dnn: make NMS function public

This commit is contained in:
Vladislav Sovrasov 2017-10-16 19:16:52 +03:00
parent 21c8e6d02d
commit acedb4a579
4 changed files with 161 additions and 62 deletions

View File

@ -734,6 +734,19 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);
/** @brief
* @param bboxes
* @param scores
* @param score_threshold
* @param nms_threshold
* @param eta
* @param top_k
* @param indices
*/
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
const float eta, const int top_k, CV_OUT std::vector<int>& indices);
//! @}
CV__DNN_EXPERIMENTAL_NS_END

View File

@ -0,0 +1,114 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef OPENCV_DNN_NMS_INL_HPP
#define OPENCV_DNN_NMS_INL_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
namespace
{
template <typename T>
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2)
{
return pair1.first > pair2.first;
}
} // namespace
// Get max scores with corresponding indices.
// scores: a set of scores.
// threshold: only consider scores higher than the threshold.
// top_k: if -1, keep all; otherwise, keep at most top_k.
// score_index_vec: store the sorted (score, index) pair.
inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k,
std::vector<std::pair<float, int> >& score_index_vec)
{
CV_DbgAssert(score_index_vec.empty());
// Generate index score pairs.
for (size_t i = 0; i < scores.size(); ++i)
{
if (scores[i] > threshold)
{
score_index_vec.push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < (int)score_index_vec.size())
{
score_index_vec.resize(top_k);
}
}
template <typename BoxType>
struct NMSOverlap
{
float operator() (const BoxType& a, const BoxType& b);
};
template <>
inline float NMSOverlap<Rect>::operator() (const Rect& a, const Rect& b)
{
float rectIntersectionArea = (float)(a & b).area();
return rectIntersectionArea / (a.area() + b.area() - rectIntersectionArea);
}
// Do non maximum suppression given bboxes and scores.
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
// https://goo.gl/jV3JYS
// bboxes: a set of bounding boxes.
// scores: a set of corresponding confidences.
// score_threshold: a threshold used to filter detection results.
// nms_threshold: a threshold used in non maximum suppression.
// top_k: if not -1, keep at most top_k picked indices.
// indices: the kept indices of bboxes after nms.
template <typename BoxType>
inline void NMSFast_(const std::vector<BoxType>& bboxes,
const std::vector<float>& scores, const float score_threshold,
const float nms_threshold, const float eta, const int top_k,
std::vector<int>& indices, NMSOverlap<BoxType> computeOverlap)
{
CV_Assert(bboxes.size() == scores.size());
// Get top_k scores (with corresponding indices).
std::vector<std::pair<float, int> > score_index_vec;
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec);
// Do nms.
float adaptive_threshold = nms_threshold;
indices.clear();
while (score_index_vec.size() != 0) {
const int idx = score_index_vec.front().second;
bool keep = true;
for (int k = 0; k < (int)indices.size() && keep; ++k) {
const int kept_idx = indices[k];
float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]);
keep = overlap <= adaptive_threshold;
}
if (keep)
indices.push_back(idx);
score_index_vec.erase(score_index_vec.begin());
if (keep && eta < 1 && adaptive_threshold > 0.5) {
adaptive_threshold *= eta;
}
}
}
}// dnn
}// cv
#endif

View File

@ -45,6 +45,7 @@
#include <float.h>
#include <string>
#include <caffe.pb.h>
#include <opencv2/dnn/nms.inl.hpp>
namespace cv
{
@ -619,73 +620,14 @@ public:
}
}
// Do non maximum suppression given bboxes and scores.
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
// https://goo.gl/jV3JYS
// bboxes: a set of bounding boxes.
// scores: a set of corresponding confidences.
// score_threshold: a threshold used to filter detection results.
// nms_threshold: a threshold used in non maximum suppression.
// top_k: if not -1, keep at most top_k picked indices.
// indices: the kept indices of bboxes after nms.
static void ApplyNMSFast(const std::vector<caffe::NormalizedBBox>& bboxes,
const std::vector<float>& scores, const float score_threshold,
const float nms_threshold, const float eta, const int top_k,
std::vector<int>& indices)
{
CV_Assert(bboxes.size() == scores.size());
// Get top_k scores (with corresponding indices).
std::vector<std::pair<float, int> > score_index_vec;
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec);
// Do nms.
float adaptive_threshold = nms_threshold;
indices.clear();
while (score_index_vec.size() != 0) {
const int idx = score_index_vec.front().second;
bool keep = true;
for (int k = 0; k < (int)indices.size() && keep; ++k) {
const int kept_idx = indices[k];
float overlap = JaccardOverlap<true>(bboxes[idx], bboxes[kept_idx]);
keep = overlap <= adaptive_threshold;
}
if (keep)
indices.push_back(idx);
score_index_vec.erase(score_index_vec.begin());
if (keep && eta < 1 && adaptive_threshold > 0.5) {
adaptive_threshold *= eta;
}
}
}
// Get max scores with corresponding indices.
// scores: a set of scores.
// threshold: only consider scores higher than the threshold.
// top_k: if -1, keep all; otherwise, keep at most top_k.
// score_index_vec: store the sorted (score, index) pair.
static void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k,
std::vector<std::pair<float, int> >& score_index_vec)
{
CV_DbgAssert(score_index_vec.empty());
// Generate index score pairs.
for (size_t i = 0; i < scores.size(); ++i)
{
if (scores[i] > threshold)
{
score_index_vec.push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
util::SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < (int)score_index_vec.size())
{
score_index_vec.resize(top_k);
}
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, NMSOverlap<caffe::NormalizedBBox>());
}
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
@ -733,6 +675,12 @@ public:
}
};
template <>
float NMSOverlap<caffe::NormalizedBBox>::operator() (const caffe::NormalizedBBox& a, const caffe::NormalizedBBox& b)
{
return DetectionOutputLayerImpl::JaccardOverlap<true>(a, b);
}
const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");
Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams &params)

24
modules/dnn/src/nms.cpp Normal file
View File

@ -0,0 +1,24 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include <opencv2/dnn/nms.inl.hpp>
namespace cv
{
namespace dnn
{
void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
const float eta, const int top_k, std::vector<int>& indices)
{
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, NMSOverlap<Rect>());
}
}// dnn
}// cv