mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 06:53:50 +08:00
single transpose MTCNN version
This commit is contained in:
parent
d29c7e7871
commit
aae48e6fd7
@ -589,18 +589,18 @@ int main(int argc, char* argv[]) {
|
||||
//Preprocessing BGR2RGB + transpose (NCWH is expected instead of NCHW)
|
||||
cv::GMat in_original;
|
||||
cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original);
|
||||
cv::GMat in_transposedRGB = cv::gapi::transpose(in_originalRGB);
|
||||
cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original);
|
||||
cv::GMat in_resized[MAX_PYRAMID_LEVELS];
|
||||
cv::GMat in_transposed[MAX_PYRAMID_LEVELS];
|
||||
cv::GMat regressions[MAX_PYRAMID_LEVELS];
|
||||
cv::GMat scores[MAX_PYRAMID_LEVELS];
|
||||
cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS];
|
||||
cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS];
|
||||
|
||||
//The very first PNet pyramid layer to init total_faces[0]
|
||||
in_resized[0] = cv::gapi::resize(in_originalRGB, level_size[0]);
|
||||
in_transposed[0] = cv::gapi::transpose(in_resized[0]);
|
||||
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposed[0], get_pnet_level_name(level_size[0]));
|
||||
cv::Size currentSize = cv::Size(level_size[0].height, level_size[0].width);
|
||||
in_resized[0] = cv::gapi::resize(in_transposedRGB, currentSize);
|
||||
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_resized[0], get_pnet_level_name(level_size[0]));
|
||||
cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p);
|
||||
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true);
|
||||
cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares);
|
||||
@ -608,9 +608,9 @@ int main(int argc, char* argv[]) {
|
||||
//The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
|
||||
for (int i = 1; i < pyramid_levels; ++i)
|
||||
{
|
||||
in_resized[i] = cv::gapi::resize(in_originalRGB, level_size[i]);
|
||||
in_transposed[i] = cv::gapi::transpose(in_resized[i]);
|
||||
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposed[i], get_pnet_level_name(level_size[i]));
|
||||
currentSize = cv::Size(level_size[i].height, level_size[i].width);
|
||||
in_resized[i] = cv::gapi::resize(in_transposedRGB, currentSize);
|
||||
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_resized[i], get_pnet_level_name(level_size[i]));
|
||||
cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p);
|
||||
cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true);
|
||||
cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i);
|
||||
@ -624,8 +624,7 @@ int main(int argc, char* argv[]) {
|
||||
//Refinement part of MTCNN graph
|
||||
cv::GArray<cv::Rect> faces_roi_pnet = custom::R_O_NetPreProcGetROIs::on(final_faces_pnet, in_sz);
|
||||
cv::GArray<cv::GMat> regressionsRNet, scoresRNet;
|
||||
cv::GMat in_originalRGB_transposed = cv::gapi::transpose(in_originalRGB);
|
||||
std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_originalRGB_transposed);
|
||||
std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_transposedRGB);
|
||||
|
||||
//Refinement post-processing
|
||||
cv::GArray<custom::Face> rnet_post_proc_faces = custom::RNetPostProc::on(final_faces_pnet, scoresRNet, regressionsRNet, conf_thresh_r);
|
||||
@ -636,7 +635,7 @@ int main(int argc, char* argv[]) {
|
||||
//Output part of MTCNN graph
|
||||
cv::GArray<cv::Rect> faces_roi_rnet = custom::R_O_NetPreProcGetROIs::on(final_faces_rnet, in_sz);
|
||||
cv::GArray<cv::GMat> regressionsONet, scoresONet, landmarksONet;
|
||||
std::tie(regressionsONet, landmarksONet, scoresONet) = cv::gapi::infer<custom::MTCNNOutput>(faces_roi_rnet, in_originalRGB_transposed);
|
||||
std::tie(regressionsONet, landmarksONet, scoresONet) = cv::gapi::infer<custom::MTCNNOutput>(faces_roi_rnet, in_transposedRGB);
|
||||
|
||||
//Output post-processing
|
||||
cv::GArray<custom::Face> onet_post_proc_faces = custom::ONetPostProc::on(final_faces_rnet, scoresONet, regressionsONet, landmarksONet, conf_thresh_o);
|
||||
|
Loading…
Reference in New Issue
Block a user