Merged the trunk r8547:8574, r8587

This commit is contained in:
Andrey Kamaev 2012-06-15 08:36:35 +00:00
parent 4b1724aeb9
commit ab20da0f53
12 changed files with 133 additions and 33 deletions

View File

@ -318,7 +318,7 @@ if(UNIX)
CHECK_INCLUDE_FILE(pthread.h HAVE_LIBPTHREAD)
if(ANDROID)
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} dl m log)
elseif(${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD" OR ${CMAKE_SYSTEM_NAME} MATCHES "NetBSD")
elseif(${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD|NetBSD|DragonFly")
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} m pthread)
else()
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} dl m pthread rt)

View File

@ -1 +1 @@
See http://opencv.willowgarage.com/wiki/Android
See http://code.opencv.org/projects/opencv/wiki/OpenCV4Android

View File

@ -161,34 +161,34 @@ Return value: detected phase shift (sub-pixel) between the two arrays.
The function performs the following equations
*
First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann\_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.
* First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann\_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.
*
Next it computes the forward DFTs of each source array:
.. math::
* Next it computes the forward DFTs of each source array:
.. math::
\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}
where
:math:`\mathcal{F}` is the forward DFT.
where
:math:`\mathcal{F}` is the forward DFT.
* It then computes the cross-power spectrum of each frequency domain array:
*
It then computes the cross-power spectrum of each frequency domain array:
.. math::
R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
* Next the cross-correlation is converted back into the time domain via the inverse DFT:
*
Next the cross-correlation is converted back into the time domain via the inverse DFT:
.. math::
r = \mathcal{F}^{-1}\{R\}
*
Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy.
r = \mathcal{F}^{-1}\{R\}
* Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy.
.. math::
(\Delta x, \Delta y) = \texttt{weighted_centroid}\{\arg \max_{(x, y)}\{r\}\}
(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}
.. seealso::
:ocv:func:`dft`,

View File

@ -1207,7 +1207,7 @@ struct DecimateAlpha
};
template<typename T, typename WT>
static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, int xofs_count )
static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, int xofs_count, double scale_y_)
{
Size ssize = src.size(), dsize = dst.size();
int cn = src.channels();
@ -1215,7 +1215,7 @@ static void resizeArea_( const Mat& src, Mat& dst, const DecimateAlpha* xofs, in
AutoBuffer<WT> _buffer(dsize.width*2);
WT *buf = _buffer, *sum = buf + dsize.width;
int k, sy, dx, cur_dy = 0;
WT scale_y = (WT)ssize.height/dsize.height;
WT scale_y = (WT)scale_y_;
CV_Assert( cn <= 4 );
for( dx = 0; dx < dsize.width; dx++ )
@ -1315,7 +1315,7 @@ typedef void (*ResizeAreaFastFunc)( const Mat& src, Mat& dst,
int scale_x, int scale_y );
typedef void (*ResizeAreaFunc)( const Mat& src, Mat& dst,
const DecimateAlpha* xofs, int xofs_count );
const DecimateAlpha* xofs, int xofs_count, double scale_y_);
}
@ -1532,7 +1532,7 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
}
}
func( src, dst, xofs, k );
func( src, dst, xofs, k ,scale_y);
return;
}

View File

@ -1132,7 +1132,7 @@ CvBoost::update_weights( CvBoostTree* tree )
else
{
if( have_subsample )
_buf_size += data->buf->step*(sizeof(float)+sizeof(uchar));
_buf_size += data->buf->cols*(sizeof(float)+sizeof(uchar));
}
inn_buf.allocate(_buf_size);
uchar* cur_buf_pos = (uchar*)inn_buf;

View File

@ -45,13 +45,13 @@
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "warpers.hpp"
#include "detail/matchers.hpp"
#include "detail/motion_estimators.hpp"
#include "detail/exposure_compensate.hpp"
#include "detail/seam_finders.hpp"
#include "detail/blenders.hpp"
#include "detail/camera.hpp"
#include "opencv2/stitching/warpers.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
namespace cv {

View File

@ -43,7 +43,7 @@
#ifndef __OPENCV_STITCHING_WARPER_CREATORS_HPP__
#define __OPENCV_STITCHING_WARPER_CREATORS_HPP__
#include "detail/warpers.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
namespace cv {

View File

@ -3,6 +3,8 @@ LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
OPENCV_CAMERA_MODULES:=off
OPENCV_INSTALL_MODULES:=on
#OPENCV_LIB_TYPE:=SHARED <- this is default
include ../includeOpenCV.mk
ifeq ("$(wildcard $(OPENCV_MK_PATH))","")

View File

@ -44,8 +44,8 @@ int main( int argc, char** argv )
int histSize[] = { h_bins, s_bins };
// hue varies from 0 to 256, saturation from 0 to 180
float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };
float s_ranges[] = { 0, 256 };
float h_ranges[] = { 0, 180 };
const float* ranges[] = { h_ranges, s_ranges };

View File

@ -2,6 +2,7 @@ import numpy as np
import cv2
import os
from contextlib import contextmanager
import itertools as it
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
@ -170,3 +171,22 @@ class RectSelector:
return
x0, y0, x1, y1 = self.drag_rect
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
def grouper(n, iterable, fillvalue=None):
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
args = [iter(iterable)] * n
return it.izip_longest(fillvalue=fillvalue, *args)
def mosaic(w, imgs):
'''Make a grid from images.
w -- number of grid columns
imgs -- images (must have same size and format)
'''
imgs = iter(imgs)
img0 = imgs.next()
pad = np.zeros_like(img0)
imgs = it.chain([img0], imgs)
rows = grouper(w, imgs, pad)
return np.vstack(map(np.hstack, rows))

BIN
samples/python2/digits.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 704 KiB

78
samples/python2/digits.py Normal file
View File

@ -0,0 +1,78 @@
'''
Neural network digit recognition sample.
Usage:
digits.py
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a neural network classifier on it and evaluates
its classification accuracy.
'''
import numpy as np
import cv2
from common import mosaic
def unroll_responses(responses, class_n):
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
sample_n = len(responses)
new_responses = np.zeros((sample_n, class_n), np.float32)
new_responses[np.arange(sample_n), responses] = 1
return new_responses
SZ = 20 # size of each digit is SZ x SZ
CLASS_N = 10
digits_img = cv2.imread('digits.png', 0)
# prepare dataset
h, w = digits_img.shape
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
digits = np.float32(digits).reshape(-1, SZ*SZ)
N = len(digits)
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N)
# split it onto train and test subsets
shuffle = np.random.permutation(N)
train_n = int(0.9*N)
digits_train, digits_test = np.split(digits[shuffle], [train_n])
labels_train, labels_test = np.split(labels[shuffle], [train_n])
# train model
model = cv2.ANN_MLP()
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N])
model.create(layer_sizes)
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01),
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
bp_dw_scale = 0.001,
bp_moment_scale = 0.0 )
print 'training...'
labels_train_unrolled = unroll_responses(labels_train, CLASS_N)
model.train(digits_train, labels_train_unrolled, None, params=params)
model.save('dig_nn.dat')
model.load('dig_nn.dat')
def evaluate(model, samples, labels):
'''Evaluates classifier preformance on a given labeled samples set.'''
ret, resp = model.predict(samples)
resp = resp.argmax(-1)
error_mask = (resp == labels)
accuracy = error_mask.mean()
return accuracy, error_mask
# evaluate model
train_accuracy, _ = evaluate(model, digits_train, labels_train)
print 'train accuracy: ', train_accuracy
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test)
print 'test accuracy: ', test_accuracy
# visualize test results
vis = []
for img, flag in zip(digits_test, test_error_mask):
img = np.uint8(img).reshape(SZ, SZ)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not flag:
img[...,:2] = 0
vis.append(img)
vis = mosaic(25, vis)
cv2.imshow('test', vis)
cv2.waitKey()