mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
dnn: make NMS function public
This commit is contained in:
parent
21c8e6d02d
commit
acedb4a579
@ -734,6 +734,19 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);
|
||||
|
||||
/** @brief
|
||||
* @param bboxes
|
||||
* @param scores
|
||||
* @param score_threshold
|
||||
* @param nms_threshold
|
||||
* @param eta
|
||||
* @param top_k
|
||||
* @param indices
|
||||
*/
|
||||
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
|
||||
const float score_threshold, const float nms_threshold,
|
||||
const float eta, const int top_k, CV_OUT std::vector<int>& indices);
|
||||
|
||||
|
||||
//! @}
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
|
114
modules/dnn/include/opencv2/dnn/nms.inl.hpp
Normal file
114
modules/dnn/include/opencv2/dnn/nms.inl.hpp
Normal file
@ -0,0 +1,114 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef OPENCV_DNN_NMS_INL_HPP
|
||||
#define OPENCV_DNN_NMS_INL_HPP
|
||||
|
||||
#include <opencv2/dnn.hpp>
|
||||
|
||||
namespace cv {
|
||||
namespace dnn {
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
template <typename T>
|
||||
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
|
||||
const std::pair<float, T>& pair2)
|
||||
{
|
||||
return pair1.first > pair2.first;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Get max scores with corresponding indices.
|
||||
// scores: a set of scores.
|
||||
// threshold: only consider scores higher than the threshold.
|
||||
// top_k: if -1, keep all; otherwise, keep at most top_k.
|
||||
// score_index_vec: store the sorted (score, index) pair.
|
||||
inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k,
|
||||
std::vector<std::pair<float, int> >& score_index_vec)
|
||||
{
|
||||
CV_DbgAssert(score_index_vec.empty());
|
||||
// Generate index score pairs.
|
||||
for (size_t i = 0; i < scores.size(); ++i)
|
||||
{
|
||||
if (scores[i] > threshold)
|
||||
{
|
||||
score_index_vec.push_back(std::make_pair(scores[i], i));
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the score pair according to the scores in descending order
|
||||
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
|
||||
SortScorePairDescend<int>);
|
||||
|
||||
// Keep top_k scores if needed.
|
||||
if (top_k > -1 && top_k < (int)score_index_vec.size())
|
||||
{
|
||||
score_index_vec.resize(top_k);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename BoxType>
|
||||
struct NMSOverlap
|
||||
{
|
||||
float operator() (const BoxType& a, const BoxType& b);
|
||||
};
|
||||
|
||||
template <>
|
||||
inline float NMSOverlap<Rect>::operator() (const Rect& a, const Rect& b)
|
||||
{
|
||||
float rectIntersectionArea = (float)(a & b).area();
|
||||
return rectIntersectionArea / (a.area() + b.area() - rectIntersectionArea);
|
||||
}
|
||||
|
||||
// Do non maximum suppression given bboxes and scores.
|
||||
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
|
||||
// https://goo.gl/jV3JYS
|
||||
// bboxes: a set of bounding boxes.
|
||||
// scores: a set of corresponding confidences.
|
||||
// score_threshold: a threshold used to filter detection results.
|
||||
// nms_threshold: a threshold used in non maximum suppression.
|
||||
// top_k: if not -1, keep at most top_k picked indices.
|
||||
// indices: the kept indices of bboxes after nms.
|
||||
template <typename BoxType>
|
||||
inline void NMSFast_(const std::vector<BoxType>& bboxes,
|
||||
const std::vector<float>& scores, const float score_threshold,
|
||||
const float nms_threshold, const float eta, const int top_k,
|
||||
std::vector<int>& indices, NMSOverlap<BoxType> computeOverlap)
|
||||
{
|
||||
CV_Assert(bboxes.size() == scores.size());
|
||||
|
||||
// Get top_k scores (with corresponding indices).
|
||||
std::vector<std::pair<float, int> > score_index_vec;
|
||||
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec);
|
||||
|
||||
// Do nms.
|
||||
float adaptive_threshold = nms_threshold;
|
||||
indices.clear();
|
||||
while (score_index_vec.size() != 0) {
|
||||
const int idx = score_index_vec.front().second;
|
||||
bool keep = true;
|
||||
for (int k = 0; k < (int)indices.size() && keep; ++k) {
|
||||
const int kept_idx = indices[k];
|
||||
float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]);
|
||||
keep = overlap <= adaptive_threshold;
|
||||
}
|
||||
if (keep)
|
||||
indices.push_back(idx);
|
||||
score_index_vec.erase(score_index_vec.begin());
|
||||
if (keep && eta < 1 && adaptive_threshold > 0.5) {
|
||||
adaptive_threshold *= eta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}// dnn
|
||||
}// cv
|
||||
|
||||
#endif
|
@ -45,6 +45,7 @@
|
||||
#include <float.h>
|
||||
#include <string>
|
||||
#include <caffe.pb.h>
|
||||
#include <opencv2/dnn/nms.inl.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -619,73 +620,14 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
// Do non maximum suppression given bboxes and scores.
|
||||
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
|
||||
// https://goo.gl/jV3JYS
|
||||
// bboxes: a set of bounding boxes.
|
||||
// scores: a set of corresponding confidences.
|
||||
// score_threshold: a threshold used to filter detection results.
|
||||
// nms_threshold: a threshold used in non maximum suppression.
|
||||
// top_k: if not -1, keep at most top_k picked indices.
|
||||
// indices: the kept indices of bboxes after nms.
|
||||
|
||||
|
||||
static void ApplyNMSFast(const std::vector<caffe::NormalizedBBox>& bboxes,
|
||||
const std::vector<float>& scores, const float score_threshold,
|
||||
const float nms_threshold, const float eta, const int top_k,
|
||||
std::vector<int>& indices)
|
||||
{
|
||||
CV_Assert(bboxes.size() == scores.size());
|
||||
|
||||
// Get top_k scores (with corresponding indices).
|
||||
std::vector<std::pair<float, int> > score_index_vec;
|
||||
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec);
|
||||
|
||||
// Do nms.
|
||||
float adaptive_threshold = nms_threshold;
|
||||
indices.clear();
|
||||
while (score_index_vec.size() != 0) {
|
||||
const int idx = score_index_vec.front().second;
|
||||
bool keep = true;
|
||||
for (int k = 0; k < (int)indices.size() && keep; ++k) {
|
||||
const int kept_idx = indices[k];
|
||||
float overlap = JaccardOverlap<true>(bboxes[idx], bboxes[kept_idx]);
|
||||
keep = overlap <= adaptive_threshold;
|
||||
}
|
||||
if (keep)
|
||||
indices.push_back(idx);
|
||||
score_index_vec.erase(score_index_vec.begin());
|
||||
if (keep && eta < 1 && adaptive_threshold > 0.5) {
|
||||
adaptive_threshold *= eta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Get max scores with corresponding indices.
|
||||
// scores: a set of scores.
|
||||
// threshold: only consider scores higher than the threshold.
|
||||
// top_k: if -1, keep all; otherwise, keep at most top_k.
|
||||
// score_index_vec: store the sorted (score, index) pair.
|
||||
static void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k,
|
||||
std::vector<std::pair<float, int> >& score_index_vec)
|
||||
{
|
||||
CV_DbgAssert(score_index_vec.empty());
|
||||
// Generate index score pairs.
|
||||
for (size_t i = 0; i < scores.size(); ++i)
|
||||
{
|
||||
if (scores[i] > threshold)
|
||||
{
|
||||
score_index_vec.push_back(std::make_pair(scores[i], i));
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the score pair according to the scores in descending order
|
||||
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
|
||||
util::SortScorePairDescend<int>);
|
||||
|
||||
// Keep top_k scores if needed.
|
||||
if (top_k > -1 && top_k < (int)score_index_vec.size())
|
||||
{
|
||||
score_index_vec.resize(top_k);
|
||||
}
|
||||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, NMSOverlap<caffe::NormalizedBBox>());
|
||||
}
|
||||
|
||||
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
|
||||
@ -733,6 +675,12 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
float NMSOverlap<caffe::NormalizedBBox>::operator() (const caffe::NormalizedBBox& a, const caffe::NormalizedBBox& b)
|
||||
{
|
||||
return DetectionOutputLayerImpl::JaccardOverlap<true>(a, b);
|
||||
}
|
||||
|
||||
const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");
|
||||
|
||||
Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams ¶ms)
|
||||
|
24
modules/dnn/src/nms.cpp
Normal file
24
modules/dnn/src/nms.cpp
Normal file
@ -0,0 +1,24 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <opencv2/dnn/nms.inl.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace dnn
|
||||
{
|
||||
|
||||
void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
|
||||
const float score_threshold, const float nms_threshold,
|
||||
const float eta, const int top_k, std::vector<int>& indices)
|
||||
{
|
||||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, NMSOverlap<Rect>());
|
||||
}
|
||||
|
||||
}// dnn
|
||||
}// cv
|
Loading…
Reference in New Issue
Block a user