mirror of
https://github.com/opencv/opencv.git
synced 2025-01-20 07:34:42 +08:00
fixed bug in opencv_stitching (corrected resize images step), added matches checking (both 1->2 and 2->1 must be presented)
This commit is contained in:
parent
3ed42fcd23
commit
ace94d2ebf
@ -38,312 +38,312 @@
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "blenders.hpp"
|
||||
#include "util.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static const float WEIGHT_EPS = 1e-5f;
|
||||
|
||||
Ptr<Blender> Blender::createDefault(int type)
|
||||
{
|
||||
if (type == NO)
|
||||
return new Blender();
|
||||
if (type == FEATHER)
|
||||
return new FeatherBlender();
|
||||
if (type == MULTI_BAND)
|
||||
return new MultiBandBlender();
|
||||
CV_Error(CV_StsBadArg, "unsupported blending method");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void Blender::prepare(const vector<Point> &corners, const vector<Size> &sizes)
|
||||
{
|
||||
prepare(resultRoi(corners, sizes));
|
||||
}
|
||||
|
||||
|
||||
void Blender::prepare(Rect dst_roi)
|
||||
{
|
||||
dst_.create(dst_roi.size(), CV_16SC3);
|
||||
dst_.setTo(Scalar::all(0));
|
||||
dst_mask_.create(dst_roi.size(), CV_8U);
|
||||
dst_mask_.setTo(Scalar::all(0));
|
||||
dst_roi_ = dst_roi;
|
||||
}
|
||||
|
||||
|
||||
void Blender::feed(const Mat &img, const Mat &mask, Point tl)
|
||||
{
|
||||
CV_Assert(img.type() == CV_16SC3);
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
int dx = tl.x - dst_roi_.x;
|
||||
int dy = tl.y - dst_roi_.y;
|
||||
|
||||
for (int y = 0; y < img.rows; ++y)
|
||||
{
|
||||
const Point3_<short> *src_row = img.ptr<Point3_<short> >(y);
|
||||
Point3_<short> *dst_row = dst_.ptr<Point3_<short> >(dy + y);
|
||||
const uchar *mask_row = mask.ptr<uchar>(y);
|
||||
uchar *dst_mask_row = dst_mask_.ptr<uchar>(dy + y);
|
||||
|
||||
for (int x = 0; x < img.cols; ++x)
|
||||
{
|
||||
if (mask_row[x])
|
||||
dst_row[dx + x] = src_row[x];
|
||||
dst_mask_row[dx + x] |= mask_row[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Blender::blend(Mat &dst, Mat &dst_mask)
|
||||
{
|
||||
dst_.setTo(Scalar::all(0), dst_mask_ == 0);
|
||||
dst = dst_;
|
||||
dst_mask = dst_mask_;
|
||||
dst_.release();
|
||||
dst_mask_.release();
|
||||
}
|
||||
|
||||
|
||||
void FeatherBlender::prepare(Rect dst_roi)
|
||||
{
|
||||
Blender::prepare(dst_roi);
|
||||
dst_weight_map_.create(dst_roi.size(), CV_32F);
|
||||
dst_weight_map_.setTo(0);
|
||||
}
|
||||
|
||||
|
||||
void FeatherBlender::feed(const Mat &img, const Mat &mask, Point tl)
|
||||
{
|
||||
CV_Assert(img.type() == CV_16SC3);
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
|
||||
createWeightMap(mask, sharpness_, weight_map_);
|
||||
int dx = tl.x - dst_roi_.x;
|
||||
int dy = tl.y - dst_roi_.y;
|
||||
|
||||
for (int y = 0; y < img.rows; ++y)
|
||||
{
|
||||
const Point3_<short>* src_row = img.ptr<Point3_<short> >(y);
|
||||
Point3_<short>* dst_row = dst_.ptr<Point3_<short> >(dy + y);
|
||||
const float* weight_row = weight_map_.ptr<float>(y);
|
||||
float* dst_weight_row = dst_weight_map_.ptr<float>(dy + y);
|
||||
|
||||
for (int x = 0; x < img.cols; ++x)
|
||||
{
|
||||
dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]);
|
||||
dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]);
|
||||
dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]);
|
||||
dst_weight_row[dx + x] += weight_row[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void FeatherBlender::blend(Mat &dst, Mat &dst_mask)
|
||||
{
|
||||
normalize(dst_weight_map_, dst_);
|
||||
dst_mask_ = dst_weight_map_ > WEIGHT_EPS;
|
||||
Blender::blend(dst, dst_mask);
|
||||
}
|
||||
|
||||
|
||||
void MultiBandBlender::prepare(Rect dst_roi)
|
||||
{
|
||||
dst_roi_final_ = dst_roi;
|
||||
|
||||
// Crop unnecessary bands
|
||||
double max_len = static_cast<double>(max(dst_roi.width, dst_roi.height));
|
||||
num_bands_ = min(actual_num_bands_, static_cast<int>(ceil(log(max_len) / log(2.0))));
|
||||
|
||||
// Add border to the final image, to ensure sizes are divided by (1 << num_bands_)
|
||||
dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_);
|
||||
dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_);
|
||||
|
||||
Blender::prepare(dst_roi);
|
||||
|
||||
dst_pyr_laplace_.resize(num_bands_ + 1);
|
||||
dst_pyr_laplace_[0] = dst_;
|
||||
|
||||
dst_band_weights_.resize(num_bands_ + 1);
|
||||
dst_band_weights_[0].create(dst_roi.size(), CV_32F);
|
||||
dst_band_weights_[0].setTo(0);
|
||||
|
||||
for (int i = 1; i <= num_bands_; ++i)
|
||||
{
|
||||
dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2,
|
||||
(dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
|
||||
dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2,
|
||||
(dst_band_weights_[i - 1].cols + 1) / 2, CV_32F);
|
||||
dst_pyr_laplace_[i].setTo(Scalar::all(0));
|
||||
dst_band_weights_[i].setTo(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MultiBandBlender::feed(const Mat &img, const Mat &mask, Point tl)
|
||||
{
|
||||
CV_Assert(img.type() == CV_16SC3);
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
|
||||
// Keep source image in memory with small border
|
||||
int gap = 3 * (1 << num_bands_);
|
||||
Point tl_new(max(dst_roi_.x, tl.x - gap),
|
||||
max(dst_roi_.y, tl.y - gap));
|
||||
Point br_new(min(dst_roi_.br().x, tl.x + img.cols + gap),
|
||||
min(dst_roi_.br().y, tl.y + img.rows + gap));
|
||||
|
||||
// Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
|
||||
// After that scale between layers is exactly 2.
|
||||
//
|
||||
// We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
|
||||
// image is bordered to have size equal to the final image size, but this is too memory hungry approach.
|
||||
tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
|
||||
tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
|
||||
int width = br_new.x - tl_new.x;
|
||||
int height = br_new.y - tl_new.y;
|
||||
width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
|
||||
height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
|
||||
br_new.x = tl_new.x + width;
|
||||
br_new.y = tl_new.y + height;
|
||||
int dy = max(br_new.y - dst_roi_.br().y, 0);
|
||||
int dx = max(br_new.x - dst_roi_.br().x, 0);
|
||||
tl_new.x -= dx; br_new.x -= dx;
|
||||
tl_new.y -= dy; br_new.y -= dy;
|
||||
|
||||
int top = tl.y - tl_new.y;
|
||||
int left = tl.x - tl_new.x;
|
||||
int bottom = br_new.y - tl.y - img.rows;
|
||||
int right = br_new.x - tl.x - img.cols;
|
||||
|
||||
// Create the source image Laplacian pyramid
|
||||
vector<Mat> src_pyr_gauss(num_bands_ + 1);
|
||||
copyMakeBorder(img, src_pyr_gauss[0], top, bottom, left, right,
|
||||
BORDER_REFLECT);
|
||||
for (int i = 0; i < num_bands_; ++i)
|
||||
pyrDown(src_pyr_gauss[i], src_pyr_gauss[i + 1]);
|
||||
vector<Mat> src_pyr_laplace;
|
||||
createLaplacePyr(src_pyr_gauss, src_pyr_laplace);
|
||||
src_pyr_gauss.clear();
|
||||
|
||||
// Create the weight map Gaussian pyramid
|
||||
Mat weight_map;
|
||||
mask.convertTo(weight_map, CV_32F, 1./255.);
|
||||
vector<Mat> weight_pyr_gauss(num_bands_ + 1);
|
||||
copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right,
|
||||
BORDER_CONSTANT);
|
||||
for (int i = 0; i < num_bands_; ++i)
|
||||
pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);
|
||||
|
||||
int y_tl = tl_new.y - dst_roi_.y;
|
||||
int y_br = br_new.y - dst_roi_.y;
|
||||
int x_tl = tl_new.x - dst_roi_.x;
|
||||
int x_br = br_new.x - dst_roi_.x;
|
||||
|
||||
// Add weighted layer of the source image to the final Laplacian pyramid layer
|
||||
for (int i = 0; i <= num_bands_; ++i)
|
||||
{
|
||||
for (int y = y_tl; y < y_br; ++y)
|
||||
{
|
||||
int y_ = y - y_tl;
|
||||
const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
|
||||
Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
|
||||
const float* weight_row = weight_pyr_gauss[i].ptr<float>(y_);
|
||||
float* dst_weight_row = dst_band_weights_[i].ptr<float>(y);
|
||||
|
||||
for (int x = x_tl; x < x_br; ++x)
|
||||
{
|
||||
int x_ = x - x_tl;
|
||||
dst_row[x].x += static_cast<short>(src_row[x_].x * weight_row[x_]);
|
||||
dst_row[x].y += static_cast<short>(src_row[x_].y * weight_row[x_]);
|
||||
dst_row[x].z += static_cast<short>(src_row[x_].z * weight_row[x_]);
|
||||
dst_weight_row[x] += weight_row[x_];
|
||||
}
|
||||
}
|
||||
x_tl /= 2; y_tl /= 2;
|
||||
x_br /= 2; y_br /= 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MultiBandBlender::blend(Mat &dst, Mat &dst_mask)
|
||||
{
|
||||
for (int i = 0; i <= num_bands_; ++i)
|
||||
normalize(dst_band_weights_[i], dst_pyr_laplace_[i]);
|
||||
|
||||
restoreImageFromLaplacePyr(dst_pyr_laplace_);
|
||||
|
||||
dst_ = dst_pyr_laplace_[0];
|
||||
dst_ = dst_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
|
||||
dst_mask_ = dst_band_weights_[0] > WEIGHT_EPS;
|
||||
dst_mask_ = dst_mask_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
|
||||
dst_pyr_laplace_.clear();
|
||||
dst_band_weights_.clear();
|
||||
|
||||
Blender::blend(dst, dst_mask);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Auxiliary functions
|
||||
|
||||
void normalize(const Mat& weight, Mat& src)
|
||||
{
|
||||
CV_Assert(weight.type() == CV_32F);
|
||||
CV_Assert(src.type() == CV_16SC3);
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
Point3_<short> *row = src.ptr<Point3_<short> >(y);
|
||||
const float *weight_row = weight.ptr<float>(y);
|
||||
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
{
|
||||
row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS));
|
||||
row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS));
|
||||
row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void createWeightMap(const Mat &mask, float sharpness, Mat &weight)
|
||||
{
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
distanceTransform(mask, weight, CV_DIST_L1, 3);
|
||||
threshold(weight * sharpness, weight, 1.f, 1.f, THRESH_TRUNC);
|
||||
}
|
||||
|
||||
|
||||
void createLaplacePyr(const vector<Mat> &pyr_gauss, vector<Mat> &pyr_laplace)
|
||||
{
|
||||
if (pyr_gauss.size() == 0)
|
||||
return;
|
||||
pyr_laplace.resize(pyr_gauss.size());
|
||||
Mat tmp;
|
||||
for (size_t i = 0; i < pyr_laplace.size() - 1; ++i)
|
||||
{
|
||||
pyrUp(pyr_gauss[i + 1], tmp, pyr_gauss[i].size());
|
||||
subtract(pyr_gauss[i], tmp, pyr_laplace[i]);
|
||||
}
|
||||
pyr_laplace[pyr_laplace.size() - 1] = pyr_gauss[pyr_laplace.size() - 1].clone();
|
||||
}
|
||||
|
||||
|
||||
void restoreImageFromLaplacePyr(vector<Mat> &pyr)
|
||||
{
|
||||
if (pyr.size() == 0)
|
||||
return;
|
||||
Mat tmp;
|
||||
for (size_t i = pyr.size() - 1; i > 0; --i)
|
||||
{
|
||||
pyrUp(pyr[i], tmp, pyr[i - 1].size());
|
||||
add(tmp, pyr[i - 1], pyr[i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//M*/
|
||||
#include "blenders.hpp"
|
||||
#include "util.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static const float WEIGHT_EPS = 1e-5f;
|
||||
|
||||
Ptr<Blender> Blender::createDefault(int type)
|
||||
{
|
||||
if (type == NO)
|
||||
return new Blender();
|
||||
if (type == FEATHER)
|
||||
return new FeatherBlender();
|
||||
if (type == MULTI_BAND)
|
||||
return new MultiBandBlender();
|
||||
CV_Error(CV_StsBadArg, "unsupported blending method");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void Blender::prepare(const vector<Point> &corners, const vector<Size> &sizes)
|
||||
{
|
||||
prepare(resultRoi(corners, sizes));
|
||||
}
|
||||
|
||||
|
||||
void Blender::prepare(Rect dst_roi)
|
||||
{
|
||||
dst_.create(dst_roi.size(), CV_16SC3);
|
||||
dst_.setTo(Scalar::all(0));
|
||||
dst_mask_.create(dst_roi.size(), CV_8U);
|
||||
dst_mask_.setTo(Scalar::all(0));
|
||||
dst_roi_ = dst_roi;
|
||||
}
|
||||
|
||||
|
||||
void Blender::feed(const Mat &img, const Mat &mask, Point tl)
|
||||
{
|
||||
CV_Assert(img.type() == CV_16SC3);
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
int dx = tl.x - dst_roi_.x;
|
||||
int dy = tl.y - dst_roi_.y;
|
||||
|
||||
for (int y = 0; y < img.rows; ++y)
|
||||
{
|
||||
const Point3_<short> *src_row = img.ptr<Point3_<short> >(y);
|
||||
Point3_<short> *dst_row = dst_.ptr<Point3_<short> >(dy + y);
|
||||
const uchar *mask_row = mask.ptr<uchar>(y);
|
||||
uchar *dst_mask_row = dst_mask_.ptr<uchar>(dy + y);
|
||||
|
||||
for (int x = 0; x < img.cols; ++x)
|
||||
{
|
||||
if (mask_row[x])
|
||||
dst_row[dx + x] = src_row[x];
|
||||
dst_mask_row[dx + x] |= mask_row[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Blender::blend(Mat &dst, Mat &dst_mask)
|
||||
{
|
||||
dst_.setTo(Scalar::all(0), dst_mask_ == 0);
|
||||
dst = dst_;
|
||||
dst_mask = dst_mask_;
|
||||
dst_.release();
|
||||
dst_mask_.release();
|
||||
}
|
||||
|
||||
|
||||
void FeatherBlender::prepare(Rect dst_roi)
|
||||
{
|
||||
Blender::prepare(dst_roi);
|
||||
dst_weight_map_.create(dst_roi.size(), CV_32F);
|
||||
dst_weight_map_.setTo(0);
|
||||
}
|
||||
|
||||
|
||||
void FeatherBlender::feed(const Mat &img, const Mat &mask, Point tl)
|
||||
{
|
||||
CV_Assert(img.type() == CV_16SC3);
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
|
||||
createWeightMap(mask, sharpness_, weight_map_);
|
||||
int dx = tl.x - dst_roi_.x;
|
||||
int dy = tl.y - dst_roi_.y;
|
||||
|
||||
for (int y = 0; y < img.rows; ++y)
|
||||
{
|
||||
const Point3_<short>* src_row = img.ptr<Point3_<short> >(y);
|
||||
Point3_<short>* dst_row = dst_.ptr<Point3_<short> >(dy + y);
|
||||
const float* weight_row = weight_map_.ptr<float>(y);
|
||||
float* dst_weight_row = dst_weight_map_.ptr<float>(dy + y);
|
||||
|
||||
for (int x = 0; x < img.cols; ++x)
|
||||
{
|
||||
dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]);
|
||||
dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]);
|
||||
dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]);
|
||||
dst_weight_row[dx + x] += weight_row[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void FeatherBlender::blend(Mat &dst, Mat &dst_mask)
|
||||
{
|
||||
normalize(dst_weight_map_, dst_);
|
||||
dst_mask_ = dst_weight_map_ > WEIGHT_EPS;
|
||||
Blender::blend(dst, dst_mask);
|
||||
}
|
||||
|
||||
|
||||
void MultiBandBlender::prepare(Rect dst_roi)
|
||||
{
|
||||
dst_roi_final_ = dst_roi;
|
||||
|
||||
// Crop unnecessary bands
|
||||
double max_len = static_cast<double>(max(dst_roi.width, dst_roi.height));
|
||||
num_bands_ = min(actual_num_bands_, static_cast<int>(ceil(log(max_len) / log(2.0))));
|
||||
|
||||
// Add border to the final image, to ensure sizes are divided by (1 << num_bands_)
|
||||
dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_);
|
||||
dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_);
|
||||
|
||||
Blender::prepare(dst_roi);
|
||||
|
||||
dst_pyr_laplace_.resize(num_bands_ + 1);
|
||||
dst_pyr_laplace_[0] = dst_;
|
||||
|
||||
dst_band_weights_.resize(num_bands_ + 1);
|
||||
dst_band_weights_[0].create(dst_roi.size(), CV_32F);
|
||||
dst_band_weights_[0].setTo(0);
|
||||
|
||||
for (int i = 1; i <= num_bands_; ++i)
|
||||
{
|
||||
dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2,
|
||||
(dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
|
||||
dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2,
|
||||
(dst_band_weights_[i - 1].cols + 1) / 2, CV_32F);
|
||||
dst_pyr_laplace_[i].setTo(Scalar::all(0));
|
||||
dst_band_weights_[i].setTo(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MultiBandBlender::feed(const Mat &img, const Mat &mask, Point tl)
|
||||
{
|
||||
CV_Assert(img.type() == CV_16SC3);
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
|
||||
// Keep source image in memory with small border
|
||||
int gap = 3 * (1 << num_bands_);
|
||||
Point tl_new(max(dst_roi_.x, tl.x - gap),
|
||||
max(dst_roi_.y, tl.y - gap));
|
||||
Point br_new(min(dst_roi_.br().x, tl.x + img.cols + gap),
|
||||
min(dst_roi_.br().y, tl.y + img.rows + gap));
|
||||
|
||||
// Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
|
||||
// After that scale between layers is exactly 2.
|
||||
//
|
||||
// We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
|
||||
// image is bordered to have size equal to the final image size, but this is too memory hungry approach.
|
||||
tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
|
||||
tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
|
||||
int width = br_new.x - tl_new.x;
|
||||
int height = br_new.y - tl_new.y;
|
||||
width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
|
||||
height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
|
||||
br_new.x = tl_new.x + width;
|
||||
br_new.y = tl_new.y + height;
|
||||
int dy = max(br_new.y - dst_roi_.br().y, 0);
|
||||
int dx = max(br_new.x - dst_roi_.br().x, 0);
|
||||
tl_new.x -= dx; br_new.x -= dx;
|
||||
tl_new.y -= dy; br_new.y -= dy;
|
||||
|
||||
int top = tl.y - tl_new.y;
|
||||
int left = tl.x - tl_new.x;
|
||||
int bottom = br_new.y - tl.y - img.rows;
|
||||
int right = br_new.x - tl.x - img.cols;
|
||||
|
||||
// Create the source image Laplacian pyramid
|
||||
vector<Mat> src_pyr_gauss(num_bands_ + 1);
|
||||
copyMakeBorder(img, src_pyr_gauss[0], top, bottom, left, right,
|
||||
BORDER_REFLECT);
|
||||
for (int i = 0; i < num_bands_; ++i)
|
||||
pyrDown(src_pyr_gauss[i], src_pyr_gauss[i + 1]);
|
||||
vector<Mat> src_pyr_laplace;
|
||||
createLaplacePyr(src_pyr_gauss, src_pyr_laplace);
|
||||
src_pyr_gauss.clear();
|
||||
|
||||
// Create the weight map Gaussian pyramid
|
||||
Mat weight_map;
|
||||
mask.convertTo(weight_map, CV_32F, 1./255.);
|
||||
vector<Mat> weight_pyr_gauss(num_bands_ + 1);
|
||||
copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right,
|
||||
BORDER_CONSTANT);
|
||||
for (int i = 0; i < num_bands_; ++i)
|
||||
pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);
|
||||
|
||||
int y_tl = tl_new.y - dst_roi_.y;
|
||||
int y_br = br_new.y - dst_roi_.y;
|
||||
int x_tl = tl_new.x - dst_roi_.x;
|
||||
int x_br = br_new.x - dst_roi_.x;
|
||||
|
||||
// Add weighted layer of the source image to the final Laplacian pyramid layer
|
||||
for (int i = 0; i <= num_bands_; ++i)
|
||||
{
|
||||
for (int y = y_tl; y < y_br; ++y)
|
||||
{
|
||||
int y_ = y - y_tl;
|
||||
const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
|
||||
Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
|
||||
const float* weight_row = weight_pyr_gauss[i].ptr<float>(y_);
|
||||
float* dst_weight_row = dst_band_weights_[i].ptr<float>(y);
|
||||
|
||||
for (int x = x_tl; x < x_br; ++x)
|
||||
{
|
||||
int x_ = x - x_tl;
|
||||
dst_row[x].x += static_cast<short>(src_row[x_].x * weight_row[x_]);
|
||||
dst_row[x].y += static_cast<short>(src_row[x_].y * weight_row[x_]);
|
||||
dst_row[x].z += static_cast<short>(src_row[x_].z * weight_row[x_]);
|
||||
dst_weight_row[x] += weight_row[x_];
|
||||
}
|
||||
}
|
||||
x_tl /= 2; y_tl /= 2;
|
||||
x_br /= 2; y_br /= 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MultiBandBlender::blend(Mat &dst, Mat &dst_mask)
|
||||
{
|
||||
for (int i = 0; i <= num_bands_; ++i)
|
||||
normalize(dst_band_weights_[i], dst_pyr_laplace_[i]);
|
||||
|
||||
restoreImageFromLaplacePyr(dst_pyr_laplace_);
|
||||
|
||||
dst_ = dst_pyr_laplace_[0];
|
||||
dst_ = dst_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
|
||||
dst_mask_ = dst_band_weights_[0] > WEIGHT_EPS;
|
||||
dst_mask_ = dst_mask_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
|
||||
dst_pyr_laplace_.clear();
|
||||
dst_band_weights_.clear();
|
||||
|
||||
Blender::blend(dst, dst_mask);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Auxiliary functions
|
||||
|
||||
void normalize(const Mat& weight, Mat& src)
|
||||
{
|
||||
CV_Assert(weight.type() == CV_32F);
|
||||
CV_Assert(src.type() == CV_16SC3);
|
||||
for (int y = 0; y < src.rows; ++y)
|
||||
{
|
||||
Point3_<short> *row = src.ptr<Point3_<short> >(y);
|
||||
const float *weight_row = weight.ptr<float>(y);
|
||||
|
||||
for (int x = 0; x < src.cols; ++x)
|
||||
{
|
||||
row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS));
|
||||
row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS));
|
||||
row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void createWeightMap(const Mat &mask, float sharpness, Mat &weight)
|
||||
{
|
||||
CV_Assert(mask.type() == CV_8U);
|
||||
distanceTransform(mask, weight, CV_DIST_L1, 3);
|
||||
threshold(weight * sharpness, weight, 1.f, 1.f, THRESH_TRUNC);
|
||||
}
|
||||
|
||||
|
||||
void createLaplacePyr(const vector<Mat> &pyr_gauss, vector<Mat> &pyr_laplace)
|
||||
{
|
||||
if (pyr_gauss.size() == 0)
|
||||
return;
|
||||
pyr_laplace.resize(pyr_gauss.size());
|
||||
Mat tmp;
|
||||
for (size_t i = 0; i < pyr_laplace.size() - 1; ++i)
|
||||
{
|
||||
pyrUp(pyr_gauss[i + 1], tmp, pyr_gauss[i].size());
|
||||
subtract(pyr_gauss[i], tmp, pyr_laplace[i]);
|
||||
}
|
||||
pyr_laplace[pyr_laplace.size() - 1] = pyr_gauss[pyr_laplace.size() - 1].clone();
|
||||
}
|
||||
|
||||
|
||||
void restoreImageFromLaplacePyr(vector<Mat> &pyr)
|
||||
{
|
||||
if (pyr.size() == 0)
|
||||
return;
|
||||
Mat tmp;
|
||||
for (size_t i = pyr.size() - 1; i > 0; --i)
|
||||
{
|
||||
pyrUp(pyr[i], tmp, pyr[i - 1].size());
|
||||
add(tmp, pyr[i - 1], pyr[i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -75,7 +75,7 @@ void printUsage()
|
||||
" --work_megapix <float>\n"
|
||||
" Resolution for image registration step. The default is 0.6 Mpx.\n"
|
||||
" --match_conf <float>\n"
|
||||
" Confidence for feature matching step. The default is 0.7.\n"
|
||||
" Confidence for feature matching step. The default is 0.65.\n"
|
||||
" --conf_thresh <float>\n"
|
||||
" Threshold for two images are from the same panorama confidence.\n"
|
||||
" The default is 1.0.\n"
|
||||
@ -320,11 +320,14 @@ int main(int argc, char* argv[])
|
||||
Mat full_img, img;
|
||||
|
||||
vector<Mat> images(num_images);
|
||||
vector<Size> full_img_sizes(num_images);
|
||||
double seam_work_aspect = 1;
|
||||
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
full_img = imread(img_names[i]);
|
||||
full_img_sizes[i] = full_img.size();
|
||||
|
||||
if (full_img.empty())
|
||||
{
|
||||
LOGLN("Can't open image " << img_names[i]);
|
||||
@ -376,14 +379,17 @@ int main(int argc, char* argv[])
|
||||
vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
|
||||
vector<Mat> img_subset;
|
||||
vector<string> img_names_subset;
|
||||
vector<Size> full_img_sizes_subset;
|
||||
for (size_t i = 0; i < indices.size(); ++i)
|
||||
{
|
||||
img_names_subset.push_back(img_names[indices[i]]);
|
||||
img_subset.push_back(images[indices[i]]);
|
||||
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
|
||||
}
|
||||
|
||||
images = img_subset;
|
||||
img_names = img_names_subset;
|
||||
full_img_sizes = full_img_sizes_subset;
|
||||
|
||||
// Check if we still have enough images
|
||||
num_images = static_cast<int>(img_names.size());
|
||||
@ -519,16 +525,21 @@ int main(int argc, char* argv[])
|
||||
warper = Warper::createByCameraFocal(warped_image_scale, warp_type);
|
||||
|
||||
// Update corners and sizes
|
||||
Rect dst_roi = resultRoi(corners, sizes);
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
// Update camera focal
|
||||
cameras[i].focal *= compose_work_aspect;
|
||||
|
||||
// Update corner and size
|
||||
corners[i] = dst_roi.tl() + (corners[i] - dst_roi.tl()) * compose_seam_aspect;
|
||||
sizes[i] = Size(static_cast<int>((sizes[i].width + 1) * compose_seam_aspect),
|
||||
static_cast<int>((sizes[i].height + 1) * compose_seam_aspect));
|
||||
Size sz = full_img_sizes[i];
|
||||
if (abs(compose_scale - 1) > 1e-1)
|
||||
{
|
||||
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
|
||||
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
|
||||
}
|
||||
Rect roi = warper->warpRoi(sz, static_cast<float>(cameras[i].focal), cameras[i].R);
|
||||
corners[i] = roi.tl();
|
||||
sizes[i] = roi.size();
|
||||
}
|
||||
}
|
||||
if (abs(compose_scale - 1) > 1e-1)
|
||||
@ -539,7 +550,7 @@ int main(int argc, char* argv[])
|
||||
Size img_size = img.size();
|
||||
|
||||
// Warp the current image
|
||||
warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R,
|
||||
warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R,
|
||||
img_warped);
|
||||
|
||||
// Warp the current image mask
|
||||
@ -587,7 +598,7 @@ int main(int argc, char* argv[])
|
||||
}
|
||||
|
||||
Mat result, result_mask;
|
||||
blender->blend(result, result_mask);
|
||||
blender->blend(result, result_mask);
|
||||
|
||||
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
||||
|
||||
|
@ -311,7 +311,7 @@ namespace
|
||||
const DMatch& m1 = pair_matches[i][1];
|
||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||
{
|
||||
matches_info.matches.push_back(m0);
|
||||
//matches_info.matches.push_back(m0);
|
||||
matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
|
||||
}
|
||||
}
|
||||
@ -326,7 +326,7 @@ namespace
|
||||
const DMatch& m0 = pair_matches[i][0];
|
||||
const DMatch& m1 = pair_matches[i][1];
|
||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||
if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
|
||||
if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) != matches.end())
|
||||
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
||||
}
|
||||
}
|
||||
@ -352,7 +352,7 @@ namespace
|
||||
const DMatch& m1 = pair_matches[i][1];
|
||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||
{
|
||||
matches_info.matches.push_back(m0);
|
||||
//matches_info.matches.push_back(m0);
|
||||
matches.insert(make_pair(m0.queryIdx, m0.trainIdx));
|
||||
}
|
||||
}
|
||||
@ -368,7 +368,7 @@ namespace
|
||||
const DMatch& m0 = pair_matches[i][0];
|
||||
const DMatch& m1 = pair_matches[i][1];
|
||||
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
||||
if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
|
||||
if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) != matches.end())
|
||||
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
||||
}
|
||||
}
|
||||
|
@ -38,478 +38,478 @@
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include <algorithm>
|
||||
#include "autocalib.hpp"
|
||||
#include "motion_estimators.hpp"
|
||||
#include "util.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}
|
||||
|
||||
CameraParams::CameraParams(const CameraParams &other) { *this = other; }
|
||||
|
||||
const CameraParams& CameraParams::operator =(const CameraParams &other)
|
||||
{
|
||||
focal = other.focal;
|
||||
R = other.R.clone();
|
||||
t = other.t.clone();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct IncDistance
|
||||
{
|
||||
IncDistance(vector<int> &dists) : dists(&dists[0]) {}
|
||||
void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
|
||||
int* dists;
|
||||
};
|
||||
|
||||
|
||||
struct CalcRotation
|
||||
{
|
||||
CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
|
||||
: num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {}
|
||||
|
||||
void operator ()(const GraphEdge &edge)
|
||||
{
|
||||
int pair_idx = edge.from * num_images + edge.to;
|
||||
|
||||
double f_from = cameras[edge.from].focal;
|
||||
double f_to = cameras[edge.to].focal;
|
||||
|
||||
Mat K_from = Mat::eye(3, 3, CV_64F);
|
||||
K_from.at<double>(0, 0) = f_from;
|
||||
K_from.at<double>(1, 1) = f_from;
|
||||
|
||||
Mat K_to = Mat::eye(3, 3, CV_64F);
|
||||
K_to.at<double>(0, 0) = f_to;
|
||||
K_to.at<double>(1, 1) = f_to;
|
||||
|
||||
Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
|
||||
cameras[edge.to].R = cameras[edge.from].R * R;
|
||||
}
|
||||
|
||||
int num_images;
|
||||
const MatchesInfo* pairwise_matches;
|
||||
CameraParams* cameras;
|
||||
};
|
||||
|
||||
|
||||
void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
|
||||
vector<CameraParams> &cameras)
|
||||
{
|
||||
const int num_images = static_cast<int>(features.size());
|
||||
|
||||
// Estimate focal length and set it for all cameras
|
||||
vector<double> focals;
|
||||
estimateFocal(features, pairwise_matches, focals);
|
||||
cameras.resize(num_images);
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
cameras[i].focal = focals[i];
|
||||
|
||||
// Restore global motion
|
||||
Graph span_tree;
|
||||
vector<int> span_tree_centers;
|
||||
findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
|
||||
span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void BundleAdjuster::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
|
||||
vector<CameraParams> &cameras)
|
||||
{
|
||||
num_images_ = static_cast<int>(features.size());
|
||||
features_ = &features[0];
|
||||
pairwise_matches_ = &pairwise_matches[0];
|
||||
|
||||
// Prepare focals and rotations
|
||||
cameras_.create(num_images_ * 4, 1, CV_64F);
|
||||
SVD svd;
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras_.at<double>(i * 4, 0) = cameras[i].focal;
|
||||
|
||||
svd(cameras[i].R, SVD::FULL_UV);
|
||||
Mat R = svd.u * svd.vt;
|
||||
if (determinant(R) < 0)
|
||||
R *= -1;
|
||||
|
||||
Mat rvec;
|
||||
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
|
||||
cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
|
||||
cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
|
||||
}
|
||||
|
||||
// Select only consistent image pairs for futher adjustment
|
||||
edges_.clear();
|
||||
for (int i = 0; i < num_images_ - 1; ++i)
|
||||
{
|
||||
for (int j = i + 1; j < num_images_; ++j)
|
||||
{
|
||||
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
||||
if (matches_info.confidence > conf_thresh_)
|
||||
edges_.push_back(make_pair(i, j));
|
||||
}
|
||||
}
|
||||
|
||||
// Compute number of correspondences
|
||||
total_num_matches_ = 0;
|
||||
for (size_t i = 0; i < edges_.size(); ++i)
|
||||
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
|
||||
|
||||
CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,
|
||||
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON));
|
||||
|
||||
CvMat matParams = cameras_;
|
||||
cvCopy(&matParams, solver.param);
|
||||
|
||||
int count = 0;
|
||||
for(;;)
|
||||
{
|
||||
const CvMat* _param = 0;
|
||||
CvMat* _J = 0;
|
||||
CvMat* _err = 0;
|
||||
|
||||
bool proceed = solver.update(_param, _J, _err);
|
||||
|
||||
cvCopy( _param, &matParams );
|
||||
|
||||
if( !proceed || !_err )
|
||||
break;
|
||||
|
||||
if( _J )
|
||||
{
|
||||
calcJacobian();
|
||||
CvMat matJ = J_;
|
||||
cvCopy( &matJ, _J );
|
||||
}
|
||||
|
||||
if (_err)
|
||||
{
|
||||
calcError(err_);
|
||||
LOG(".");
|
||||
count++;
|
||||
CvMat matErr = err_;
|
||||
cvCopy( &matErr, _err );
|
||||
}
|
||||
}
|
||||
LOGLN("");
|
||||
LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_)));
|
||||
LOGLN("Bundle adjustment, iterations done: " << count);
|
||||
|
||||
// Obtain global motion
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras[i].focal = cameras_.at<double>(i * 4, 0);
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
||||
Rodrigues(rvec, cameras[i].R);
|
||||
Mat Mf;
|
||||
cameras[i].R.convertTo(Mf, CV_32F);
|
||||
cameras[i].R = Mf;
|
||||
}
|
||||
|
||||
// Normalize motion to center image
|
||||
Graph span_tree;
|
||||
vector<int> span_tree_centers;
|
||||
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
|
||||
Mat R_inv = cameras[span_tree_centers[0]].R.inv();
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
cameras[i].R = R_inv * cameras[i].R;
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjuster::calcError(Mat &err)
|
||||
{
|
||||
err.create(total_num_matches_ * 3, 1, CV_64F);
|
||||
|
||||
int match_idx = 0;
|
||||
for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
|
||||
{
|
||||
int i = edges_[edge_idx].first;
|
||||
int j = edges_[edge_idx].second;
|
||||
double f1 = cameras_.at<double>(i * 4, 0);
|
||||
double f2 = cameras_.at<double>(j * 4, 0);
|
||||
double R1[9], R2[9];
|
||||
Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2);
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
||||
Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0);
|
||||
Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F);
|
||||
|
||||
const ImageFeatures& features1 = features_[i];
|
||||
const ImageFeatures& features2 = features_[j];
|
||||
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
||||
|
||||
for (size_t k = 0; k < matches_info.matches.size(); ++k)
|
||||
{
|
||||
if (!matches_info.inliers_mask[k])
|
||||
continue;
|
||||
|
||||
const DMatch& m = matches_info.matches[k];
|
||||
|
||||
Point2d kp1 = features1.keypoints[m.queryIdx].pt;
|
||||
kp1.x -= 0.5 * features1.img_size.width;
|
||||
kp1.y -= 0.5 * features1.img_size.height;
|
||||
Point2d kp2 = features2.keypoints[m.trainIdx].pt;
|
||||
kp2.x -= 0.5 * features2.img_size.width;
|
||||
kp2.y -= 0.5 * features2.img_size.height;
|
||||
double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1);
|
||||
double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2);
|
||||
Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1);
|
||||
Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2);
|
||||
|
||||
Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2],
|
||||
p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5],
|
||||
p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]);
|
||||
Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2],
|
||||
p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5],
|
||||
p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]);
|
||||
|
||||
double mult = 1;
|
||||
if (cost_space_ == FOCAL_RAY_SPACE)
|
||||
mult = sqrt(f1 * f2);
|
||||
err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x);
|
||||
err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y);
|
||||
err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z);
|
||||
match_idx++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
|
||||
{
|
||||
for (int i = 0; i < err1.rows; ++i)
|
||||
res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjuster::calcJacobian()
|
||||
{
|
||||
J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);
|
||||
|
||||
double f, r;
|
||||
const double df = 0.001; // Focal length step
|
||||
const double dr = 0.001; // Angle step
|
||||
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
f = cameras_.at<double>(i * 4, 0);
|
||||
cameras_.at<double>(i * 4, 0) = f - df;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4, 0) = f + df;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4));
|
||||
cameras_.at<double>(i * 4, 0) = f;
|
||||
|
||||
r = cameras_.at<double>(i * 4 + 1, 0);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = r - dr;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = r + dr;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1));
|
||||
cameras_.at<double>(i * 4 + 1, 0) = r;
|
||||
|
||||
r = cameras_.at<double>(i * 4 + 2, 0);
|
||||
cameras_.at<double>(i * 4 + 2, 0) = r - dr;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4 + 2, 0) = r + dr;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2));
|
||||
cameras_.at<double>(i * 4 + 2, 0) = r;
|
||||
|
||||
r = cameras_.at<double>(i * 4 + 3, 0);
|
||||
cameras_.at<double>(i * 4 + 3, 0) = r - dr;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4 + 3, 0) = r + dr;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3));
|
||||
cameras_.at<double>(i * 4 + 3, 0) = r;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void waveCorrect(vector<Mat> &rmats)
|
||||
{
|
||||
float data[9];
|
||||
Mat r0(1, 3, CV_32F, data);
|
||||
Mat r1(1, 3, CV_32F, data + 3);
|
||||
Mat r2(1, 3, CV_32F, data + 6);
|
||||
Mat R(3, 3, CV_32F, data);
|
||||
|
||||
Mat cov = Mat::zeros(3, 3, CV_32F);
|
||||
for (size_t i = 0; i < rmats.size(); ++i)
|
||||
{
|
||||
Mat r0 = rmats[i].col(0);
|
||||
cov += r0 * r0.t();
|
||||
}
|
||||
|
||||
SVD svd;
|
||||
svd(cov, SVD::FULL_UV);
|
||||
svd.vt.row(2).copyTo(r1);
|
||||
if (determinant(svd.vt) < 0) r1 *= -1;
|
||||
|
||||
Mat avgz = Mat::zeros(3, 1, CV_32F);
|
||||
for (size_t i = 0; i < rmats.size(); ++i)
|
||||
avgz += rmats[i].col(2);
|
||||
r1.cross(avgz.t()).copyTo(r0);
|
||||
normalize(r0, r0);
|
||||
|
||||
r1.cross(r0).copyTo(r2);
|
||||
if (determinant(R) < 0) R *= -1;
|
||||
|
||||
for (size_t i = 0; i < rmats.size(); ++i)
|
||||
rmats[i] = R * rmats[i];
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches,
|
||||
float conf_threshold)
|
||||
{
|
||||
const int num_images = static_cast<int>(features.size());
|
||||
|
||||
DjSets comps(num_images);
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
{
|
||||
if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
|
||||
continue;
|
||||
int comp1 = comps.find(i);
|
||||
int comp2 = comps.find(j);
|
||||
if (comp1 != comp2)
|
||||
comps.merge(comp1, comp2);
|
||||
}
|
||||
}
|
||||
|
||||
int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin();
|
||||
|
||||
vector<int> indices;
|
||||
vector<int> indices_removed;
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (comps.find(i) == max_comp)
|
||||
indices.push_back(i);
|
||||
else
|
||||
indices_removed.push_back(i);
|
||||
|
||||
vector<ImageFeatures> features_subset;
|
||||
vector<MatchesInfo> pairwise_matches_subset;
|
||||
for (size_t i = 0; i < indices.size(); ++i)
|
||||
{
|
||||
features_subset.push_back(features[indices[i]]);
|
||||
for (size_t j = 0; j < indices.size(); ++j)
|
||||
{
|
||||
pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
|
||||
pairwise_matches_subset.back().src_img_idx = i;
|
||||
pairwise_matches_subset.back().dst_img_idx = j;
|
||||
}
|
||||
}
|
||||
|
||||
if (static_cast<int>(features_subset.size()) == num_images)
|
||||
return indices;
|
||||
|
||||
LOG("Removed some images, because can't match them: (");
|
||||
LOG(indices_removed[0]+1);
|
||||
for (size_t i = 1; i < indices_removed.size(); ++i)
|
||||
LOG(", " << indices_removed[i]+1);
|
||||
LOGLN(")");
|
||||
|
||||
features = features_subset;
|
||||
pairwise_matches = pairwise_matches_subset;
|
||||
|
||||
return indices;
|
||||
}
|
||||
|
||||
|
||||
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
|
||||
Graph &span_tree, vector<int> ¢ers)
|
||||
{
|
||||
Graph graph(num_images);
|
||||
vector<GraphEdge> edges;
|
||||
|
||||
// Construct images graph and remember its edges
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
{
|
||||
if (pairwise_matches[i * num_images + j].H.empty())
|
||||
continue;
|
||||
float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
|
||||
graph.addEdge(i, j, conf);
|
||||
edges.push_back(GraphEdge(i, j, conf));
|
||||
}
|
||||
}
|
||||
|
||||
DjSets comps(num_images);
|
||||
span_tree.create(num_images);
|
||||
vector<int> span_tree_powers(num_images, 0);
|
||||
|
||||
// Find maximum spanning tree
|
||||
sort(edges.begin(), edges.end(), greater<GraphEdge>());
|
||||
for (size_t i = 0; i < edges.size(); ++i)
|
||||
{
|
||||
int comp1 = comps.find(edges[i].from);
|
||||
int comp2 = comps.find(edges[i].to);
|
||||
if (comp1 != comp2)
|
||||
{
|
||||
comps.merge(comp1, comp2);
|
||||
span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
|
||||
span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
|
||||
span_tree_powers[edges[i].from]++;
|
||||
span_tree_powers[edges[i].to]++;
|
||||
}
|
||||
}
|
||||
|
||||
// Find spanning tree leafs
|
||||
vector<int> span_tree_leafs;
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (span_tree_powers[i] == 1)
|
||||
span_tree_leafs.push_back(i);
|
||||
|
||||
// Find maximum distance from each spanning tree vertex
|
||||
vector<int> max_dists(num_images, 0);
|
||||
vector<int> cur_dists;
|
||||
for (size_t i = 0; i < span_tree_leafs.size(); ++i)
|
||||
{
|
||||
cur_dists.assign(num_images, 0);
|
||||
span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
max_dists[j] = max(max_dists[j], cur_dists[j]);
|
||||
}
|
||||
|
||||
// Find min-max distance
|
||||
int min_max_dist = max_dists[0];
|
||||
for (int i = 1; i < num_images; ++i)
|
||||
if (min_max_dist > max_dists[i])
|
||||
min_max_dist = max_dists[i];
|
||||
|
||||
// Find spanning tree centers
|
||||
centers.clear();
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (max_dists[i] == min_max_dist)
|
||||
centers.push_back(i);
|
||||
CV_Assert(centers.size() > 0 && centers.size() <= 2);
|
||||
}
|
||||
//M*/
|
||||
#include <algorithm>
|
||||
#include "autocalib.hpp"
|
||||
#include "motion_estimators.hpp"
|
||||
#include "util.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}
|
||||
|
||||
CameraParams::CameraParams(const CameraParams &other) { *this = other; }
|
||||
|
||||
const CameraParams& CameraParams::operator =(const CameraParams &other)
|
||||
{
|
||||
focal = other.focal;
|
||||
R = other.R.clone();
|
||||
t = other.t.clone();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct IncDistance
|
||||
{
|
||||
IncDistance(vector<int> &dists) : dists(&dists[0]) {}
|
||||
void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
|
||||
int* dists;
|
||||
};
|
||||
|
||||
|
||||
struct CalcRotation
|
||||
{
|
||||
CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
|
||||
: num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {}
|
||||
|
||||
void operator ()(const GraphEdge &edge)
|
||||
{
|
||||
int pair_idx = edge.from * num_images + edge.to;
|
||||
|
||||
double f_from = cameras[edge.from].focal;
|
||||
double f_to = cameras[edge.to].focal;
|
||||
|
||||
Mat K_from = Mat::eye(3, 3, CV_64F);
|
||||
K_from.at<double>(0, 0) = f_from;
|
||||
K_from.at<double>(1, 1) = f_from;
|
||||
|
||||
Mat K_to = Mat::eye(3, 3, CV_64F);
|
||||
K_to.at<double>(0, 0) = f_to;
|
||||
K_to.at<double>(1, 1) = f_to;
|
||||
|
||||
Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
|
||||
cameras[edge.to].R = cameras[edge.from].R * R;
|
||||
}
|
||||
|
||||
int num_images;
|
||||
const MatchesInfo* pairwise_matches;
|
||||
CameraParams* cameras;
|
||||
};
|
||||
|
||||
|
||||
void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
|
||||
vector<CameraParams> &cameras)
|
||||
{
|
||||
const int num_images = static_cast<int>(features.size());
|
||||
|
||||
// Estimate focal length and set it for all cameras
|
||||
vector<double> focals;
|
||||
estimateFocal(features, pairwise_matches, focals);
|
||||
cameras.resize(num_images);
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
cameras[i].focal = focals[i];
|
||||
|
||||
// Restore global motion
|
||||
Graph span_tree;
|
||||
vector<int> span_tree_centers;
|
||||
findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
|
||||
span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void BundleAdjuster::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
|
||||
vector<CameraParams> &cameras)
|
||||
{
|
||||
num_images_ = static_cast<int>(features.size());
|
||||
features_ = &features[0];
|
||||
pairwise_matches_ = &pairwise_matches[0];
|
||||
|
||||
// Prepare focals and rotations
|
||||
cameras_.create(num_images_ * 4, 1, CV_64F);
|
||||
SVD svd;
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras_.at<double>(i * 4, 0) = cameras[i].focal;
|
||||
|
||||
svd(cameras[i].R, SVD::FULL_UV);
|
||||
Mat R = svd.u * svd.vt;
|
||||
if (determinant(R) < 0)
|
||||
R *= -1;
|
||||
|
||||
Mat rvec;
|
||||
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
|
||||
cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
|
||||
cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
|
||||
}
|
||||
|
||||
// Select only consistent image pairs for futher adjustment
|
||||
edges_.clear();
|
||||
for (int i = 0; i < num_images_ - 1; ++i)
|
||||
{
|
||||
for (int j = i + 1; j < num_images_; ++j)
|
||||
{
|
||||
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
||||
if (matches_info.confidence > conf_thresh_)
|
||||
edges_.push_back(make_pair(i, j));
|
||||
}
|
||||
}
|
||||
|
||||
// Compute number of correspondences
|
||||
total_num_matches_ = 0;
|
||||
for (size_t i = 0; i < edges_.size(); ++i)
|
||||
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
|
||||
|
||||
CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,
|
||||
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON));
|
||||
|
||||
CvMat matParams = cameras_;
|
||||
cvCopy(&matParams, solver.param);
|
||||
|
||||
int count = 0;
|
||||
for(;;)
|
||||
{
|
||||
const CvMat* _param = 0;
|
||||
CvMat* _J = 0;
|
||||
CvMat* _err = 0;
|
||||
|
||||
bool proceed = solver.update(_param, _J, _err);
|
||||
|
||||
cvCopy( _param, &matParams );
|
||||
|
||||
if( !proceed || !_err )
|
||||
break;
|
||||
|
||||
if( _J )
|
||||
{
|
||||
calcJacobian();
|
||||
CvMat matJ = J_;
|
||||
cvCopy( &matJ, _J );
|
||||
}
|
||||
|
||||
if (_err)
|
||||
{
|
||||
calcError(err_);
|
||||
LOG(".");
|
||||
count++;
|
||||
CvMat matErr = err_;
|
||||
cvCopy( &matErr, _err );
|
||||
}
|
||||
}
|
||||
LOGLN("");
|
||||
LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_)));
|
||||
LOGLN("Bundle adjustment, iterations done: " << count);
|
||||
|
||||
// Obtain global motion
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras[i].focal = cameras_.at<double>(i * 4, 0);
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
||||
Rodrigues(rvec, cameras[i].R);
|
||||
Mat Mf;
|
||||
cameras[i].R.convertTo(Mf, CV_32F);
|
||||
cameras[i].R = Mf;
|
||||
}
|
||||
|
||||
// Normalize motion to center image
|
||||
Graph span_tree;
|
||||
vector<int> span_tree_centers;
|
||||
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
|
||||
Mat R_inv = cameras[span_tree_centers[0]].R.inv();
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
cameras[i].R = R_inv * cameras[i].R;
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjuster::calcError(Mat &err)
|
||||
{
|
||||
err.create(total_num_matches_ * 3, 1, CV_64F);
|
||||
|
||||
int match_idx = 0;
|
||||
for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
|
||||
{
|
||||
int i = edges_[edge_idx].first;
|
||||
int j = edges_[edge_idx].second;
|
||||
double f1 = cameras_.at<double>(i * 4, 0);
|
||||
double f2 = cameras_.at<double>(j * 4, 0);
|
||||
double R1[9], R2[9];
|
||||
Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2);
|
||||
Mat rvec(3, 1, CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
|
||||
Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F);
|
||||
rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0);
|
||||
rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0);
|
||||
rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0);
|
||||
Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F);
|
||||
|
||||
const ImageFeatures& features1 = features_[i];
|
||||
const ImageFeatures& features2 = features_[j];
|
||||
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
||||
|
||||
for (size_t k = 0; k < matches_info.matches.size(); ++k)
|
||||
{
|
||||
if (!matches_info.inliers_mask[k])
|
||||
continue;
|
||||
|
||||
const DMatch& m = matches_info.matches[k];
|
||||
|
||||
Point2d kp1 = features1.keypoints[m.queryIdx].pt;
|
||||
kp1.x -= 0.5 * features1.img_size.width;
|
||||
kp1.y -= 0.5 * features1.img_size.height;
|
||||
Point2d kp2 = features2.keypoints[m.trainIdx].pt;
|
||||
kp2.x -= 0.5 * features2.img_size.width;
|
||||
kp2.y -= 0.5 * features2.img_size.height;
|
||||
double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1);
|
||||
double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2);
|
||||
Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1);
|
||||
Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2);
|
||||
|
||||
Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2],
|
||||
p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5],
|
||||
p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]);
|
||||
Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2],
|
||||
p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5],
|
||||
p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]);
|
||||
|
||||
double mult = 1;
|
||||
if (cost_space_ == FOCAL_RAY_SPACE)
|
||||
mult = sqrt(f1 * f2);
|
||||
err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x);
|
||||
err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y);
|
||||
err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z);
|
||||
match_idx++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
|
||||
{
|
||||
for (int i = 0; i < err1.rows; ++i)
|
||||
res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
|
||||
}
|
||||
|
||||
|
||||
void BundleAdjuster::calcJacobian()
|
||||
{
|
||||
J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);
|
||||
|
||||
double f, r;
|
||||
const double df = 0.001; // Focal length step
|
||||
const double dr = 0.001; // Angle step
|
||||
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
f = cameras_.at<double>(i * 4, 0);
|
||||
cameras_.at<double>(i * 4, 0) = f - df;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4, 0) = f + df;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4));
|
||||
cameras_.at<double>(i * 4, 0) = f;
|
||||
|
||||
r = cameras_.at<double>(i * 4 + 1, 0);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = r - dr;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = r + dr;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1));
|
||||
cameras_.at<double>(i * 4 + 1, 0) = r;
|
||||
|
||||
r = cameras_.at<double>(i * 4 + 2, 0);
|
||||
cameras_.at<double>(i * 4 + 2, 0) = r - dr;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4 + 2, 0) = r + dr;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2));
|
||||
cameras_.at<double>(i * 4 + 2, 0) = r;
|
||||
|
||||
r = cameras_.at<double>(i * 4 + 3, 0);
|
||||
cameras_.at<double>(i * 4 + 3, 0) = r - dr;
|
||||
calcError(err1_);
|
||||
cameras_.at<double>(i * 4 + 3, 0) = r + dr;
|
||||
calcError(err2_);
|
||||
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3));
|
||||
cameras_.at<double>(i * 4 + 3, 0) = r;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void waveCorrect(vector<Mat> &rmats)
|
||||
{
|
||||
float data[9];
|
||||
Mat r0(1, 3, CV_32F, data);
|
||||
Mat r1(1, 3, CV_32F, data + 3);
|
||||
Mat r2(1, 3, CV_32F, data + 6);
|
||||
Mat R(3, 3, CV_32F, data);
|
||||
|
||||
Mat cov = Mat::zeros(3, 3, CV_32F);
|
||||
for (size_t i = 0; i < rmats.size(); ++i)
|
||||
{
|
||||
Mat r0 = rmats[i].col(0);
|
||||
cov += r0 * r0.t();
|
||||
}
|
||||
|
||||
SVD svd;
|
||||
svd(cov, SVD::FULL_UV);
|
||||
svd.vt.row(2).copyTo(r1);
|
||||
if (determinant(svd.vt) < 0) r1 *= -1;
|
||||
|
||||
Mat avgz = Mat::zeros(3, 1, CV_32F);
|
||||
for (size_t i = 0; i < rmats.size(); ++i)
|
||||
avgz += rmats[i].col(2);
|
||||
r1.cross(avgz.t()).copyTo(r0);
|
||||
normalize(r0, r0);
|
||||
|
||||
r1.cross(r0).copyTo(r2);
|
||||
if (determinant(R) < 0) R *= -1;
|
||||
|
||||
for (size_t i = 0; i < rmats.size(); ++i)
|
||||
rmats[i] = R * rmats[i];
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches,
|
||||
float conf_threshold)
|
||||
{
|
||||
const int num_images = static_cast<int>(features.size());
|
||||
|
||||
DjSets comps(num_images);
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
{
|
||||
if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
|
||||
continue;
|
||||
int comp1 = comps.find(i);
|
||||
int comp2 = comps.find(j);
|
||||
if (comp1 != comp2)
|
||||
comps.merge(comp1, comp2);
|
||||
}
|
||||
}
|
||||
|
||||
int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin();
|
||||
|
||||
vector<int> indices;
|
||||
vector<int> indices_removed;
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (comps.find(i) == max_comp)
|
||||
indices.push_back(i);
|
||||
else
|
||||
indices_removed.push_back(i);
|
||||
|
||||
vector<ImageFeatures> features_subset;
|
||||
vector<MatchesInfo> pairwise_matches_subset;
|
||||
for (size_t i = 0; i < indices.size(); ++i)
|
||||
{
|
||||
features_subset.push_back(features[indices[i]]);
|
||||
for (size_t j = 0; j < indices.size(); ++j)
|
||||
{
|
||||
pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
|
||||
pairwise_matches_subset.back().src_img_idx = i;
|
||||
pairwise_matches_subset.back().dst_img_idx = j;
|
||||
}
|
||||
}
|
||||
|
||||
if (static_cast<int>(features_subset.size()) == num_images)
|
||||
return indices;
|
||||
|
||||
LOG("Removed some images, because can't match them: (");
|
||||
LOG(indices_removed[0]+1);
|
||||
for (size_t i = 1; i < indices_removed.size(); ++i)
|
||||
LOG(", " << indices_removed[i]+1);
|
||||
LOGLN("). Try decrease --match_conf value.");
|
||||
|
||||
features = features_subset;
|
||||
pairwise_matches = pairwise_matches_subset;
|
||||
|
||||
return indices;
|
||||
}
|
||||
|
||||
|
||||
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
|
||||
Graph &span_tree, vector<int> ¢ers)
|
||||
{
|
||||
Graph graph(num_images);
|
||||
vector<GraphEdge> edges;
|
||||
|
||||
// Construct images graph and remember its edges
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
{
|
||||
if (pairwise_matches[i * num_images + j].H.empty())
|
||||
continue;
|
||||
float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
|
||||
graph.addEdge(i, j, conf);
|
||||
edges.push_back(GraphEdge(i, j, conf));
|
||||
}
|
||||
}
|
||||
|
||||
DjSets comps(num_images);
|
||||
span_tree.create(num_images);
|
||||
vector<int> span_tree_powers(num_images, 0);
|
||||
|
||||
// Find maximum spanning tree
|
||||
sort(edges.begin(), edges.end(), greater<GraphEdge>());
|
||||
for (size_t i = 0; i < edges.size(); ++i)
|
||||
{
|
||||
int comp1 = comps.find(edges[i].from);
|
||||
int comp2 = comps.find(edges[i].to);
|
||||
if (comp1 != comp2)
|
||||
{
|
||||
comps.merge(comp1, comp2);
|
||||
span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
|
||||
span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
|
||||
span_tree_powers[edges[i].from]++;
|
||||
span_tree_powers[edges[i].to]++;
|
||||
}
|
||||
}
|
||||
|
||||
// Find spanning tree leafs
|
||||
vector<int> span_tree_leafs;
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (span_tree_powers[i] == 1)
|
||||
span_tree_leafs.push_back(i);
|
||||
|
||||
// Find maximum distance from each spanning tree vertex
|
||||
vector<int> max_dists(num_images, 0);
|
||||
vector<int> cur_dists;
|
||||
for (size_t i = 0; i < span_tree_leafs.size(); ++i)
|
||||
{
|
||||
cur_dists.assign(num_images, 0);
|
||||
span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
max_dists[j] = max(max_dists[j], cur_dists[j]);
|
||||
}
|
||||
|
||||
// Find min-max distance
|
||||
int min_max_dist = max_dists[0];
|
||||
for (int i = 1; i < num_images; ++i)
|
||||
if (min_max_dist > max_dists[i])
|
||||
min_max_dist = max_dists[i];
|
||||
|
||||
// Find spanning tree centers
|
||||
centers.clear();
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (max_dists[i] == min_max_dist)
|
||||
centers.push_back(i);
|
||||
CV_Assert(centers.size() > 0 && centers.size() <= 2);
|
||||
}
|
||||
|
@ -38,365 +38,365 @@
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "seam_finders.hpp"
|
||||
#include "util.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
Ptr<SeamFinder> SeamFinder::createDefault(int type)
|
||||
{
|
||||
if (type == NO)
|
||||
return new NoSeamFinder();
|
||||
if (type == VORONOI)
|
||||
return new VoronoiSeamFinder();
|
||||
if (type == GC_COLOR)
|
||||
return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR);
|
||||
if (type == GC_COLOR_GRAD)
|
||||
return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR_GRAD);
|
||||
CV_Error(CV_StsBadArg, "unsupported seam finding method");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void PairwiseSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,
|
||||
vector<Mat> &masks)
|
||||
{
|
||||
if (src.size() == 0)
|
||||
return;
|
||||
|
||||
images_ = src;
|
||||
corners_ = corners;
|
||||
masks_ = masks;
|
||||
|
||||
for (size_t i = 0; i < src.size() - 1; ++i)
|
||||
{
|
||||
for (size_t j = i + 1; j < src.size(); ++j)
|
||||
{
|
||||
Rect roi;
|
||||
if (overlapRoi(corners[i], corners[j], src[i].size(), src[j].size(), roi))
|
||||
findInPair(i, j, roi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
|
||||
{
|
||||
const int gap = 10;
|
||||
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
|
||||
Mat img1 = images_[first], img2 = images_[second];
|
||||
Mat mask1 = masks_[first], mask2 = masks_[second];
|
||||
Point tl1 = corners_[first], tl2 = corners_[second];
|
||||
|
||||
// Cut submasks with some gap
|
||||
for (int y = -gap; y < roi.height + gap; ++y)
|
||||
{
|
||||
for (int x = -gap; x < roi.width + gap; ++x)
|
||||
{
|
||||
int y1 = roi.y - tl1.y + y;
|
||||
int x1 = roi.x - tl1.x + x;
|
||||
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
|
||||
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
|
||||
else
|
||||
submask1.at<uchar>(y + gap, x + gap) = 0;
|
||||
|
||||
int y2 = roi.y - tl2.y + y;
|
||||
int x2 = roi.x - tl2.x + x;
|
||||
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
|
||||
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
|
||||
else
|
||||
submask2.at<uchar>(y + gap, x + gap) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
Mat collision = (submask1 != 0) & (submask2 != 0);
|
||||
Mat unique1 = submask1.clone(); unique1.setTo(0, collision);
|
||||
Mat unique2 = submask2.clone(); unique2.setTo(0, collision);
|
||||
|
||||
Mat dist1, dist2;
|
||||
distanceTransform(unique1 == 0, dist1, CV_DIST_L1, 3);
|
||||
distanceTransform(unique2 == 0, dist2, CV_DIST_L1, 3);
|
||||
|
||||
Mat seam = dist1 < dist2;
|
||||
|
||||
for (int y = 0; y < roi.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < roi.width; ++x)
|
||||
{
|
||||
if (seam.at<uchar>(y + gap, x + gap))
|
||||
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
|
||||
else
|
||||
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class GraphCutSeamFinder::Impl : public PairwiseSeamFinder
|
||||
{
|
||||
public:
|
||||
Impl(int cost_type, float terminal_cost, float bad_region_penalty)
|
||||
: cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}
|
||||
|
||||
void find(const vector<Mat> &src, const vector<Point> &corners, vector<Mat> &masks);
|
||||
void findInPair(size_t first, size_t second, Rect roi);
|
||||
|
||||
private:
|
||||
//M*/
|
||||
#include "seam_finders.hpp"
|
||||
#include "util.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
Ptr<SeamFinder> SeamFinder::createDefault(int type)
|
||||
{
|
||||
if (type == NO)
|
||||
return new NoSeamFinder();
|
||||
if (type == VORONOI)
|
||||
return new VoronoiSeamFinder();
|
||||
if (type == GC_COLOR)
|
||||
return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR);
|
||||
if (type == GC_COLOR_GRAD)
|
||||
return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR_GRAD);
|
||||
CV_Error(CV_StsBadArg, "unsupported seam finding method");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void PairwiseSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,
|
||||
vector<Mat> &masks)
|
||||
{
|
||||
if (src.size() == 0)
|
||||
return;
|
||||
|
||||
images_ = src;
|
||||
corners_ = corners;
|
||||
masks_ = masks;
|
||||
|
||||
for (size_t i = 0; i < src.size() - 1; ++i)
|
||||
{
|
||||
for (size_t j = i + 1; j < src.size(); ++j)
|
||||
{
|
||||
Rect roi;
|
||||
if (overlapRoi(corners[i], corners[j], src[i].size(), src[j].size(), roi))
|
||||
findInPair(i, j, roi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
|
||||
{
|
||||
const int gap = 10;
|
||||
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
|
||||
Mat img1 = images_[first], img2 = images_[second];
|
||||
Mat mask1 = masks_[first], mask2 = masks_[second];
|
||||
Point tl1 = corners_[first], tl2 = corners_[second];
|
||||
|
||||
// Cut submasks with some gap
|
||||
for (int y = -gap; y < roi.height + gap; ++y)
|
||||
{
|
||||
for (int x = -gap; x < roi.width + gap; ++x)
|
||||
{
|
||||
int y1 = roi.y - tl1.y + y;
|
||||
int x1 = roi.x - tl1.x + x;
|
||||
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
|
||||
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
|
||||
else
|
||||
submask1.at<uchar>(y + gap, x + gap) = 0;
|
||||
|
||||
int y2 = roi.y - tl2.y + y;
|
||||
int x2 = roi.x - tl2.x + x;
|
||||
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
|
||||
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
|
||||
else
|
||||
submask2.at<uchar>(y + gap, x + gap) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
Mat collision = (submask1 != 0) & (submask2 != 0);
|
||||
Mat unique1 = submask1.clone(); unique1.setTo(0, collision);
|
||||
Mat unique2 = submask2.clone(); unique2.setTo(0, collision);
|
||||
|
||||
Mat dist1, dist2;
|
||||
distanceTransform(unique1 == 0, dist1, CV_DIST_L1, 3);
|
||||
distanceTransform(unique2 == 0, dist2, CV_DIST_L1, 3);
|
||||
|
||||
Mat seam = dist1 < dist2;
|
||||
|
||||
for (int y = 0; y < roi.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < roi.width; ++x)
|
||||
{
|
||||
if (seam.at<uchar>(y + gap, x + gap))
|
||||
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
|
||||
else
|
||||
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class GraphCutSeamFinder::Impl : public PairwiseSeamFinder
|
||||
{
|
||||
public:
|
||||
Impl(int cost_type, float terminal_cost, float bad_region_penalty)
|
||||
: cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}
|
||||
|
||||
void find(const vector<Mat> &src, const vector<Point> &corners, vector<Mat> &masks);
|
||||
void findInPair(size_t first, size_t second, Rect roi);
|
||||
|
||||
private:
|
||||
void setGraphWeightsColor(const Mat &img1, const Mat &img2,
|
||||
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);
|
||||
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);
|
||||
void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
|
||||
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
|
||||
GCGraph<float> &graph);
|
||||
|
||||
vector<Mat> dx_, dy_;
|
||||
int cost_type_;
|
||||
float terminal_cost_;
|
||||
float bad_region_penalty_;
|
||||
};
|
||||
|
||||
|
||||
void GraphCutSeamFinder::Impl::find(const vector<Mat> &src, const vector<Point> &corners,
|
||||
vector<Mat> &masks)
|
||||
{
|
||||
// Compute gradients
|
||||
dx_.resize(src.size());
|
||||
dy_.resize(src.size());
|
||||
Mat dx, dy;
|
||||
for (size_t i = 0; i < src.size(); ++i)
|
||||
{
|
||||
CV_Assert(src[i].channels() == 3);
|
||||
Sobel(src[i], dx, CV_32F, 1, 0);
|
||||
Sobel(src[i], dy, CV_32F, 0, 1);
|
||||
dx_[i].create(src[i].size(), CV_32F);
|
||||
dy_[i].create(src[i].size(), CV_32F);
|
||||
for (int y = 0; y < src[i].rows; ++y)
|
||||
{
|
||||
const Point3f* dx_row = dx.ptr<Point3f>(y);
|
||||
const Point3f* dy_row = dy.ptr<Point3f>(y);
|
||||
float* dx_row_ = dx_[i].ptr<float>(y);
|
||||
float* dy_row_ = dy_[i].ptr<float>(y);
|
||||
for (int x = 0; x < src[i].cols; ++x)
|
||||
{
|
||||
dx_row_[x] = normL2(dx_row[x]);
|
||||
dy_row_[x] = normL2(dy_row[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
PairwiseSeamFinder::find(src, corners, masks);
|
||||
}
|
||||
|
||||
|
||||
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
|
||||
GCGraph<float> &graph);
|
||||
|
||||
vector<Mat> dx_, dy_;
|
||||
int cost_type_;
|
||||
float terminal_cost_;
|
||||
float bad_region_penalty_;
|
||||
};
|
||||
|
||||
|
||||
void GraphCutSeamFinder::Impl::find(const vector<Mat> &src, const vector<Point> &corners,
|
||||
vector<Mat> &masks)
|
||||
{
|
||||
// Compute gradients
|
||||
dx_.resize(src.size());
|
||||
dy_.resize(src.size());
|
||||
Mat dx, dy;
|
||||
for (size_t i = 0; i < src.size(); ++i)
|
||||
{
|
||||
CV_Assert(src[i].channels() == 3);
|
||||
Sobel(src[i], dx, CV_32F, 1, 0);
|
||||
Sobel(src[i], dy, CV_32F, 0, 1);
|
||||
dx_[i].create(src[i].size(), CV_32F);
|
||||
dy_[i].create(src[i].size(), CV_32F);
|
||||
for (int y = 0; y < src[i].rows; ++y)
|
||||
{
|
||||
const Point3f* dx_row = dx.ptr<Point3f>(y);
|
||||
const Point3f* dy_row = dy.ptr<Point3f>(y);
|
||||
float* dx_row_ = dx_[i].ptr<float>(y);
|
||||
float* dy_row_ = dy_[i].ptr<float>(y);
|
||||
for (int x = 0; x < src[i].cols; ++x)
|
||||
{
|
||||
dx_row_[x] = normL2(dx_row[x]);
|
||||
dy_row_[x] = normL2(dy_row[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
PairwiseSeamFinder::find(src, corners, masks);
|
||||
}
|
||||
|
||||
|
||||
void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2,
|
||||
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)
|
||||
{
|
||||
const Size img_size = img1.size();
|
||||
|
||||
// Set terminal weights
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = graph.addVtx();
|
||||
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
|
||||
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
// Set regular edge weights
|
||||
const float weight_eps = 1e-3f;
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = y * img_size.width + x;
|
||||
if (x < img_size.width - 1)
|
||||
{
|
||||
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + 1, weight, weight);
|
||||
}
|
||||
if (y < img_size.height - 1)
|
||||
{
|
||||
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + img_size.width, weight, weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)
|
||||
{
|
||||
const Size img_size = img1.size();
|
||||
|
||||
// Set terminal weights
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = graph.addVtx();
|
||||
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
|
||||
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
// Set regular edge weights
|
||||
const float weight_eps = 1.f;
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = y * img_size.width + x;
|
||||
if (x < img_size.width - 1)
|
||||
{
|
||||
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + 1, weight, weight);
|
||||
}
|
||||
if (y < img_size.height - 1)
|
||||
{
|
||||
float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + img_size.width, weight, weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad(
|
||||
const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
|
||||
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
|
||||
GCGraph<float> &graph)
|
||||
{
|
||||
const Size img_size = img1.size();
|
||||
|
||||
// Set terminal weights
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = graph.addVtx();
|
||||
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
|
||||
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
// Set regular edge weights
|
||||
const float weight_eps = 1e-3f;
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = y * img_size.width + x;
|
||||
if (x < img_size.width - 1)
|
||||
{
|
||||
const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
|
||||
const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
|
||||
GCGraph<float> &graph)
|
||||
{
|
||||
const Size img_size = img1.size();
|
||||
|
||||
// Set terminal weights
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = graph.addVtx();
|
||||
graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
|
||||
mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
// Set regular edge weights
|
||||
const float weight_eps = 1.f;
|
||||
for (int y = 0; y < img_size.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < img_size.width; ++x)
|
||||
{
|
||||
int v = y * img_size.width + x;
|
||||
if (x < img_size.width - 1)
|
||||
{
|
||||
float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
|
||||
dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
|
||||
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + 1, weight, weight);
|
||||
}
|
||||
if (y < img_size.height - 1)
|
||||
{
|
||||
dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
|
||||
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + 1, weight, weight);
|
||||
}
|
||||
if (y < img_size.height - 1)
|
||||
{
|
||||
float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
|
||||
dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
|
||||
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + img_size.width, weight, weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)
|
||||
{
|
||||
Mat img1 = images_[first], img2 = images_[second];
|
||||
Mat dx1 = dx_[first], dx2 = dx_[second];
|
||||
Mat dy1 = dy_[first], dy2 = dy_[second];
|
||||
Mat mask1 = masks_[first], mask2 = masks_[second];
|
||||
Point tl1 = corners_[first], tl2 = corners_[second];
|
||||
|
||||
const int gap = 10;
|
||||
Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
|
||||
Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
|
||||
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
|
||||
// Cut subimages and submasks with some gap
|
||||
for (int y = -gap; y < roi.height + gap; ++y)
|
||||
{
|
||||
for (int x = -gap; x < roi.width + gap; ++x)
|
||||
{
|
||||
int y1 = roi.y - tl1.y + y;
|
||||
int x1 = roi.x - tl1.x + x;
|
||||
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
|
||||
{
|
||||
subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
|
||||
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
|
||||
subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
|
||||
subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
|
||||
}
|
||||
else
|
||||
{
|
||||
subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
|
||||
submask1.at<uchar>(y + gap, x + gap) = 0;
|
||||
subdx1.at<float>(y + gap, x + gap) = 0.f;
|
||||
subdy1.at<float>(y + gap, x + gap) = 0.f;
|
||||
}
|
||||
|
||||
int y2 = roi.y - tl2.y + y;
|
||||
int x2 = roi.x - tl2.x + x;
|
||||
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
|
||||
{
|
||||
subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
|
||||
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
|
||||
subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
|
||||
subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
|
||||
}
|
||||
else
|
||||
{
|
||||
subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
|
||||
submask2.at<uchar>(y + gap, x + gap) = 0;
|
||||
subdx2.at<float>(y + gap, x + gap) = 0.f;
|
||||
subdy2.at<float>(y + gap, x + gap) = 0.f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);
|
||||
const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +
|
||||
(roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);
|
||||
GCGraph<float> graph(vertex_count, edge_count);
|
||||
|
||||
switch (cost_type_)
|
||||
{
|
||||
case GraphCutSeamFinder::COST_COLOR:
|
||||
setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);
|
||||
break;
|
||||
case GraphCutSeamFinder::COST_COLOR_GRAD:
|
||||
setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
|
||||
submask1, submask2, graph);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "unsupported pixel similarity measure");
|
||||
}
|
||||
|
||||
graph.maxFlow();
|
||||
|
||||
for (int y = 0; y < roi.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < roi.width; ++x)
|
||||
{
|
||||
if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))
|
||||
{
|
||||
if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
|
||||
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
|
||||
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)
|
||||
: impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}
|
||||
|
||||
|
||||
void GraphCutSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,
|
||||
vector<Mat> &masks)
|
||||
{
|
||||
impl_->find(src, corners, masks);
|
||||
}
|
||||
dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
|
||||
float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
|
||||
normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
|
||||
weight_eps;
|
||||
if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
|
||||
!mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
|
||||
weight += bad_region_penalty_;
|
||||
graph.addEdges(v, v + img_size.width, weight, weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)
|
||||
{
|
||||
Mat img1 = images_[first], img2 = images_[second];
|
||||
Mat dx1 = dx_[first], dx2 = dx_[second];
|
||||
Mat dy1 = dy_[first], dy2 = dy_[second];
|
||||
Mat mask1 = masks_[first], mask2 = masks_[second];
|
||||
Point tl1 = corners_[first], tl2 = corners_[second];
|
||||
|
||||
const int gap = 10;
|
||||
Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
|
||||
Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
|
||||
Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
|
||||
Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
|
||||
|
||||
// Cut subimages and submasks with some gap
|
||||
for (int y = -gap; y < roi.height + gap; ++y)
|
||||
{
|
||||
for (int x = -gap; x < roi.width + gap; ++x)
|
||||
{
|
||||
int y1 = roi.y - tl1.y + y;
|
||||
int x1 = roi.x - tl1.x + x;
|
||||
if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
|
||||
{
|
||||
subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
|
||||
submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
|
||||
subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
|
||||
subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
|
||||
}
|
||||
else
|
||||
{
|
||||
subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
|
||||
submask1.at<uchar>(y + gap, x + gap) = 0;
|
||||
subdx1.at<float>(y + gap, x + gap) = 0.f;
|
||||
subdy1.at<float>(y + gap, x + gap) = 0.f;
|
||||
}
|
||||
|
||||
int y2 = roi.y - tl2.y + y;
|
||||
int x2 = roi.x - tl2.x + x;
|
||||
if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
|
||||
{
|
||||
subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
|
||||
submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
|
||||
subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
|
||||
subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
|
||||
}
|
||||
else
|
||||
{
|
||||
subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
|
||||
submask2.at<uchar>(y + gap, x + gap) = 0;
|
||||
subdx2.at<float>(y + gap, x + gap) = 0.f;
|
||||
subdy2.at<float>(y + gap, x + gap) = 0.f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);
|
||||
const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +
|
||||
(roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);
|
||||
GCGraph<float> graph(vertex_count, edge_count);
|
||||
|
||||
switch (cost_type_)
|
||||
{
|
||||
case GraphCutSeamFinder::COST_COLOR:
|
||||
setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);
|
||||
break;
|
||||
case GraphCutSeamFinder::COST_COLOR_GRAD:
|
||||
setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
|
||||
submask1, submask2, graph);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "unsupported pixel similarity measure");
|
||||
}
|
||||
|
||||
graph.maxFlow();
|
||||
|
||||
for (int y = 0; y < roi.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < roi.width; ++x)
|
||||
{
|
||||
if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))
|
||||
{
|
||||
if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
|
||||
mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
|
||||
mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)
|
||||
: impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}
|
||||
|
||||
|
||||
void GraphCutSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,
|
||||
vector<Mat> &masks)
|
||||
{
|
||||
impl_->find(src, corners, masks);
|
||||
}
|
||||
|
@ -38,119 +38,122 @@
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#ifndef __OPENCV_WARPERS_HPP__
|
||||
#define __OPENCV_WARPERS_HPP__
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
class Warper
|
||||
{
|
||||
public:
|
||||
enum { PLANE, CYLINDRICAL, SPHERICAL };
|
||||
static cv::Ptr<Warper> createByCameraFocal(float focal, int type);
|
||||
|
||||
virtual ~Warper() {}
|
||||
virtual cv::Point warp(const cv::Mat &src, float focal, const cv::Mat& R, cv::Mat &dst,
|
||||
int interp_mode = cv::INTER_LINEAR, int border_mode = cv::BORDER_REFLECT) = 0;
|
||||
};
|
||||
|
||||
|
||||
struct ProjectorBase
|
||||
{
|
||||
void setTransformation(const cv::Mat& R);
|
||||
|
||||
cv::Size size;
|
||||
float focal;
|
||||
float r[9];
|
||||
float rinv[9];
|
||||
float scale;
|
||||
};
|
||||
|
||||
|
||||
template <class P>
|
||||
class WarperBase : public Warper
|
||||
{
|
||||
public:
|
||||
cv::Point warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,
|
||||
int interp_mode, int border_mode);
|
||||
|
||||
protected:
|
||||
// Detects ROI of the destination image. It's correct for any projection.
|
||||
virtual void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
|
||||
// Detects ROI of the destination image by walking over image border.
|
||||
// Correctness for any projection isn't guaranteed.
|
||||
void detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
|
||||
cv::Size src_size_;
|
||||
P projector_;
|
||||
};
|
||||
|
||||
|
||||
struct PlaneProjector : ProjectorBase
|
||||
{
|
||||
void mapForward(float x, float y, float &u, float &v);
|
||||
void mapBackward(float u, float v, float &x, float &y);
|
||||
|
||||
float plane_dist;
|
||||
};
|
||||
|
||||
|
||||
// Projects image onto z = plane_dist plane
|
||||
class PlaneWarper : public WarperBase<PlaneProjector>
|
||||
{
|
||||
public:
|
||||
PlaneWarper(float plane_dist = 1.f, float scale = 1.f)
|
||||
{
|
||||
projector_.plane_dist = plane_dist;
|
||||
projector_.scale = scale;
|
||||
}
|
||||
|
||||
private:
|
||||
void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
};
|
||||
|
||||
|
||||
struct SphericalProjector : ProjectorBase
|
||||
{
|
||||
void mapForward(float x, float y, float &u, float &v);
|
||||
void mapBackward(float u, float v, float &x, float &y);
|
||||
};
|
||||
|
||||
|
||||
// Projects image onto unit sphere with origin at (0, 0, 0).
|
||||
// Poles are located at (0, -1, 0) and (0, 1, 0) points.
|
||||
class SphericalWarper : public WarperBase<SphericalProjector>
|
||||
{
|
||||
public:
|
||||
SphericalWarper(float scale = 300.f) { projector_.scale = scale; }
|
||||
|
||||
private:
|
||||
void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
};
|
||||
|
||||
|
||||
struct CylindricalProjector : ProjectorBase
|
||||
{
|
||||
void mapForward(float x, float y, float &u, float &v);
|
||||
void mapBackward(float u, float v, float &x, float &y);
|
||||
};
|
||||
|
||||
|
||||
// Projects image onto x * x + z * z = 1 cylinder
|
||||
class CylindricalWarper : public WarperBase<CylindricalProjector>
|
||||
{
|
||||
public:
|
||||
CylindricalWarper(float scale = 300.f) { projector_.scale = scale; }
|
||||
|
||||
private:
|
||||
void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)
|
||||
{
|
||||
WarperBase<CylindricalProjector>::detectResultRoiByBorder(dst_tl, dst_br);
|
||||
}
|
||||
};
|
||||
|
||||
#include "warpers_inl.hpp"
|
||||
|
||||
#endif // __OPENCV_WARPERS_HPP__
|
||||
//M*/
|
||||
#ifndef __OPENCV_WARPERS_HPP__
|
||||
#define __OPENCV_WARPERS_HPP__
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
class Warper
|
||||
{
|
||||
public:
|
||||
enum { PLANE, CYLINDRICAL, SPHERICAL };
|
||||
static cv::Ptr<Warper> createByCameraFocal(float focal, int type);
|
||||
|
||||
virtual ~Warper() {}
|
||||
virtual cv::Point warp(const cv::Mat &src, float focal, const cv::Mat& R, cv::Mat &dst,
|
||||
int interp_mode = cv::INTER_LINEAR, int border_mode = cv::BORDER_REFLECT) = 0;
|
||||
virtual cv::Rect warpRoi(const cv::Size &sz, float focal, const cv::Mat &R) = 0;
|
||||
};
|
||||
|
||||
|
||||
struct ProjectorBase
|
||||
{
|
||||
void setTransformation(const cv::Mat& R);
|
||||
|
||||
cv::Size size;
|
||||
float focal;
|
||||
float r[9];
|
||||
float rinv[9];
|
||||
float scale;
|
||||
};
|
||||
|
||||
|
||||
template <class P>
|
||||
class WarperBase : public Warper
|
||||
{
|
||||
public:
|
||||
cv::Point warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,
|
||||
int interp_mode, int border_mode);
|
||||
|
||||
cv::Rect warpRoi(const cv::Size &sz, float focal, const cv::Mat &R);
|
||||
|
||||
protected:
|
||||
// Detects ROI of the destination image. It's correct for any projection.
|
||||
virtual void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
|
||||
// Detects ROI of the destination image by walking over image border.
|
||||
// Correctness for any projection isn't guaranteed.
|
||||
void detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
|
||||
cv::Size src_size_;
|
||||
P projector_;
|
||||
};
|
||||
|
||||
|
||||
struct PlaneProjector : ProjectorBase
|
||||
{
|
||||
void mapForward(float x, float y, float &u, float &v);
|
||||
void mapBackward(float u, float v, float &x, float &y);
|
||||
|
||||
float plane_dist;
|
||||
};
|
||||
|
||||
|
||||
// Projects image onto z = plane_dist plane
|
||||
class PlaneWarper : public WarperBase<PlaneProjector>
|
||||
{
|
||||
public:
|
||||
PlaneWarper(float plane_dist = 1.f, float scale = 1.f)
|
||||
{
|
||||
projector_.plane_dist = plane_dist;
|
||||
projector_.scale = scale;
|
||||
}
|
||||
|
||||
private:
|
||||
void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
};
|
||||
|
||||
|
||||
struct SphericalProjector : ProjectorBase
|
||||
{
|
||||
void mapForward(float x, float y, float &u, float &v);
|
||||
void mapBackward(float u, float v, float &x, float &y);
|
||||
};
|
||||
|
||||
|
||||
// Projects image onto unit sphere with origin at (0, 0, 0).
|
||||
// Poles are located at (0, -1, 0) and (0, 1, 0) points.
|
||||
class SphericalWarper : public WarperBase<SphericalProjector>
|
||||
{
|
||||
public:
|
||||
SphericalWarper(float scale = 300.f) { projector_.scale = scale; }
|
||||
|
||||
private:
|
||||
void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
|
||||
};
|
||||
|
||||
|
||||
struct CylindricalProjector : ProjectorBase
|
||||
{
|
||||
void mapForward(float x, float y, float &u, float &v);
|
||||
void mapBackward(float u, float v, float &x, float &y);
|
||||
};
|
||||
|
||||
|
||||
// Projects image onto x * x + z * z = 1 cylinder
|
||||
class CylindricalWarper : public WarperBase<CylindricalProjector>
|
||||
{
|
||||
public:
|
||||
CylindricalWarper(float scale = 300.f) { projector_.scale = scale; }
|
||||
|
||||
private:
|
||||
void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)
|
||||
{
|
||||
WarperBase<CylindricalProjector>::detectResultRoiByBorder(dst_tl, dst_br);
|
||||
}
|
||||
};
|
||||
|
||||
#include "warpers_inl.hpp"
|
||||
|
||||
#endif // __OPENCV_WARPERS_HPP__
|
||||
|
@ -38,202 +38,218 @@
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#ifndef __OPENCV_WARPERS_INL_HPP__
|
||||
#define __OPENCV_WARPERS_INL_HPP__
|
||||
|
||||
#include "warpers.hpp" // Make your IDE see declarations
|
||||
|
||||
template <class P>
|
||||
cv::Point WarperBase<P>::warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,
|
||||
int interp_mode, int border_mode)
|
||||
{
|
||||
src_size_ = src.size();
|
||||
|
||||
projector_.size = src.size();
|
||||
projector_.focal = focal;
|
||||
projector_.setTransformation(R);
|
||||
|
||||
cv::Point dst_tl, dst_br;
|
||||
detectResultRoi(dst_tl, dst_br);
|
||||
|
||||
cv::Mat xmap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
|
||||
cv::Mat ymap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
|
||||
|
||||
float x, y;
|
||||
for (int v = dst_tl.y; v <= dst_br.y; ++v)
|
||||
{
|
||||
for (int u = dst_tl.x; u <= dst_br.x; ++u)
|
||||
{
|
||||
projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
|
||||
xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
|
||||
ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
|
||||
}
|
||||
}
|
||||
|
||||
dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());
|
||||
remap(src, dst, xmap, ymap, interp_mode, border_mode);
|
||||
|
||||
return dst_tl;
|
||||
}
|
||||
|
||||
|
||||
template <class P>
|
||||
void WarperBase<P>::detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)
|
||||
{
|
||||
float tl_uf = std::numeric_limits<float>::max();
|
||||
float tl_vf = std::numeric_limits<float>::max();
|
||||
float br_uf = -std::numeric_limits<float>::max();
|
||||
float br_vf = -std::numeric_limits<float>::max();
|
||||
|
||||
float u, v;
|
||||
for (int y = 0; y < src_size_.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < src_size_.width; ++x)
|
||||
{
|
||||
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
}
|
||||
}
|
||||
|
||||
dst_tl.x = static_cast<int>(tl_uf);
|
||||
dst_tl.y = static_cast<int>(tl_vf);
|
||||
dst_br.x = static_cast<int>(br_uf);
|
||||
dst_br.y = static_cast<int>(br_vf);
|
||||
}
|
||||
|
||||
|
||||
template <class P>
|
||||
void WarperBase<P>::detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br)
|
||||
{
|
||||
float tl_uf = std::numeric_limits<float>::max();
|
||||
float tl_vf = std::numeric_limits<float>::max();
|
||||
float br_uf = -std::numeric_limits<float>::max();
|
||||
float br_vf = -std::numeric_limits<float>::max();
|
||||
|
||||
float u, v;
|
||||
for (float x = 0; x < src_size_.width; ++x)
|
||||
{
|
||||
projector_.mapForward(static_cast<float>(x), 0, u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
|
||||
projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size_.height - 1), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
}
|
||||
for (int y = 0; y < src_size_.height; ++y)
|
||||
{
|
||||
projector_.mapForward(0, static_cast<float>(y), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
|
||||
projector_.mapForward(static_cast<float>(src_size_.width - 1), static_cast<float>(y), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
}
|
||||
|
||||
dst_tl.x = static_cast<int>(tl_uf);
|
||||
dst_tl.y = static_cast<int>(tl_vf);
|
||||
dst_br.x = static_cast<int>(br_uf);
|
||||
dst_br.y = static_cast<int>(br_vf);
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void PlaneProjector::mapForward(float x, float y, float &u, float &v)
|
||||
{
|
||||
x -= size.width * 0.5f;
|
||||
y -= size.height * 0.5f;
|
||||
|
||||
float x_ = r[0] * x + r[1] * y + r[2] * focal;
|
||||
float y_ = r[3] * x + r[4] * y + r[5] * focal;
|
||||
float z_ = r[6] * x + r[7] * y + r[8] * focal;
|
||||
|
||||
u = scale * x_ / z_ * plane_dist;
|
||||
v = scale * y_ / z_ * plane_dist;
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
|
||||
{
|
||||
float x_ = u / scale;
|
||||
float y_ = v / scale;
|
||||
|
||||
float z;
|
||||
x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * plane_dist;
|
||||
y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * plane_dist;
|
||||
z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * plane_dist;
|
||||
|
||||
x = focal * x / z + size.width * 0.5f;
|
||||
y = focal * y / z + size.height * 0.5f;
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void SphericalProjector::mapForward(float x, float y, float &u, float &v)
|
||||
{
|
||||
x -= size.width * 0.5f;
|
||||
y -= size.height * 0.5f;
|
||||
|
||||
float x_ = r[0] * x + r[1] * y + r[2] * focal;
|
||||
float y_ = r[3] * x + r[4] * y + r[5] * focal;
|
||||
float z_ = r[6] * x + r[7] * y + r[8] * focal;
|
||||
|
||||
u = scale * atan2f(x_, z_);
|
||||
v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
|
||||
{
|
||||
float sinv = sinf(static_cast<float>(CV_PI) - v / scale);
|
||||
float x_ = sinv * sinf(u / scale);
|
||||
float y_ = cosf(static_cast<float>(CV_PI) - v / scale);
|
||||
float z_ = sinv * cosf(u / scale);
|
||||
|
||||
float z;
|
||||
x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;
|
||||
y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;
|
||||
z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;
|
||||
|
||||
x = focal * x / z + size.width * 0.5f;
|
||||
y = focal * y / z + size.height * 0.5f;
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
|
||||
{
|
||||
x -= size.width * 0.5f;
|
||||
y -= size.height * 0.5f;
|
||||
|
||||
float x_ = r[0] * x + r[1] * y + r[2] * focal;
|
||||
float y_ = r[3] * x + r[4] * y + r[5] * focal;
|
||||
float z_ = r[6] * x + r[7] * y + r[8] * focal;
|
||||
|
||||
u = scale * atan2f(x_, z_);
|
||||
v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
|
||||
{
|
||||
float x_ = sinf(u / scale);
|
||||
float y_ = v / scale;
|
||||
float z_ = cosf(u / scale);
|
||||
|
||||
float z;
|
||||
x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;
|
||||
y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;
|
||||
z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;
|
||||
|
||||
x = focal * x / z + size.width * 0.5f;
|
||||
y = focal * y / z + size.height * 0.5f;
|
||||
}
|
||||
|
||||
#endif // __OPENCV_WARPERS_INL_HPP__
|
||||
//M*/
|
||||
#ifndef __OPENCV_WARPERS_INL_HPP__
|
||||
#define __OPENCV_WARPERS_INL_HPP__
|
||||
|
||||
#include "warpers.hpp" // Make your IDE see declarations
|
||||
|
||||
template <class P>
|
||||
cv::Point WarperBase<P>::warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,
|
||||
int interp_mode, int border_mode)
|
||||
{
|
||||
src_size_ = src.size();
|
||||
|
||||
projector_.size = src.size();
|
||||
projector_.focal = focal;
|
||||
projector_.setTransformation(R);
|
||||
|
||||
cv::Point dst_tl, dst_br;
|
||||
detectResultRoi(dst_tl, dst_br);
|
||||
|
||||
cv::Mat xmap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
|
||||
cv::Mat ymap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
|
||||
|
||||
float x, y;
|
||||
for (int v = dst_tl.y; v <= dst_br.y; ++v)
|
||||
{
|
||||
for (int u = dst_tl.x; u <= dst_br.x; ++u)
|
||||
{
|
||||
projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
|
||||
xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
|
||||
ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
|
||||
}
|
||||
}
|
||||
|
||||
dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());
|
||||
remap(src, dst, xmap, ymap, interp_mode, border_mode);
|
||||
|
||||
return dst_tl;
|
||||
}
|
||||
|
||||
|
||||
template <class P>
|
||||
cv::Rect WarperBase<P>::warpRoi(const cv::Size &sz, float focal, const cv::Mat &R)
|
||||
{
|
||||
src_size_ = sz;
|
||||
|
||||
projector_.size = sz;
|
||||
projector_.focal = focal;
|
||||
projector_.setTransformation(R);
|
||||
|
||||
cv::Point dst_tl, dst_br;
|
||||
detectResultRoi(dst_tl, dst_br);
|
||||
|
||||
return cv::Rect(dst_tl, cv::Point(dst_br.x + 1, dst_br.y + 1));
|
||||
}
|
||||
|
||||
|
||||
template <class P>
|
||||
void WarperBase<P>::detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)
|
||||
{
|
||||
float tl_uf = std::numeric_limits<float>::max();
|
||||
float tl_vf = std::numeric_limits<float>::max();
|
||||
float br_uf = -std::numeric_limits<float>::max();
|
||||
float br_vf = -std::numeric_limits<float>::max();
|
||||
|
||||
float u, v;
|
||||
for (int y = 0; y < src_size_.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < src_size_.width; ++x)
|
||||
{
|
||||
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
}
|
||||
}
|
||||
|
||||
dst_tl.x = static_cast<int>(tl_uf);
|
||||
dst_tl.y = static_cast<int>(tl_vf);
|
||||
dst_br.x = static_cast<int>(br_uf);
|
||||
dst_br.y = static_cast<int>(br_vf);
|
||||
}
|
||||
|
||||
|
||||
template <class P>
|
||||
void WarperBase<P>::detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br)
|
||||
{
|
||||
float tl_uf = std::numeric_limits<float>::max();
|
||||
float tl_vf = std::numeric_limits<float>::max();
|
||||
float br_uf = -std::numeric_limits<float>::max();
|
||||
float br_vf = -std::numeric_limits<float>::max();
|
||||
|
||||
float u, v;
|
||||
for (float x = 0; x < src_size_.width; ++x)
|
||||
{
|
||||
projector_.mapForward(static_cast<float>(x), 0, u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
|
||||
projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size_.height - 1), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
}
|
||||
for (int y = 0; y < src_size_.height; ++y)
|
||||
{
|
||||
projector_.mapForward(0, static_cast<float>(y), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
|
||||
projector_.mapForward(static_cast<float>(src_size_.width - 1), static_cast<float>(y), u, v);
|
||||
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
|
||||
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
|
||||
}
|
||||
|
||||
dst_tl.x = static_cast<int>(tl_uf);
|
||||
dst_tl.y = static_cast<int>(tl_vf);
|
||||
dst_br.x = static_cast<int>(br_uf);
|
||||
dst_br.y = static_cast<int>(br_vf);
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void PlaneProjector::mapForward(float x, float y, float &u, float &v)
|
||||
{
|
||||
x -= size.width * 0.5f;
|
||||
y -= size.height * 0.5f;
|
||||
|
||||
float x_ = r[0] * x + r[1] * y + r[2] * focal;
|
||||
float y_ = r[3] * x + r[4] * y + r[5] * focal;
|
||||
float z_ = r[6] * x + r[7] * y + r[8] * focal;
|
||||
|
||||
u = scale * x_ / z_ * plane_dist;
|
||||
v = scale * y_ / z_ * plane_dist;
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
|
||||
{
|
||||
float x_ = u / scale;
|
||||
float y_ = v / scale;
|
||||
|
||||
float z;
|
||||
x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * plane_dist;
|
||||
y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * plane_dist;
|
||||
z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * plane_dist;
|
||||
|
||||
x = focal * x / z + size.width * 0.5f;
|
||||
y = focal * y / z + size.height * 0.5f;
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void SphericalProjector::mapForward(float x, float y, float &u, float &v)
|
||||
{
|
||||
x -= size.width * 0.5f;
|
||||
y -= size.height * 0.5f;
|
||||
|
||||
float x_ = r[0] * x + r[1] * y + r[2] * focal;
|
||||
float y_ = r[3] * x + r[4] * y + r[5] * focal;
|
||||
float z_ = r[6] * x + r[7] * y + r[8] * focal;
|
||||
|
||||
u = scale * atan2f(x_, z_);
|
||||
v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
|
||||
{
|
||||
float sinv = sinf(static_cast<float>(CV_PI) - v / scale);
|
||||
float x_ = sinv * sinf(u / scale);
|
||||
float y_ = cosf(static_cast<float>(CV_PI) - v / scale);
|
||||
float z_ = sinv * cosf(u / scale);
|
||||
|
||||
float z;
|
||||
x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;
|
||||
y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;
|
||||
z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;
|
||||
|
||||
x = focal * x / z + size.width * 0.5f;
|
||||
y = focal * y / z + size.height * 0.5f;
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
|
||||
{
|
||||
x -= size.width * 0.5f;
|
||||
y -= size.height * 0.5f;
|
||||
|
||||
float x_ = r[0] * x + r[1] * y + r[2] * focal;
|
||||
float y_ = r[3] * x + r[4] * y + r[5] * focal;
|
||||
float z_ = r[6] * x + r[7] * y + r[8] * focal;
|
||||
|
||||
u = scale * atan2f(x_, z_);
|
||||
v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
|
||||
{
|
||||
float x_ = sinf(u / scale);
|
||||
float y_ = v / scale;
|
||||
float z_ = cosf(u / scale);
|
||||
|
||||
float z;
|
||||
x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;
|
||||
y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;
|
||||
z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;
|
||||
|
||||
x = focal * x / z + size.width * 0.5f;
|
||||
y = focal * y / z + size.height * 0.5f;
|
||||
}
|
||||
|
||||
#endif // __OPENCV_WARPERS_INL_HPP__
|
||||
|
@ -32,7 +32,11 @@ int main()
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <GL/gl.h>
|
||||
#include <cudaGL.h>
|
||||
#include "opencv2/core/internal.hpp" // For TBB wrappers
|
||||
#include "tbb/tbb.h"
|
||||
#include "tbb/mutex.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
@ -54,7 +58,7 @@ inline void safeCall_(int code, const char* expr, const char* file, int line)
|
||||
}
|
||||
|
||||
// Each GPU is associated with its own context
|
||||
CUcontext contexts[2];
|
||||
CUcontext contexts[/*2*/1];
|
||||
|
||||
void inline contextOn(int id)
|
||||
{
|
||||
@ -76,6 +80,10 @@ GpuMat d_result[2];
|
||||
// CPU result
|
||||
Mat result;
|
||||
|
||||
int some[2];
|
||||
|
||||
tbb::mutex mutex;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
if (argc < 3)
|
||||
@ -85,11 +93,11 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
int num_devices = getCudaEnabledDeviceCount();
|
||||
if (num_devices < 2)
|
||||
{
|
||||
std::cout << "Two or more GPUs are required\n";
|
||||
return -1;
|
||||
}
|
||||
// if (num_devices < 2)
|
||||
// {
|
||||
// std::cout << "Two or more GPUs are required\n";
|
||||
// return -1;
|
||||
// }
|
||||
|
||||
for (int i = 0; i < num_devices; ++i)
|
||||
{
|
||||
@ -123,13 +131,14 @@ int main(int argc, char** argv)
|
||||
// Create context for GPU #0
|
||||
CUdevice device;
|
||||
safeCall(cuDeviceGet(&device, 0));
|
||||
safeCall(cuCtxCreate(&contexts[0], 0, device));
|
||||
safeCall(cuGLCtxCreate(&contexts[0], 0, device));
|
||||
//safeCall(cuCtxCreate(&contexts[0], 0, device));
|
||||
contextOff();
|
||||
|
||||
// Create context for GPU #1
|
||||
safeCall(cuDeviceGet(&device, 1));
|
||||
safeCall(cuCtxCreate(&contexts[1], 0, device));
|
||||
contextOff();
|
||||
// // Create context for GPU #1
|
||||
// safeCall(cuDeviceGet(&device, 0));
|
||||
// safeCall(cuCtxCreate(&contexts[1], 0, device));
|
||||
// contextOff();
|
||||
|
||||
// Split source images for processing on GPU #0
|
||||
contextOn(0);
|
||||
@ -139,15 +148,20 @@ int main(int argc, char** argv)
|
||||
contextOff();
|
||||
|
||||
// Split source images for processing on the GPU #1
|
||||
contextOn(1);
|
||||
contextOn(0);
|
||||
d_left[1].upload(left.rowRange(left.rows / 2, left.rows));
|
||||
d_right[1].upload(right.rowRange(right.rows / 2, right.rows));
|
||||
bm[1] = new StereoBM_GPU();
|
||||
contextOff();
|
||||
|
||||
some[0] = some[1] = 0;
|
||||
// Execute calculation in two threads using two GPUs
|
||||
int devices[] = {0, 1};
|
||||
parallel_do(devices, devices + 2, Worker());
|
||||
vector<int> devices;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
devices.push_back(rand()%2);
|
||||
tbb::parallel_do(&devices[0], &devices[devices.size() - 1], Worker());
|
||||
|
||||
cout << some[0] << " " << some[1] << endl;
|
||||
|
||||
// Release the first GPU resources
|
||||
contextOn(0);
|
||||
@ -159,7 +173,7 @@ int main(int argc, char** argv)
|
||||
contextOff();
|
||||
|
||||
// Release the second GPU resources
|
||||
contextOn(1);
|
||||
contextOn(0);
|
||||
imshow("GPU #1 result", Mat(d_result[1]));
|
||||
d_left[1].release();
|
||||
d_right[1].release();
|
||||
@ -175,7 +189,9 @@ int main(int argc, char** argv)
|
||||
|
||||
void Worker::operator()(int device_id) const
|
||||
{
|
||||
contextOn(device_id);
|
||||
mutex.lock();
|
||||
|
||||
contextOn(0);
|
||||
|
||||
bm[device_id]->operator()(d_left[device_id], d_right[device_id],
|
||||
d_result[device_id]);
|
||||
@ -184,13 +200,16 @@ void Worker::operator()(int device_id) const
|
||||
<< "): finished\n";
|
||||
|
||||
contextOff();
|
||||
|
||||
mutex.unlock();
|
||||
}
|
||||
|
||||
|
||||
void destroyContexts()
|
||||
{
|
||||
safeCall(cuCtxDestroy(contexts[0]));
|
||||
safeCall(cuCtxDestroy(contexts[1]));
|
||||
//safeCall(cuCtxDestroy(contexts[1]));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user