mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Enable Eltwise layer with different numbers of inputs channels
This commit is contained in:
parent
9255df44d0
commit
adbd613660
@ -128,7 +128,7 @@ namespace cv {
|
||||
|
||||
|
||||
void setConvolution(int kernel, int pad, int stride,
|
||||
int filters_num, int channels_num, int use_batch_normalize, int use_relu)
|
||||
int filters_num, int channels_num, int use_batch_normalize)
|
||||
{
|
||||
cv::dnn::LayerParams conv_param =
|
||||
getParamConvolution(kernel, pad, stride, filters_num);
|
||||
@ -168,27 +168,29 @@ namespace cv {
|
||||
net->layers.push_back(lp);
|
||||
}
|
||||
|
||||
if (use_relu)
|
||||
{
|
||||
cv::dnn::LayerParams activation_param;
|
||||
activation_param.set<float>("negative_slope", 0.1f);
|
||||
activation_param.name = "ReLU-name";
|
||||
activation_param.type = "ReLU";
|
||||
|
||||
darknet::LayerParameter lp;
|
||||
std::string layer_name = cv::format("relu_%d", layer_id);
|
||||
lp.layer_name = layer_name;
|
||||
lp.layer_type = activation_param.type;
|
||||
lp.layerParams = activation_param;
|
||||
lp.bottom_indexes.push_back(last_layer);
|
||||
last_layer = layer_name;
|
||||
net->layers.push_back(lp);
|
||||
}
|
||||
|
||||
layer_id++;
|
||||
fused_layer_names.push_back(last_layer);
|
||||
}
|
||||
|
||||
void setReLU()
|
||||
{
|
||||
cv::dnn::LayerParams activation_param;
|
||||
activation_param.set<float>("negative_slope", 0.1f);
|
||||
activation_param.name = "ReLU-name";
|
||||
activation_param.type = "ReLU";
|
||||
|
||||
darknet::LayerParameter lp;
|
||||
std::string layer_name = cv::format("relu_%d", layer_id);
|
||||
lp.layer_name = layer_name;
|
||||
lp.layer_type = activation_param.type;
|
||||
lp.layerParams = activation_param;
|
||||
lp.bottom_indexes.push_back(last_layer);
|
||||
last_layer = layer_name;
|
||||
net->layers.push_back(lp);
|
||||
|
||||
fused_layer_names.back() = last_layer;
|
||||
}
|
||||
|
||||
void setMaxpool(size_t kernel, size_t pad, size_t stride)
|
||||
{
|
||||
cv::dnn::LayerParams maxpool_param;
|
||||
@ -409,12 +411,19 @@ namespace cv {
|
||||
fused_layer_names.push_back(last_layer);
|
||||
}
|
||||
|
||||
void setShortcut(int from)
|
||||
void setShortcut(int from, float alpha)
|
||||
{
|
||||
cv::dnn::LayerParams shortcut_param;
|
||||
shortcut_param.name = "Shortcut-name";
|
||||
shortcut_param.type = "Eltwise";
|
||||
|
||||
if (alpha != 1)
|
||||
{
|
||||
std::vector<float> coeffs(2, 1);
|
||||
coeffs[1] = alpha;
|
||||
shortcut_param.set("coeff", DictValue::arrayReal<float*>(&coeffs[0], coeffs.size()));
|
||||
}
|
||||
|
||||
shortcut_param.set<std::string>("op", "sum");
|
||||
|
||||
darknet::LayerParameter lp;
|
||||
@ -548,10 +557,7 @@ namespace cv {
|
||||
int pad = getParam<int>(layer_params, "pad", 0);
|
||||
int stride = getParam<int>(layer_params, "stride", 1);
|
||||
int filters = getParam<int>(layer_params, "filters", -1);
|
||||
std::string activation = getParam<std::string>(layer_params, "activation", "linear");
|
||||
bool batch_normalize = getParam<int>(layer_params, "batch_normalize", 0) == 1;
|
||||
if(activation != "linear" && activation != "leaky")
|
||||
CV_Error(cv::Error::StsParseError, "Unsupported activation: " + activation);
|
||||
int flipped = getParam<int>(layer_params, "flipped", 0);
|
||||
if (flipped == 1)
|
||||
CV_Error(cv::Error::StsNotImplemented, "Transpose the convolutional weights is not implemented");
|
||||
@ -563,7 +569,7 @@ namespace cv {
|
||||
CV_Assert(current_channels > 0);
|
||||
|
||||
setParams.setConvolution(kernel_size, pad, stride, filters, current_channels,
|
||||
batch_normalize, activation == "leaky");
|
||||
batch_normalize);
|
||||
|
||||
current_channels = filters;
|
||||
}
|
||||
@ -631,13 +637,17 @@ namespace cv {
|
||||
else if (layer_type == "shortcut")
|
||||
{
|
||||
std::string bottom_layer = getParam<std::string>(layer_params, "from", "");
|
||||
float alpha = getParam<float>(layer_params, "alpha", 1);
|
||||
float beta = getParam<float>(layer_params, "beta", 0);
|
||||
if (beta != 0)
|
||||
CV_Error(Error::StsNotImplemented, "Non-zero beta");
|
||||
CV_Assert(!bottom_layer.empty());
|
||||
int from = std::atoi(bottom_layer.c_str());
|
||||
|
||||
from += layers_counter;
|
||||
from = from < 0 ? from + layers_counter : from;
|
||||
current_channels = net->out_channels_vec[from];
|
||||
|
||||
setParams.setShortcut(from);
|
||||
setParams.setShortcut(from, alpha);
|
||||
}
|
||||
else if (layer_type == "upsample")
|
||||
{
|
||||
@ -667,6 +677,15 @@ namespace cv {
|
||||
else {
|
||||
CV_Error(cv::Error::StsParseError, "Unknown layer type: " + layer_type);
|
||||
}
|
||||
|
||||
std::string activation = getParam<std::string>(layer_params, "activation", "linear");
|
||||
if (activation == "leaky")
|
||||
{
|
||||
setParams.setReLU();
|
||||
}
|
||||
else if (activation != "linear")
|
||||
CV_Error(cv::Error::StsParseError, "Unsupported activation: " + activation);
|
||||
|
||||
net->out_channels_vec[layers_counter] = current_channels;
|
||||
}
|
||||
|
||||
@ -710,7 +729,6 @@ namespace cv {
|
||||
{
|
||||
int kernel_size = getParam<int>(layer_params, "size", -1);
|
||||
int filters = getParam<int>(layer_params, "filters", -1);
|
||||
std::string activation = getParam<std::string>(layer_params, "activation", "linear");
|
||||
bool use_batch_normalize = getParam<int>(layer_params, "batch_normalize", 0) == 1;
|
||||
|
||||
CV_Assert(kernel_size > 0 && filters > 0);
|
||||
@ -754,14 +772,16 @@ namespace cv {
|
||||
bn_blobs.push_back(biasData_mat);
|
||||
setParams.setLayerBlobs(cv_layers_counter, bn_blobs);
|
||||
}
|
||||
|
||||
if(activation == "leaky")
|
||||
++cv_layers_counter;
|
||||
}
|
||||
if (layer_type == "region" || layer_type == "yolo")
|
||||
{
|
||||
++cv_layers_counter; // For permute.
|
||||
}
|
||||
|
||||
std::string activation = getParam<std::string>(layer_params, "activation", "linear");
|
||||
if(activation == "leaky")
|
||||
++cv_layers_counter; // For ReLU
|
||||
|
||||
current_channels = net->out_channels_vec[darknet_layers_counter];
|
||||
}
|
||||
return true;
|
||||
|
@ -64,6 +64,7 @@ public:
|
||||
MAX = 2,
|
||||
} op;
|
||||
std::vector<float> coeffs;
|
||||
bool variableChannels;
|
||||
|
||||
EltwiseLayerImpl(const LayerParams& params)
|
||||
{
|
||||
@ -98,7 +99,7 @@ public:
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_HALIDE ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE &&
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && !variableChannels &&
|
||||
(preferableTarget != DNN_TARGET_OPENCL || coeffs.empty()));
|
||||
}
|
||||
|
||||
@ -108,33 +109,57 @@ public:
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() >= 2);
|
||||
CV_Assert(inputs[0].size() >= 2);
|
||||
CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
|
||||
CV_Assert(op == SUM || coeffs.size() == 0);
|
||||
|
||||
int dims = inputs[0].size();
|
||||
int numChannels = inputs[0][1];
|
||||
for (int i = 1; i < inputs.size(); i++)
|
||||
{
|
||||
CV_Assert(inputs[0] == inputs[i]);
|
||||
CV_Assert(inputs[0][0] == inputs[i][0]);
|
||||
numChannels = std::max(numChannels, inputs[i][1]);
|
||||
|
||||
// It's allowed for channels axis to be different.
|
||||
for (int j = 2; j < dims; j++)
|
||||
CV_Assert(inputs[0][j] == inputs[i][j]);
|
||||
}
|
||||
|
||||
outputs.assign(1, inputs[0]);
|
||||
|
||||
outputs[0][1] = numChannels;
|
||||
return false;
|
||||
}
|
||||
|
||||
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
|
||||
{
|
||||
std::vector<Mat> inputs;
|
||||
inputs_arr.getMatVector(inputs);
|
||||
variableChannels = false;
|
||||
for (int i = 1; i < inputs.size(); ++i)
|
||||
{
|
||||
if (inputs[i].size[1] != inputs[0].size[1])
|
||||
{
|
||||
variableChannels = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class EltwiseInvoker : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
const Mat* srcs;
|
||||
std::vector<const Mat*> srcs;
|
||||
int nsrcs;
|
||||
Mat* dst;
|
||||
const std::vector<float>* coeffs;
|
||||
std::vector<float> coeffs;
|
||||
EltwiseOp op;
|
||||
int nstripes;
|
||||
const ActivationLayer* activ;
|
||||
int channels;
|
||||
size_t planeSize;
|
||||
|
||||
EltwiseInvoker() : srcs(0), nsrcs(0), dst(0), coeffs(0), op(PROD), nstripes(0), activ(0), channels(0), planeSize(0) {}
|
||||
EltwiseInvoker() : nsrcs(0), dst(0), op(PROD), nstripes(0), activ(0), channels(0), planeSize(0) {}
|
||||
|
||||
static void run(const Mat* srcs, int nsrcs, Mat& dst,
|
||||
const std::vector<float>& coeffs, EltwiseOp op,
|
||||
@ -143,15 +168,23 @@ public:
|
||||
CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 5, ""); CV_CheckTypeEQ(dst.type(), CV_32FC1, ""); CV_Assert(dst.isContinuous());
|
||||
CV_Assert(coeffs.empty() || coeffs.size() == (size_t)nsrcs);
|
||||
|
||||
EltwiseInvoker p;
|
||||
p.srcs.resize(nsrcs);
|
||||
p.coeffs = coeffs;
|
||||
for( int i = 0; i < nsrcs; i++ )
|
||||
{
|
||||
CV_Assert(srcs[i].size == dst.size &&
|
||||
srcs[i].type() == dst.type() &&
|
||||
p.srcs[i] = srcs + i;
|
||||
CV_Assert(srcs[i].type() == dst.type() &&
|
||||
srcs[i].isContinuous());
|
||||
// Sort srcs and coefficients in the order by number of channels
|
||||
for( int j = i - 1; j >= 1 && p.srcs[j - 1]->size[1] < p.srcs[j]->size[1]; j++ )
|
||||
{
|
||||
std::swap(p.srcs[j - 1], p.srcs[j]);
|
||||
if (!p.coeffs.empty())
|
||||
std::swap(p.coeffs[j - 1], p.coeffs[j]);
|
||||
}
|
||||
}
|
||||
|
||||
EltwiseInvoker p;
|
||||
p.srcs = srcs;
|
||||
p.nsrcs = nsrcs;
|
||||
p.dst = &dst;
|
||||
p.op = op;
|
||||
@ -173,7 +206,8 @@ public:
|
||||
break;
|
||||
}
|
||||
}
|
||||
p.coeffs = simpleCoeffs ? 0 : &coeffs;
|
||||
if (simpleCoeffs)
|
||||
p.coeffs.clear();
|
||||
p.activ = activ;
|
||||
|
||||
parallel_for_(Range(0, nstripes), p, nstripes);
|
||||
@ -185,8 +219,8 @@ public:
|
||||
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
||||
size_t stripeStart = r.start*stripeSize;
|
||||
size_t stripeEnd = std::min(r.end*stripeSize, total);
|
||||
int c, j, k, n = nsrcs;
|
||||
const float* coeffsptr = coeffs && !coeffs->empty() ? &coeffs->at(0) : 0;
|
||||
int c, j, k, n;
|
||||
const float* coeffsptr = !coeffs.empty() ? &coeffs[0] : 0;
|
||||
float* dstptr0 = dst->ptr<float>();
|
||||
int blockSize0 = 1 << 12, blockSize;
|
||||
|
||||
@ -201,14 +235,35 @@ public:
|
||||
for( c = 0; c < channels; c++ )
|
||||
{
|
||||
size_t globalDelta = delta + (sampleIdx*channels + c)*planeSize;
|
||||
const float* srcptr0 = srcs[0].ptr<float>() + globalDelta;
|
||||
const float* srcptr0 = srcs[0]->ptr<float>() + globalDelta;
|
||||
float* dstptr = dstptr0 + globalDelta;
|
||||
|
||||
if( op == PROD )
|
||||
// This code assumes that srcs are sorted in descending order by channels.
|
||||
for (n = 1; n < nsrcs && c < srcs[n]->size[1]; ++n) {}
|
||||
|
||||
if (n == 1)
|
||||
{
|
||||
if( !coeffsptr )
|
||||
{
|
||||
for( j = 0; j < blockSize; j++ )
|
||||
{
|
||||
dstptr[j] = srcptr0[j];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float c0 = coeffsptr[0];
|
||||
for( j = 0; j < blockSize; j++ )
|
||||
{
|
||||
dstptr[j] = c0*srcptr0[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
else if( op == PROD )
|
||||
{
|
||||
for( k = 1; k < n; k++ )
|
||||
{
|
||||
const float* srcptr1 = srcs[k].ptr<float>() + globalDelta;
|
||||
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
||||
for( j = 0; j < blockSize; j++ )
|
||||
{
|
||||
dstptr[j] = srcptr0[j]*srcptr1[j];
|
||||
@ -220,7 +275,7 @@ public:
|
||||
{
|
||||
for( k = 1; k < n; k++ )
|
||||
{
|
||||
const float* srcptr1 = srcs[k].ptr<float>() + globalDelta;
|
||||
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
||||
for( j = 0; j < blockSize; j++ )
|
||||
{
|
||||
dstptr[j] = std::max(srcptr0[j], srcptr1[j]);
|
||||
@ -232,7 +287,7 @@ public:
|
||||
{
|
||||
for( k = 1; k < n; k++ )
|
||||
{
|
||||
const float* srcptr1 = srcs[k].ptr<float>() + globalDelta;
|
||||
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
||||
for( j = 0; j < blockSize; j++ )
|
||||
{
|
||||
dstptr[j] = srcptr0[j] + srcptr1[j];
|
||||
@ -245,7 +300,7 @@ public:
|
||||
float c0 = coeffsptr[0];
|
||||
for( k = 1; k < n; k++ )
|
||||
{
|
||||
const float* srcptr1 = srcs[k].ptr<float>() + globalDelta;
|
||||
const float* srcptr1 = srcs[k]->ptr<float>() + globalDelta;
|
||||
float c1 = coeffsptr[k];
|
||||
for( j = 0; j < blockSize; j++ )
|
||||
{
|
||||
@ -272,7 +327,7 @@ public:
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
if (inputs_.depth() == CV_16S && op != SUM)
|
||||
if ((inputs_.depth() == CV_16S && op != SUM) || variableChannels)
|
||||
return false;
|
||||
|
||||
inputs_.getUMatVector(inputs);
|
||||
|
@ -444,6 +444,7 @@ INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets());
|
||||
TEST_P(Test_Darknet_layers, shortcut)
|
||||
{
|
||||
testDarknetLayer("shortcut");
|
||||
testDarknetLayer("shortcut_leaky");
|
||||
}
|
||||
|
||||
TEST_P(Test_Darknet_layers, upsample)
|
||||
|
@ -1488,4 +1488,60 @@ TEST(Layer_Test_Convolution, relu_fusion)
|
||||
normAssert(input, output);
|
||||
}
|
||||
|
||||
typedef testing::TestWithParam<tuple<bool, tuple<Backend, Target> > > Layer_Test_Eltwise_unequal;
|
||||
TEST_P(Layer_Test_Eltwise_unequal, Accuracy)
|
||||
{
|
||||
bool weighted = get<0>(GetParam());
|
||||
int backendId = get<0>(get<1>(GetParam()));
|
||||
int targetId = get<1>(get<1>(GetParam()));
|
||||
|
||||
if (backendId == DNN_BACKEND_OPENCV && targetId == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.type = "Eltwise";
|
||||
lp.name = "testLayer";
|
||||
|
||||
const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 5, 2, 2}, {1, 3, 2, 2}};
|
||||
std::vector<String> inpNames(3);
|
||||
std::vector<Mat> inputs(3);
|
||||
size_t numValues = 0;
|
||||
|
||||
std::vector<float> weights(3, 1);
|
||||
if (weighted)
|
||||
{
|
||||
for (int i = 0; i < inputs.size(); ++i)
|
||||
randu(Mat(1, 1, CV_32F, &weights[i]), -1, 1);
|
||||
lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size()));
|
||||
}
|
||||
|
||||
int eltwiseId = net.addLayer(lp.name, lp.type, lp);
|
||||
for (int i = 0; i < inputs.size(); ++i)
|
||||
{
|
||||
inputs[i].create(4, inpShapes[i], CV_32F);
|
||||
numValues = std::max(numValues, inputs[i].total());
|
||||
randu(inputs[i], 0, 255);
|
||||
inpNames[i] = format("input_%d", i);
|
||||
net.connect(0, i, eltwiseId, i);
|
||||
}
|
||||
Mat ref(1, numValues, CV_32F, Scalar(0));
|
||||
|
||||
net.setInputsNames(inpNames);
|
||||
for (int i = 0; i < inputs.size(); ++i)
|
||||
{
|
||||
net.setInput(inputs[i], inpNames[i]);
|
||||
ref.colRange(0, inputs[i].total()) += weights[i] * inputs[i].reshape(1, 1);
|
||||
}
|
||||
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
Mat out = net.forward();
|
||||
normAssert(out.reshape(1, 1), ref);
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_unequal, Combine(
|
||||
testing::Bool(),
|
||||
dnnBackendsAndTargets()
|
||||
));
|
||||
|
||||
}} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user