFrame = (int)bbs.size();
|
||||
}
|
||||
|
||||
template <typename Tracker, typename ROI_t>
|
||||
void TrackerTest<Tracker, ROI_t>::run()
|
||||
{
|
||||
srand(1); // FIXIT remove that, ensure that there is no "rand()" in implementation
|
||||
|
||||
ASSERT_TRUE(tracker);
|
||||
|
||||
checkDataTest();
|
||||
|
||||
//check for failure
|
||||
if (::testing::Test::HasFatalFailure())
|
||||
return;
|
||||
|
||||
distanceAndOverlapTest();
|
||||
}
|
80
samples/python/tracker.py
Normal file
80
samples/python/tracker.py
Normal file
@ -0,0 +1,80 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Tracker demo
|
||||
|
||||
USAGE:
|
||||
tracker.py [<video_source>]
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
from video import create_capture, presets
|
||||
|
||||
class App(object):
|
||||
|
||||
def initializeTracker(self, image):
|
||||
while True:
|
||||
print('==> Select object ROI for tracker ...')
|
||||
bbox = cv.selectROI('tracking', image)
|
||||
print('ROI: {}'.format(bbox))
|
||||
|
||||
tracker = cv.TrackerMIL_create()
|
||||
try:
|
||||
tracker.init(image, bbox)
|
||||
except Exception as e:
|
||||
print('Unable to initialize tracker with requested bounding box. Is there any object?')
|
||||
print(e)
|
||||
print('Try again ...')
|
||||
continue
|
||||
|
||||
return tracker
|
||||
|
||||
def run(self):
|
||||
videoPath = sys.argv[1] if len(sys.argv) >= 2 else 'vtest.avi'
|
||||
camera = create_capture(videoPath, presets['cube'])
|
||||
if not camera.isOpened():
|
||||
sys.exit("Can't open video stream: {}".format(videoPath))
|
||||
|
||||
ok, image = camera.read()
|
||||
if not ok:
|
||||
sys.exit("Can't read first frame")
|
||||
assert image is not None
|
||||
|
||||
cv.namedWindow('tracking')
|
||||
tracker = self.initializeTracker(image)
|
||||
|
||||
print("==> Tracking is started. Press 'SPACE' to re-initialize tracker or 'ESC' for exit...")
|
||||
|
||||
while camera.isOpened():
|
||||
ok, image = camera.read()
|
||||
if not ok:
|
||||
print("Can't read frame")
|
||||
break
|
||||
|
||||
ok, newbox = tracker.update(image)
|
||||
#print(ok, newbox)
|
||||
|
||||
if ok:
|
||||
cv.rectangle(image, newbox, (200,0,0))
|
||||
|
||||
cv.imshow("tracking", image)
|
||||
k = cv.waitKey(1)
|
||||
if k == 32: # SPACE
|
||||
tracker = self.initializeTracker(image)
|
||||
if k == 27: # ESC
|
||||
break
|
||||
|
||||
print('Done')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(__doc__)
|
||||
App().run()
|
||||
cv.destroyAllWindows()
|
Loading…
Reference in New Issue
Block a user