mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Add a file with preprocessing parameters for deep learning networks
This commit is contained in:
parent
87b1835cb6
commit
ad5898224d
@ -542,6 +542,11 @@ public:
|
||||
*/
|
||||
CV_WRAP_AS(at) FileNode operator[](int i) const;
|
||||
|
||||
/** @brief Returns keys of a mapping node.
|
||||
@returns Keys of a mapping node.
|
||||
*/
|
||||
CV_WRAP std::vector<String> keys() const;
|
||||
|
||||
/** @brief Returns type of the node.
|
||||
@returns Type of the node. See FileNode::Type
|
||||
*/
|
||||
|
@ -269,6 +269,20 @@ FileNode FileNode::operator[](int i) const
|
||||
i == 0 ? *this : FileNode();
|
||||
}
|
||||
|
||||
std::vector<String> FileNode::keys() const
|
||||
{
|
||||
std::vector<String> res;
|
||||
if (isMap())
|
||||
{
|
||||
res.reserve(size());
|
||||
for (FileNodeIterator it = begin(); it != end(); ++it)
|
||||
{
|
||||
res.push_back((*it).name());
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
String FileNode::name() const
|
||||
{
|
||||
const char* str;
|
||||
|
@ -5,21 +5,15 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
const char* keys =
|
||||
#include "common.hpp"
|
||||
|
||||
std::string keys =
|
||||
"{ help h | | Print help message. }"
|
||||
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
||||
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
||||
"{ model m | | Path to a binary file of model contains trained weights. "
|
||||
"It could be a file with extensions .caffemodel (Caffe), "
|
||||
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet) }"
|
||||
"{ config c | | Path to a text file of model contains network configuration. "
|
||||
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet) }"
|
||||
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
||||
"{ classes | | Optional path to a text file with names of classes. }"
|
||||
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
|
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
@ -39,6 +33,13 @@ std::vector<std::string> classes;
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
const std::string modelName = parser.get<String>("@alias");
|
||||
const std::string zooFile = parser.get<String>("zoo");
|
||||
|
||||
keys += genPreprocArguments(modelName, zooFile);
|
||||
|
||||
parser = CommandLineParser(argc, argv, keys);
|
||||
parser.about("Use this script to run classification deep learning networks using OpenCV.");
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
@ -51,8 +52,8 @@ int main(int argc, char** argv)
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = parser.get<String>("model");
|
||||
String config = parser.get<String>("config");
|
||||
String model = findFile(parser.get<String>("model"));
|
||||
String config = findFile(parser.get<String>("config"));
|
||||
String framework = parser.get<String>("framework");
|
||||
int backendId = parser.get<int>("backend");
|
||||
int targetId = parser.get<int>("target");
|
||||
|
@ -1,35 +1,19 @@
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
from common import *
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run classification deep learning networks using OpenCV.')
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
help='An optional path to file with preprocessing parameters.')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to a binary file of model contains trained weights. '
|
||||
'It could be a file with extensions .caffemodel (Caffe), '
|
||||
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)')
|
||||
parser.add_argument('--config',
|
||||
help='Path to a text file of model contains network configuration. '
|
||||
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)')
|
||||
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
|
||||
help='Optional name of an origin framework of the model. '
|
||||
'Detect it automatically if it does not set.')
|
||||
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
|
||||
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
|
||||
help='Preprocess input image by subtracting mean values. '
|
||||
'Mean values should be in BGR order.')
|
||||
parser.add_argument('--scale', type=float, default=1.0,
|
||||
help='Preprocess input image by multiplying on a scale factor.')
|
||||
parser.add_argument('--width', type=int, required=True,
|
||||
help='Preprocess input image by resizing to a specific width.')
|
||||
parser.add_argument('--height', type=int, required=True,
|
||||
help='Preprocess input image by resizing to a specific height.')
|
||||
parser.add_argument('--rgb', action='store_true',
|
||||
help='Indicate that model works with RGB input images instead BGR ones.')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
help="Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
@ -42,8 +26,17 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: VPU' % targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'classification')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
description='Use this script to run classification deep learning networks using OpenCV.',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.model = findFile(args.model)
|
||||
args.config = findFile(args.config)
|
||||
args.classes = findFile(args.classes)
|
||||
|
||||
# Load names of classes
|
||||
classes = None
|
||||
if args.classes:
|
||||
@ -66,7 +59,9 @@ while cv.waitKey(1) < 0:
|
||||
break
|
||||
|
||||
# Create a 4D blob from a frame.
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False)
|
||||
inpWidth = args.width if args.width else frame.shape[1]
|
||||
inpHeight = args.height if args.height else frame.shape[0]
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
|
||||
|
||||
# Run a model
|
||||
net.setInput(blob)
|
||||
|
94
samples/dnn/common.hpp
Normal file
94
samples/dnn/common.hpp
Normal file
@ -0,0 +1,94 @@
|
||||
#include <opencv2/core/utils/filesystem.hpp>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
std::string genArgument(const std::string& argName, const std::string& help,
|
||||
const std::string& modelName, const std::string& zooFile,
|
||||
char key = ' ', std::string defaultVal = "");
|
||||
|
||||
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile);
|
||||
|
||||
std::string findFile(const std::string& filename);
|
||||
|
||||
std::string genArgument(const std::string& argName, const std::string& help,
|
||||
const std::string& modelName, const std::string& zooFile,
|
||||
char key, std::string defaultVal)
|
||||
{
|
||||
if (!modelName.empty())
|
||||
{
|
||||
FileStorage fs(zooFile, FileStorage::READ);
|
||||
if (fs.isOpened())
|
||||
{
|
||||
FileNode node = fs[modelName];
|
||||
if (!node.empty())
|
||||
{
|
||||
FileNode value = node[argName];
|
||||
if (!value.empty())
|
||||
{
|
||||
if (value.isReal())
|
||||
defaultVal = format("%f", (float)value);
|
||||
else if (value.isString())
|
||||
defaultVal = (std::string)value;
|
||||
else if (value.isInt())
|
||||
defaultVal = format("%d", (int)value);
|
||||
else if (value.isSeq())
|
||||
{
|
||||
for (size_t i = 0; i < value.size(); ++i)
|
||||
{
|
||||
FileNode v = value[(int)i];
|
||||
if (v.isInt())
|
||||
defaultVal += format("%d ", (int)v);
|
||||
else if (v.isReal())
|
||||
defaultVal += format("%f ", (float)v);
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unexpected value format");
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unexpected field format");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return "{ " + argName + " " + key + " | " + defaultVal + " | " + help + " }";
|
||||
}
|
||||
|
||||
std::string findFile(const std::string& filename)
|
||||
{
|
||||
if (filename.empty() || utils::fs::exists(filename))
|
||||
return filename;
|
||||
|
||||
std::string extraPaths[] = {getenv("OPENCV_DNN_TEST_DATA_PATH"),
|
||||
getenv("OPENCV_TEST_DATA_PATH")};
|
||||
for (int i = 0; i < 2; ++i)
|
||||
{
|
||||
std::string absPath = utils::fs::join(extraPaths[i], utils::fs::join("dnn", filename));
|
||||
if (utils::fs::exists(absPath))
|
||||
return absPath;
|
||||
}
|
||||
CV_Error(Error::StsObjectNotFound, "File " + filename + " not found! "
|
||||
"Please specify a path to /opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH "
|
||||
"environment variable or pass a full path to model.");
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile)
|
||||
{
|
||||
return genArgument("model", "Path to a binary file of model contains trained weights. "
|
||||
"It could be a file with extensions .caffemodel (Caffe), "
|
||||
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO).",
|
||||
modelName, zooFile, 'm') +
|
||||
genArgument("config", "Path to a text file of model contains network configuration. "
|
||||
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet), .xml (OpenVINO).",
|
||||
modelName, zooFile, 'c') +
|
||||
genArgument("mean", "Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.",
|
||||
modelName, zooFile) +
|
||||
genArgument("scale", "Preprocess input image by multiplying on a scale factor.",
|
||||
modelName, zooFile, ' ', "1.0") +
|
||||
genArgument("width", "Preprocess input image by resizing to a specific width.",
|
||||
modelName, zooFile, ' ', "-1") +
|
||||
genArgument("height", "Preprocess input image by resizing to a specific height.",
|
||||
modelName, zooFile, ' ', "-1") +
|
||||
genArgument("rgb", "Indicate that model works with RGB input images instead BGR ones.",
|
||||
modelName, zooFile);
|
||||
}
|
108
samples/dnn/common.py
Normal file
108
samples/dnn/common.py
Normal file
@ -0,0 +1,108 @@
|
||||
import sys
|
||||
import os
|
||||
import cv2 as cv
|
||||
|
||||
|
||||
def add_argument(zoo, parser, name, help, required=False, default=None, type=None, action=None, nargs=None):
|
||||
if len(sys.argv) <= 1:
|
||||
return
|
||||
|
||||
modelName = sys.argv[1]
|
||||
|
||||
if os.path.isfile(zoo):
|
||||
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
|
||||
node = fs.getNode(modelName)
|
||||
if not node.empty():
|
||||
value = node.getNode(name)
|
||||
if not value.empty():
|
||||
if value.isReal():
|
||||
default = value.real()
|
||||
elif value.isString():
|
||||
default = value.string()
|
||||
elif value.isInt():
|
||||
default = int(value.real())
|
||||
elif value.isSeq():
|
||||
default = []
|
||||
for i in range(value.size()):
|
||||
v = value.at(i)
|
||||
if v.isInt():
|
||||
default.append(int(v.real()))
|
||||
elif v.isReal():
|
||||
default.append(v.real())
|
||||
else:
|
||||
print('Unexpected value format')
|
||||
exit(0)
|
||||
else:
|
||||
print('Unexpected field format')
|
||||
exit(0)
|
||||
required = False
|
||||
|
||||
if action == 'store_true':
|
||||
default = 1 if default == 'true' else (0 if default == 'false' else default)
|
||||
assert(default is None or default == 0 or default == 1)
|
||||
parser.add_argument('--' + name, required=required, help=help, default=bool(default),
|
||||
action=action)
|
||||
else:
|
||||
parser.add_argument('--' + name, required=required, help=help, default=default,
|
||||
action=action, nargs=nargs, type=type)
|
||||
|
||||
|
||||
def add_preproc_args(zoo, parser, sample):
|
||||
aliases = []
|
||||
if os.path.isfile(zoo):
|
||||
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
|
||||
root = fs.root()
|
||||
for name in root.keys():
|
||||
model = root.getNode(name)
|
||||
if model.getNode('sample').string() == sample:
|
||||
aliases.append(name)
|
||||
|
||||
parser.add_argument('alias', nargs='?', choices=aliases,
|
||||
help='An alias name of model to extract preprocessing parameters from models.yml file.')
|
||||
add_argument(zoo, parser, 'model', required=True,
|
||||
help='Path to a binary file of model contains trained weights. '
|
||||
'It could be a file with extensions .caffemodel (Caffe), '
|
||||
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO)')
|
||||
add_argument(zoo, parser, 'config',
|
||||
help='Path to a text file of model contains network configuration. '
|
||||
'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)')
|
||||
add_argument(zoo, parser, 'mean', nargs='+', type=float, default=[0, 0, 0],
|
||||
help='Preprocess input image by subtracting mean values. '
|
||||
'Mean values should be in BGR order.')
|
||||
add_argument(zoo, parser, 'scale', type=float, default=1.0,
|
||||
help='Preprocess input image by multiplying on a scale factor.')
|
||||
add_argument(zoo, parser, 'width', type=int,
|
||||
help='Preprocess input image by resizing to a specific width.')
|
||||
add_argument(zoo, parser, 'height', type=int,
|
||||
help='Preprocess input image by resizing to a specific height.')
|
||||
add_argument(zoo, parser, 'rgb', action='store_true',
|
||||
help='Indicate that model works with RGB input images instead BGR ones.')
|
||||
add_argument(zoo, parser, 'classes',
|
||||
help='Optional path to a text file with names of classes to label detected objects.')
|
||||
|
||||
|
||||
def findFile(filename):
|
||||
if filename:
|
||||
if os.path.exists(filename):
|
||||
return filename
|
||||
|
||||
samplesDataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
||||
'..',
|
||||
'data',
|
||||
'dnn')
|
||||
if os.path.exists(os.path.join(samplesDataDir, filename)):
|
||||
return os.path.join(samplesDataDir, filename)
|
||||
|
||||
for path in ['OPENCV_DNN_TEST_DATA_PATH', 'OPENCV_TEST_DATA_PATH']:
|
||||
try:
|
||||
extraPath = os.environ[path]
|
||||
absPath = os.path.join(extraPath, 'dnn', filename)
|
||||
if os.path.exists(absPath):
|
||||
return absPath
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
print('File ' + filename + ' not found! Please specify a path to '
|
||||
'/opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH environment '
|
||||
'variable or pass a full path to model.')
|
||||
exit(0)
|
117
samples/dnn/models.yml
Normal file
117
samples/dnn/models.yml
Normal file
@ -0,0 +1,117 @@
|
||||
%YAML:1.0
|
||||
|
||||
################################################################################
|
||||
# Object detection models.
|
||||
################################################################################
|
||||
|
||||
# OpenCV's face detection network
|
||||
opencv_fd:
|
||||
model: "opencv_face_detector.caffemodel"
|
||||
config: "opencv_face_detector.prototxt"
|
||||
mean: [104, 177, 123]
|
||||
scale: 1.0
|
||||
width: 300
|
||||
height: 300
|
||||
rgb: false
|
||||
sample: "object_detection"
|
||||
|
||||
# YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
|
||||
# Might be used for all YOLOv2, TinyYolov2 and YOLOv3
|
||||
yolo:
|
||||
model: "yolov3.weights"
|
||||
config: "yolov3.cfg"
|
||||
mean: [0, 0, 0]
|
||||
scale: 0.00392
|
||||
width: 416
|
||||
height: 416
|
||||
rgb: true
|
||||
classes: "object_detection_classes_yolov3.txt"
|
||||
sample: "object_detection"
|
||||
|
||||
tiny-yolo-voc:
|
||||
model: "tiny-yolo-voc.weights"
|
||||
config: "tiny-yolo-voc.cfg"
|
||||
mean: [0, 0, 0]
|
||||
scale: 0.00392
|
||||
width: 416
|
||||
height: 416
|
||||
rgb: true
|
||||
classes: "object_detection_classes_pascal_voc.txt"
|
||||
sample: "object_detection"
|
||||
|
||||
# Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
|
||||
ssd_caffe:
|
||||
model: "MobileNetSSD_deploy.caffemodel"
|
||||
config: "MobileNetSSD_deploy.prototxt"
|
||||
mean: [127.5, 127.5, 127.5]
|
||||
scale: 0.007843
|
||||
width: 300
|
||||
height: 300
|
||||
rgb: false
|
||||
classes: "object_detection_classes_pascal_voc.txt"
|
||||
sample: "object_detection"
|
||||
|
||||
# TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
|
||||
ssd_tf:
|
||||
model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
|
||||
config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
|
||||
mean: [0, 0, 0]
|
||||
scale: 1.0
|
||||
width: 300
|
||||
height: 300
|
||||
rgb: true
|
||||
classes: "object_detection_classes_coco.txt"
|
||||
sample: "object_detection"
|
||||
|
||||
# TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
|
||||
faster_rcnn_tf:
|
||||
model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
|
||||
config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
|
||||
mean: [0, 0, 0]
|
||||
scale: 1.0
|
||||
width: 800
|
||||
height: 600
|
||||
rgb: true
|
||||
sample: "object_detection"
|
||||
|
||||
################################################################################
|
||||
# Image classification models.
|
||||
################################################################################
|
||||
|
||||
# SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
|
||||
squeezenet:
|
||||
model: "squeezenet_v1.1.caffemodel"
|
||||
config: "squeezenet_v1.1.prototxt"
|
||||
mean: [0, 0, 0]
|
||||
scale: 1.0
|
||||
width: 227
|
||||
height: 227
|
||||
rgb: false
|
||||
classes: "classification_classes_ILSVRC2012.txt"
|
||||
sample: "classification"
|
||||
|
||||
################################################################################
|
||||
# Semantic segmentation models.
|
||||
################################################################################
|
||||
|
||||
# ENet road scene segmentation network from https://github.com/e-lab/ENet-training
|
||||
# Works fine for different input sizes.
|
||||
enet:
|
||||
model: "Enet-model-best.net"
|
||||
mean: [0, 0, 0]
|
||||
scale: 0.00392
|
||||
width: 512
|
||||
height: 256
|
||||
rgb: true
|
||||
classes: "enet-classes.txt"
|
||||
sample: "segmentation"
|
||||
|
||||
fcn8s:
|
||||
model: "fcn8s-heavy-pascal.caffemodel"
|
||||
config: "fcn8s-heavy-pascal.prototxt"
|
||||
mean: [0, 0, 0]
|
||||
scale: 1.0
|
||||
width: 500
|
||||
height: 500
|
||||
rgb: false
|
||||
sample: "segmentation"
|
@ -5,22 +5,16 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
const char* keys =
|
||||
#include "common.hpp"
|
||||
|
||||
std::string keys =
|
||||
"{ help h | | Print help message. }"
|
||||
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
||||
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
|
||||
"{ device | 0 | camera device number. }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
|
||||
"{ model m | | Path to a binary file of model contains trained weights. "
|
||||
"It could be a file with extensions .caffemodel (Caffe), "
|
||||
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).}"
|
||||
"{ config c | | Path to a text file of model contains network configuration. "
|
||||
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).}"
|
||||
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
||||
"{ classes | | Optional path to a text file with names of classes to label detected objects. }"
|
||||
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
|
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | -1 | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | -1 | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ thr | .5 | Confidence threshold. }"
|
||||
"{ nms | .4 | Non-maximum suppression threshold. }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
@ -52,6 +46,13 @@ std::vector<String> getOutputsNames(const Net& net);
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
const std::string modelName = parser.get<String>("@alias");
|
||||
const std::string zooFile = parser.get<String>("zoo");
|
||||
|
||||
keys += genPreprocArguments(modelName, zooFile);
|
||||
|
||||
parser = CommandLineParser(argc, argv, keys);
|
||||
parser.about("Use this script to run object detection deep learning networks using OpenCV.");
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
@ -66,6 +67,9 @@ int main(int argc, char** argv)
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
CV_Assert(parser.has("model"));
|
||||
std::string modelPath = findFile(parser.get<String>("model"));
|
||||
std::string configPath = findFile(parser.get<String>("config"));
|
||||
|
||||
// Open file with classes names.
|
||||
if (parser.has("classes"))
|
||||
@ -82,8 +86,7 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
// Load a model.
|
||||
CV_Assert(parser.has("model"));
|
||||
Net net = readNet(parser.get<String>("model"), parser.get<String>("config"), parser.get<String>("framework"));
|
||||
Net net = readNet(modelPath, configPath, parser.get<String>("framework"));
|
||||
net.setPreferableBackend(parser.get<int>("backend"));
|
||||
net.setPreferableTarget(parser.get<int>("target"));
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from common import *
|
||||
from tf_text_graph_common import readTextMessage
|
||||
from tf_text_graph_ssd import createSSDGraph
|
||||
from tf_text_graph_faster_rcnn import createFasterRCNNGraph
|
||||
@ -10,15 +10,10 @@ from tf_text_graph_faster_rcnn import createFasterRCNNGraph
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run object detection deep learning networks using OpenCV.')
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
help='An optional path to file with preprocessing parameters.')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to a binary file of model contains trained weights. '
|
||||
'It could be a file with extensions .caffemodel (Caffe), '
|
||||
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO)')
|
||||
parser.add_argument('--config',
|
||||
help='Path to a text file of model contains network configuration. '
|
||||
'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)')
|
||||
parser.add_argument('--out_tf_graph', default='graph.pbtxt',
|
||||
help='For models from TensorFlow Object Detection API, you may '
|
||||
'pass a .config file which was used for training through --config '
|
||||
@ -26,18 +21,6 @@ parser.add_argument('--out_tf_graph', default='graph.pbtxt',
|
||||
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet', 'dldt'],
|
||||
help='Optional name of an origin framework of the model. '
|
||||
'Detect it automatically if it does not set.')
|
||||
parser.add_argument('--classes', help='Optional path to a text file with names of classes to label detected objects.')
|
||||
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
|
||||
help='Preprocess input image by subtracting mean values. '
|
||||
'Mean values should be in BGR order.')
|
||||
parser.add_argument('--scale', type=float, default=1.0,
|
||||
help='Preprocess input image by multiplying on a scale factor.')
|
||||
parser.add_argument('--width', type=int,
|
||||
help='Preprocess input image by resizing to a specific width.')
|
||||
parser.add_argument('--height', type=int,
|
||||
help='Preprocess input image by resizing to a specific height.')
|
||||
parser.add_argument('--rgb', action='store_true',
|
||||
help='Indicate that model works with RGB input images instead BGR ones.')
|
||||
parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold')
|
||||
parser.add_argument('--nms', type=float, default=0.4, help='Non-maximum suppression threshold')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
@ -52,8 +35,17 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: VPU' % targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'object_detection')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
description='Use this script to run object detection deep learning networks using OpenCV.',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.model = findFile(args.model)
|
||||
args.config = findFile(args.config)
|
||||
args.classes = findFile(args.classes)
|
||||
|
||||
# If config specified, try to load it as TensorFlow Object Detection API's pipeline.
|
||||
config = readTextMessage(args.config)
|
||||
if 'model' in config:
|
||||
|
@ -5,24 +5,18 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
const char* keys =
|
||||
#include "common.hpp"
|
||||
|
||||
std::string keys =
|
||||
"{ help h | | Print help message. }"
|
||||
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
||||
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
|
||||
"{ device | 0 | camera device number. }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
|
||||
"{ model m | | Path to a binary file of model contains trained weights. "
|
||||
"It could be a file with extensions .caffemodel (Caffe), "
|
||||
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet). }"
|
||||
"{ config c | | Path to a text file of model contains network configuration. "
|
||||
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet). }"
|
||||
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
||||
"{ classes | | Optional path to a text file with names of classes. }"
|
||||
"{ colors | | Optional path to a text file with colors for an every class. "
|
||||
"An every color is represented with three values from 0 to 255 in BGR channels order. }"
|
||||
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
|
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
@ -47,6 +41,13 @@ void colorizeSegmentation(const Mat &score, Mat &segm);
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
const std::string modelName = parser.get<String>("@alias");
|
||||
const std::string zooFile = parser.get<String>("zoo");
|
||||
|
||||
keys += genPreprocArguments(modelName, zooFile);
|
||||
|
||||
parser = CommandLineParser(argc, argv, keys);
|
||||
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
@ -59,8 +60,8 @@ int main(int argc, char** argv)
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = parser.get<String>("model");
|
||||
String config = parser.get<String>("config");
|
||||
String model = findFile(parser.get<String>("model"));
|
||||
String config = findFile(parser.get<String>("config"));
|
||||
String framework = parser.get<String>("framework");
|
||||
int backendId = parser.get<int>("backend");
|
||||
int targetId = parser.get<int>("target");
|
||||
|
@ -3,35 +3,20 @@ import argparse
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
from common import *
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.')
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
help='An optional path to file with preprocessing parameters.')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to a binary file of model contains trained weights. '
|
||||
'It could be a file with extensions .caffemodel (Caffe), '
|
||||
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)')
|
||||
parser.add_argument('--config',
|
||||
help='Path to a text file of model contains network configuration. '
|
||||
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)')
|
||||
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
|
||||
help='Optional name of an origin framework of the model. '
|
||||
'Detect it automatically if it does not set.')
|
||||
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
|
||||
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
|
||||
'An every color is represented with three values from 0 to 255 in BGR channels order.')
|
||||
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
|
||||
help='Preprocess input image by subtracting mean values. '
|
||||
'Mean values should be in BGR order.')
|
||||
parser.add_argument('--scale', type=float, default=1.0,
|
||||
help='Preprocess input image by multiplying on a scale factor.')
|
||||
parser.add_argument('--width', type=int, required=True,
|
||||
help='Preprocess input image by resizing to a specific width.')
|
||||
parser.add_argument('--height', type=int, required=True,
|
||||
help='Preprocess input image by resizing to a specific height.')
|
||||
parser.add_argument('--rgb', action='store_true',
|
||||
help='Indicate that model works with RGB input images instead BGR ones.')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
help="Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
@ -44,8 +29,17 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: VPU' % targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'segmentation')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
args = parser.parse_args()
|
||||
|
||||
args.model = findFile(args.model)
|
||||
args.config = findFile(args.config)
|
||||
args.classes = findFile(args.classes)
|
||||
|
||||
np.random.seed(324)
|
||||
|
||||
# Load names of classes
|
||||
@ -93,8 +87,13 @@ while cv.waitKey(1) < 0:
|
||||
cv.waitKey()
|
||||
break
|
||||
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
|
||||
# Create a 4D blob from a frame.
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False)
|
||||
inpWidth = args.width if args.width else frameWidth
|
||||
inpHeight = args.height if args.height else frameHeight
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
|
||||
|
||||
# Run a model
|
||||
net.setInput(blob)
|
||||
@ -115,7 +114,7 @@ while cv.waitKey(1) < 0:
|
||||
segm = np.stack([colors[idx] for idx in classIds.flatten()])
|
||||
segm = segm.reshape(height, width, 3)
|
||||
|
||||
segm = cv.resize(segm, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_NEAREST)
|
||||
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
|
||||
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
|
||||
|
||||
# Put efficiency information.
|
||||
|
@ -72,6 +72,8 @@ def parseMessage(tokens, idx):
|
||||
|
||||
|
||||
def readTextMessage(filePath):
|
||||
if not filePath:
|
||||
return {}
|
||||
with open(filePath, 'rt') as f:
|
||||
content = f.read()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user