Merge pull request #26875 from asmorkalov:as/in_memory_models

Added trackers factory with pre-loaded dnn models #26875

Replaces https://github.com/opencv/opencv/pull/26295

Allows to substitute custom models or initialize tracker from in-memory model.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
Alexander Smorkalov 2025-02-14 15:35:38 +03:00 committed by GitHub
parent a8df0a06ac
commit ae25c3194f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 223 additions and 41 deletions

View File

@ -425,6 +425,8 @@ class FuncInfo(GeneralInfo):
arg_fix_map = func_fix_map.get(arg[1], {})
arg[0] = arg_fix_map.get('ctype', arg[0]) #fixing arg type
arg[3] = arg_fix_map.get('attrib', arg[3]) #fixing arg attrib
if arg[0] == 'dnn_Net':
arg[0] = 'Net'
self.args.append(ArgInfo(arg))
def fullClassJAVA(self):
@ -474,7 +476,7 @@ class JavaWrapperGenerator(object):
jni_name = "(*("+classinfo.fullNameCPP()+"*)%(n)s_nativeObj)"
type_dict.setdefault(name, {}).update(
{ "j_type" : classinfo.jname,
"jn_type" : "long", "jn_args" : (("__int64", ".nativeObj"),),
"jn_type" : "long", "jn_args" : (("__int64", ".getNativeObjAddr()"),),
"jni_name" : jni_name,
"jni_type" : "jlong",
"suffix" : "J",
@ -483,7 +485,7 @@ class JavaWrapperGenerator(object):
)
type_dict.setdefault(name+'*', {}).update(
{ "j_type" : classinfo.jname,
"jn_type" : "long", "jn_args" : (("__int64", ".nativeObj"),),
"jn_type" : "long", "jn_args" : (("__int64", ".getNativeObjAddr()"),),
"jni_name" : "&("+jni_name+")",
"jni_type" : "jlong",
"suffix" : "J",

View File

@ -24,11 +24,12 @@ class NewOpenCVTests(unittest.TestCase):
# path to local repository folder containing 'samples' folder
repoPath = None
extraTestDataPath = None
extraDnnTestDataPath = None
# github repository url
repoUrl = 'https://raw.github.com/opencv/opencv/4.x'
def find_file(self, filename, searchPaths=[], required=True):
searchPaths = searchPaths if searchPaths else [self.repoPath, self.extraTestDataPath]
searchPaths = searchPaths if searchPaths else [self.repoPath, self.extraTestDataPath, self.extraDnnTestDataPath]
for path in searchPaths:
if path is not None:
candidate = path + '/' + filename
@ -83,10 +84,17 @@ class NewOpenCVTests(unittest.TestCase):
print("Testing OpenCV", cv.__version__)
print("Local repo path:", args.repo)
NewOpenCVTests.repoPath = args.repo
try:
NewOpenCVTests.extraTestDataPath = os.environ['OPENCV_TEST_DATA_PATH']
except KeyError:
print('Missing opencv extra repository. Some of tests may fail.')
try:
NewOpenCVTests.extraDnnTestDataPath = os.environ['OPENCV_DNN_TEST_DATA_PATH']
except KeyError:
pass
random.seed(0)
unit_argv = [sys.argv[0]] + other
unittest.main(argv=unit_argv)

View File

@ -46,6 +46,9 @@
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#ifdef HAVE_OPENCV_DNN
# include "opencv2/dnn.hpp"
#endif
namespace cv
{
@ -826,6 +829,13 @@ public:
static CV_WRAP
Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
#ifdef HAVE_OPENCV_DNN
/** @brief Constructor
@param model pre-loaded GOTURN model
*/
static CV_WRAP Ptr<TrackerGOTURN> create(const dnn::Net& model);
#endif
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
@ -853,6 +863,16 @@ public:
static CV_WRAP
Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
#ifdef HAVE_OPENCV_DNN
/** @brief Constructor
* @param siam_rpn pre-loaded SiamRPN model
* @param kernel_cls1 pre-loaded CLS model
* @param kernel_r1 pre-loaded R1 model
*/
static CV_WRAP
Ptr<TrackerDaSiamRPN> create(const dnn::Net& siam_rpn, const dnn::Net& kernel_cls1, const dnn::Net& kernel_r1);
#endif
/** @brief Return tracking score
*/
CV_WRAP virtual float getTrackingScore() = 0;
@ -891,6 +911,15 @@ public:
static CV_WRAP
Ptr<TrackerNano> create(const TrackerNano::Params& parameters = TrackerNano::Params());
#ifdef HAVE_OPENCV_DNN
/** @brief Constructor
* @param backbone pre-loaded backbone model
* @param neckhead pre-loaded neckhead model
*/
static CV_WRAP
Ptr<TrackerNano> create(const dnn::Net& backbone, const dnn::Net& neckhead);
#endif
/** @brief Return tracking score
*/
CV_WRAP virtual float getTrackingScore() = 0;
@ -929,6 +958,18 @@ public:
static CV_WRAP
Ptr<TrackerVit> create(const TrackerVit::Params& parameters = TrackerVit::Params());
#ifdef HAVE_OPENCV_DNN
/** @brief Constructor
* @param model pre-loaded DNN model
* @param meanvalue mean value for image preprocessing
* @param stdvalue std value for image preprocessing
* @param tracking_score_threshold threshold for tracking score
*/
static CV_WRAP
Ptr<TrackerVit> create(const dnn::Net& model, Scalar meanvalue = Scalar(0.485, 0.456, 0.406),
Scalar stdvalue = Scalar(0.229, 0.224, 0.225), float tracking_score_threshold = 0.20f);
#endif
/** @brief Return tracking score
*/
CV_WRAP virtual float getTrackingScore() = 0;

View File

@ -1,31 +1,98 @@
package org.opencv.test.video;
import java.io.File;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.CvException;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.dnn.Dnn;
import org.opencv.dnn.Net;
import org.opencv.test.OpenCVTestCase;
import org.opencv.video.Tracker;
import org.opencv.video.TrackerGOTURN;
import org.opencv.video.TrackerGOTURN_Params;
import org.opencv.video.TrackerNano;
import org.opencv.video.TrackerNano_Params;
import org.opencv.video.TrackerVit;
import org.opencv.video.TrackerVit_Params;
import org.opencv.video.TrackerMIL;
public class TrackerCreateTest extends OpenCVTestCase {
private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
private String testDataPath;
private String modelsDataPath;
@Override
protected void setUp() throws Exception {
super.setUp();
// relys on https://developer.android.com/reference/java/lang/System
isTestCaseEnabled = System.getProperties().getProperty("java.vm.name") != "Dalvik";
if (!isTestCaseEnabled) {
return;
}
testDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
if (testDataPath == null) {
throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
}
modelsDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
if (modelsDataPath == null) {
modelsDataPath = testDataPath;
}
if (isTestCaseEnabled) {
testDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
if (testDataPath == null)
testDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
if (testDataPath == null)
throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
}
}
public void testCreateTrackerGOTURN() {
Net net;
try {
Tracker tracker = TrackerGOTURN.create();
assert(tracker != null);
String protoFile = new File(testDataPath, "dnn/gsoc2016-goturn/goturn.prototxt").toString();
String weightsFile = new File(modelsDataPath, "dnn/gsoc2016-goturn/goturn.caffemodel").toString();
net = Dnn.readNetFromCaffe(protoFile, weightsFile);
} catch (CvException e) {
// expected, model files may be missing
return;
}
Tracker tracker = TrackerGOTURN.create(net);
assert(tracker != null);
}
public void testCreateTrackerNano() {
Net backbone;
Net neckhead;
try {
String backboneFile = new File(modelsDataPath, "dnn/onnx/models/nanotrack_backbone_sim_v2.onnx").toString();
String neckheadFile = new File(modelsDataPath, "dnn/onnx/models/nanotrack_head_sim_v2.onnx").toString();
backbone = Dnn.readNet(backboneFile);
neckhead = Dnn.readNet(neckheadFile);
} catch (CvException e) {
return;
}
Tracker tracker = TrackerNano.create(backbone, neckhead);
assert(tracker != null);
}
public void testCreateTrackerVit() {
Net net;
try {
String backboneFile = new File(modelsDataPath, "dnn/onnx/models/vitTracker.onnx").toString();
net = Dnn.readNet(backboneFile);
} catch (CvException e) {
return;
}
Tracker tracker = TrackerVit.create(net);
assert(tracker != null);
}
public void testCreateTrackerMIL() {
@ -35,5 +102,4 @@ public class TrackerCreateTest extends OpenCVTestCase {
Rect rect = new Rect(10, 10, 30, 30);
tracker.init(mat, rect); // should not crash (https://github.com/opencv/opencv/issues/19915)
}
}

View File

@ -7,12 +7,30 @@ from tests_common import NewOpenCVTests, unittest
class tracking_test(NewOpenCVTests):
def test_createTracker(self):
t = cv.TrackerMIL_create()
try:
t = cv.TrackerGOTURN_create()
except cv.error as e:
pass # may fail due to missing DL model files
def test_createMILTracker(self):
t = cv.TrackerMIL.create()
self.assertTrue(t is not None)
def test_createGoturnTracker(self):
proto = self.find_file("dnn/gsoc2016-goturn/goturn.prototxt", required=False);
weights = self.find_file("dnn/gsoc2016-goturn/goturn.caffemodel", required=False);
net = cv.dnn.readNet(proto, weights)
t = cv.TrackerGOTURN.create(net)
self.assertTrue(t is not None)
def test_createNanoTracker(self):
backbone_path = self.find_file("dnn/onnx/models/nanotrack_backbone_sim_v2.onnx", required=False);
neckhead_path = self.find_file("dnn/onnx/models/nanotrack_head_sim_v2.onnx", required=False);
backbone = cv.dnn.readNet(backbone_path)
neckhead = cv.dnn.readNet(neckhead_path)
t = cv.TrackerNano.create(backbone, neckhead)
self.assertTrue(t is not None)
def test_createVitTracker(self):
model_path = self.find_file("dnn/onnx/models/vitTracker.onnx", required=False);
model = cv.dnn.readNet(model_path)
t = cv.TrackerVit.create(model)
self.assertTrue(t is not None)
if __name__ == '__main__':

View File

@ -57,10 +57,8 @@ Mat sizeCal(const Mat& w, const Mat& h)
class TrackerDaSiamRPNImpl : public TrackerDaSiamRPN
{
public:
TrackerDaSiamRPNImpl(const TrackerDaSiamRPN::Params& parameters)
: params(parameters)
TrackerDaSiamRPNImpl(const TrackerDaSiamRPN::Params& params)
{
siamRPN = dnn::readNet(params.model);
siamKernelCL1 = dnn::readNet(params.kernel_cls1);
siamKernelR1 = dnn::readNet(params.kernel_r1);
@ -77,12 +75,21 @@ public:
siamKernelCL1.setPreferableTarget(params.target);
}
TrackerDaSiamRPNImpl(const dnn::Net& siam_rpn, const dnn::Net& kernel_cls1, const dnn::Net& kernel_r1)
{
CV_Assert(!siam_rpn.empty());
CV_Assert(!kernel_cls1.empty());
CV_Assert(!kernel_r1.empty());
siamRPN = siam_rpn;
siamKernelCL1 = kernel_cls1;
siamKernelR1 = kernel_r1;
}
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
float getTrackingScore() CV_OVERRIDE;
TrackerDaSiamRPN::Params params;
protected:
dnn::Net siamRPN, siamKernelR1, siamKernelCL1;
Rect boundingBox_;
@ -425,16 +432,22 @@ Mat TrackerDaSiamRPNImpl::getSubwindow(Mat& img, const Rect2f& targetBox, float
return zCrop;
}
Ptr<TrackerDaSiamRPN> TrackerDaSiamRPN::create(const TrackerDaSiamRPN::Params& parameters)
{
return makePtr<TrackerDaSiamRPNImpl>(parameters);
}
Ptr<TrackerDaSiamRPN> TrackerDaSiamRPN::create(const dnn::Net& siam_rpn, const dnn::Net& kernel_cls1, const dnn::Net& kernel_r1)
{
return makePtr<TrackerDaSiamRPNImpl>(siam_rpn, kernel_cls1, kernel_r1);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerDaSiamRPN> TrackerDaSiamRPN::create(const TrackerDaSiamRPN::Params& parameters)
{
(void)(parameters);
CV_Error(cv::Error::StsNotImplemented, "to use GOTURN, the tracking module needs to be built with opencv_dnn !");
CV_Error(cv::Error::StsNotImplemented, "to use DaSiamRPN, the tracking module needs to be built with opencv_dnn !");
}
#endif // OPENCV_HAVE_DNN
}

View File

@ -31,11 +31,16 @@ TrackerGOTURN::Params::Params()
class TrackerGOTURNImpl : public TrackerGOTURN
{
public:
TrackerGOTURNImpl(const dnn::Net& model)
{
CV_Assert(!model.empty());
net = model;
}
TrackerGOTURNImpl(const TrackerGOTURN::Params& parameters)
: params(parameters)
{
// Load GOTURN architecture from *.prototxt and pretrained weights from *.caffemodel
net = dnn::readNetFromCaffe(params.modelTxt, params.modelBin);
net = dnn::readNetFromCaffe(parameters.modelTxt, parameters.modelBin);
CV_Assert(!net.empty());
}
@ -49,8 +54,6 @@ public:
boundingBox_ = boundingBox & Rect(Point(0, 0), image_.size());
}
TrackerGOTURN::Params params;
dnn::Net net;
Rect boundingBox_;
Mat image_;
@ -129,6 +132,11 @@ Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params& parameters
return makePtr<TrackerGOTURNImpl>(parameters);
}
Ptr<TrackerGOTURN> TrackerGOTURN::create(const dnn::Net& model)
{
return makePtr<TrackerGOTURNImpl>(model);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params& parameters)
{

View File

@ -87,18 +87,26 @@ class TrackerNanoImpl : public TrackerNano
{
public:
TrackerNanoImpl(const TrackerNano::Params& parameters)
: params(parameters)
{
backbone = dnn::readNet(params.backbone);
neckhead = dnn::readNet(params.neckhead);
backbone = dnn::readNet(parameters.backbone);
neckhead = dnn::readNet(parameters.neckhead);
CV_Assert(!backbone.empty());
CV_Assert(!neckhead.empty());
backbone.setPreferableBackend(params.backend);
backbone.setPreferableTarget(params.target);
neckhead.setPreferableBackend(params.backend);
neckhead.setPreferableTarget(params.target);
backbone.setPreferableBackend(parameters.backend);
backbone.setPreferableTarget(parameters.target);
neckhead.setPreferableBackend(parameters.backend);
neckhead.setPreferableTarget(parameters.target);
}
TrackerNanoImpl(const dnn::Net& _backbone, const dnn::Net& _neckhead)
{
CV_Assert(!_backbone.empty());
CV_Assert(!_neckhead.empty());
backbone = _backbone;
neckhead = _neckhead;
}
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
@ -110,8 +118,6 @@ public:
std::vector<float> targetPos = {0, 0}; // center point of bounding box (x, y)
float tracking_score;
TrackerNano::Params params;
struct trackerConfig
{
float windowInfluence = 0.455f;
@ -349,6 +355,11 @@ Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters)
return makePtr<TrackerNanoImpl>(parameters);
}
Ptr<TrackerNano> TrackerNano::create(const dnn::Net& backbone, const dnn::Net& neckhead)
{
return makePtr<TrackerNanoImpl>(backbone, neckhead);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters)
{

View File

@ -42,16 +42,26 @@ class TrackerVitImpl : public TrackerVit
{
public:
TrackerVitImpl(const TrackerVit::Params& parameters)
: params(parameters)
{
net = dnn::readNet(params.net);
net = dnn::readNet(parameters.net);
CV_Assert(!net.empty());
net.setPreferableBackend(params.backend);
net.setPreferableTarget(params.target);
net.setPreferableBackend(parameters.backend);
net.setPreferableTarget(parameters.target);
i2bp.mean = params.meanvalue * 255.0;
i2bp.scalefactor = (1.0 / params.stdvalue) * (1 / 255.0);
i2bp.mean = parameters.meanvalue * 255.0;
i2bp.scalefactor = (1.0 / parameters.stdvalue) * (1 / 255.0);
tracking_score_threshold = parameters.tracking_score_threshold;
}
TrackerVitImpl(const dnn::Net& model, Scalar meanvalue, Scalar stdvalue, float _tracking_score_threshold)
{
CV_Assert(!model.empty());
net = model;
i2bp.mean = meanvalue * 255.0;
i2bp.scalefactor = (1.0 / stdvalue) * (1 / 255.0);
tracking_score_threshold = _tracking_score_threshold;
}
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
@ -61,7 +71,7 @@ public:
Rect rect_last;
float tracking_score;
TrackerVit::Params params;
float tracking_score_threshold;
dnn::Image2BlobParams i2bp;
@ -189,7 +199,7 @@ bool TrackerVitImpl::update(InputArray image_, Rect &boundingBoxRes)
minMaxLoc(conf_map, nullptr, &maxVal, nullptr, &maxLoc);
tracking_score = static_cast<float>(maxVal);
if (tracking_score >= params.tracking_score_threshold) {
if (tracking_score >= tracking_score_threshold) {
float cx = (maxLoc.x + offset_map.at<float>(0, maxLoc.y, maxLoc.x)) / 16;
float cy = (maxLoc.y + offset_map.at<float>(1, maxLoc.y, maxLoc.x)) / 16;
float w = size_map.at<float>(0, maxLoc.y, maxLoc.x);
@ -213,6 +223,11 @@ Ptr<TrackerVit> TrackerVit::create(const TrackerVit::Params& parameters)
return makePtr<TrackerVitImpl>(parameters);
}
Ptr<TrackerVit> TrackerVit::create(const dnn::Net& model, Scalar meanvalue, Scalar stdvalue, float tracking_score_threshold)
{
return makePtr<TrackerVitImpl>(model, meanvalue, stdvalue, tracking_score_threshold);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerVit> TrackerVit::create(const TrackerVit::Params& parameters)
{