This commit is contained in:
Shivanshu Tyagi 2025-05-30 21:20:23 +05:30 committed by GitHub
commit ae2f799339
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,264 @@
import argparse
import numpy as np
import cv2 as cv
'''
AVSpeechRecognition
How to obtain the model required for this sample:
Option 1: Download the model from https://drive.google.com/file/d/1xuwk5ZQagKFoTXev27zvlSg8dAmSJoo7/view?usp=sharing
Option 2: Convert the model using pretrained torch model and base repo.
Use the code here: https://gist.github.com/spazewalker/b8ab3eabc96ffcb30218cbb6f6ea09b3
For preporocessing the video, YUNet face detection is also required. YUNet can be downloaded from:
https://github.com/opencv/opencv_zoo/blob/master/models/face_detection_yunet/face_detection_yunet_2022mar.onnx
'''
class AVSpeechRecognition:
'''
Audio Video Speech Recognition based on AVHubert (arXiv:2201.02184 [eess.AS])
'''
def __init__(self, source, detector_path, model_path, margin, video_width, video_height,
score_threshold, nms_threshold, top_k, backend, show_video=False, labels=None):
'''
params:
source: video source
detector_path: face detection model path
model_path: speech recognition model path
margin: margin for temporal window
video_width: video width
video_height: video height
score_threshold: score threshold for face detection
nms_threshold: nms threshold for face detection
top_k: top k faces for face detection
backend: backend for model inference
show_video: show video or not
labels: labels for speech recognition
'''
self.labels = open(labels).read().strip().split('\n') if labels else None
source = source if source else 0
self.cap = cv.VideoCapture(source)
self.samplingRate = 16000
self.fps = 30
self.source = source
self.realtime = True if source == 0 else False
self.params = np.asarray([cv.CAP_PROP_AUDIO_STREAM, 0,
cv.CAP_PROP_VIDEO_STREAM, 0,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_32F,
cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND, self.samplingRate
])
self.margin = margin
self.height = video_height
self.width = video_width
self.cap.set(cv.CAP_PROP_FRAME_WIDTH, video_width)
self.cap.set(cv.CAP_PROP_FRAME_HEIGHT, video_height)
self.cap.set(cv.CAP_PROP_FPS, self.fps)
self.model = cv.dnn.readNetFromONNX(model_path)
self.detector = cv.FaceDetectorYN.create(detector_path, "", (video_width, video_height), score_threshold, nms_threshold, top_k)
self.model.setPreferableBackend(backend)
self.model.enableFusion(False)
self.landmarks_queue = []
self.frames_queue = []
self.audio_queue = []
self.show_video = show_video
def warp_image(self, frame, smoothed_landmarks):
'''
warps frame to make lips horizontal and fixed at center
params:
frame: input frame
smoothed_landmarks: smoothed landmarks
return:
trans_frame: warped frame
trans_landmarks: warped landmarks
'''
rotateby = np.arctan((smoothed_landmarks[6][1]-smoothed_landmarks[5][1])/(smoothed_landmarks[6][0]-smoothed_landmarks[5][0]))*180/np.pi
image_center = tuple((smoothed_landmarks[0]+smoothed_landmarks[1])/2)
rot_mat = cv.getRotationMatrix2D(image_center, rotateby, 2)
trans_frame = cv.warpAffine(frame, rot_mat, frame.shape[1::-1], flags=cv.INTER_LINEAR)
trans_landmarks = np.hstack((smoothed_landmarks, np.ones(shape=(7,1))))@rot_mat.T
return trans_frame, trans_landmarks
def cut_patch(self, img, landmarks, height, width, threshold=5):
'''
cuts mouth roi from image based on the mouth landmarks
params:
img: input image
landmarks: mouth landmarks
height: height of patch
width: width of patch
threshold: threshold for cutting (default:5)
return:
cutted_img: cutted image
'''
center_x, center_y = np.mean(landmarks, axis=0)
if center_y - height < 0:
center_y = height
if center_y - height < 0 - threshold:
raise Exception('too much bias in height')
if center_x - width < 0:
center_x = width
if center_x - width < 0 - threshold:
raise Exception('too much bias in width')
if center_y + height > img.shape[0]:
center_y = img.shape[0] - height
if center_y + height > img.shape[0] + threshold:
raise Exception('too much bias in height')
if center_x + width > img.shape[1]:
center_x = img.shape[1] - width
if center_x + width > img.shape[1] + threshold:
raise Exception('too much bias in width')
cutted_img = np.copy(img[ int(round(center_y) - round(height)): int(round(center_y) + round(height)),
int(round(center_x) - round(width)): int(round(center_x) + round(width))])
return cutted_img
def preprocess(self, frame, audio):
'''
preprocesses frame to get landmarks and mouth rois
params:
frame: input frame
audio: input audio
return:
cropped: mouth roi
normlized_audio: normalized audio
'''
landmarks = self.detector.detect(frame)[-1]
cropped = None
if landmarks is not None:
landmarks = landmarks[:,:-1].reshape(landmarks.shape[0],7,2)
if len(landmarks) == 0:
return None, None
self.landmarks_queue.append(landmarks)
if len(self.landmarks_queue) < self.margin:
return None, None
smoothed_landmarks = np.mean(self.landmarks_queue, axis=0)[0]
trans_frame, trans_landmarks = self.warp_image(frame, smoothed_landmarks)
cropped = self.cut_patch(trans_frame, trans_landmarks[-2:], 96//2,96//2)
if audio is not None:
signal_std = np.std(audio)
signal_mean = np.mean(audio)
normalized_audio = (audio - signal_mean) / signal_std
return cropped, normalized_audio
def predict(self, frames_queue, audio_queue):
'''
predicts word using Audio Video Speech Recognition model.
params:
frames_queue: queue of frames
audio_queue: queue of audio
return:
pred: predicted word or index
'''
video = np.expand_dims(np.array(frames_queue[-self.margin:]), axis=(0,1))
audio = np.expand_dims(np.array(audio_queue[-self.margin*self.samplingRate//self.fps+1:], dtype=np.float32),axis=(0,1))
self.model.setInput(video, 'video_input')
self.model.setInput(audio, 'audio_input')
out = self.model.forward()
pred = out.reshape(-1).argmax()
pred = self.labels[pred] if self.labels else pred
return pred
def run(self):
'''
Read the video and process it.
'''
self.cap.open(self.source, cv.CAP_MSMF, self.params)
if not self.cap.isOpened():
print('Cannot open video source')
exit(1)
audioBaseIndex = int(self.cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
audioChannels = int(self.cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
if self.cap.isOpened():
while self.cap.grab():
ret, frame = self.cap.retrieve()
frame = cv.resize(frame, (self.width, self.height))
audioFrame = np.asarray([])
audioFrame = self.cap.retrieve(audioFrame, audioBaseIndex)
audioFrame = audioFrame[1][0] if audioFrame is not None else None
if self.realtime:
img, aud = self.preprocess(frame, audioFrame)
if img is not None and aud is not None:
img = cv.resize(img, (96,96))
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
self.frames_queue.append(img)
for audio in aud:
self.audio_queue.append(audio)
if len(self.frames_queue) < self.margin:
continue
pred = self.predict(self.frames_queue, self.audio_queue)
print(pred)
if self.show_video:
cv.circle(frame, np.mean(self.landmarks_queue, axis=0)[0][5].astype(np.int32), 2, (0,0,255), -1)
cv.circle(frame, np.mean(self.landmarks_queue, axis=0)[0][6].astype(np.int32), 2, (0,0,255), -1)
cv.imshow('Audio-visual speech recognition in OpenCV', frame)
if cv.waitKey(1) & 0xFF == ord('q'):
break
else:
self.frames_queue.append(frame)
self.audio_queue.append(audioFrame)
if not self.realtime:
image_queue = []
audio_queue = []
for i in range(len(self.frames_queue)):
img, aud = self.preprocess(self.frames_queue[i], self.audio_queue[i])
if img is not None and aud is not None:
img = cv.resize(img, (96,96))
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
image_queue.append(img)
for audio in aud:
audio_queue.append(audio)
if len(image_queue) / self.margin > 1:
pred = self.predict(image_queue, audio_queue)
print(pred)
def parse_args():
parser = argparse.ArgumentParser(description='Audio Visual Speech Recognition')
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_OPENCV)
parser.add_argument('--input', type=str,
help='Path to input video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--model', type=str, default='AVSpeechRecog.onnx',
help='Path to onnx Model file to use for AVSpeech Recognition')
parser.add_argument('--labels', type=str,
help='Path to txt file containing labels. Skip this argument to print class id instead.')
parser.add_argument('--detector_model', type=str, default='face_detection_yunet_2022mar.onnx',
help='Path to YUNet Model onnx file to use for face detection.')
parser.add_argument('--margin', type=int, default=20,
help='Margin for cutting the video')
parser.add_argument('--video_width', type=int, default=640,
help='Preprocess frame by resizing to a specific width.')
parser.add_argument('--video_height', type=int, default=480,
help='Preprocess frame by resizing to a specific Height.')
parser.add_argument('--score_threshold', type=int, default=0.9,
help='score threshold for face detection')
parser.add_argument('--nms_threshold', type=float, default=0.3,
help='NMS threshold for face detection')
parser.add_argument('--top_k', type=int, default=5000,
help='top k for face detection')
parser.add_argument('--show_video', action='store_true',
help='pass --show_video to show video. skip this argument to not show video.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help='Select a computation backend: '
"%d: automatically (by default) "
"%d: OpenCV Implementation " % backends)
args = parser.parse_args()
return args
def main():
args = parse_args()
recognizer = AVSpeechRecognition(args.input, model_path=args.model, detector_path=args.detector_model,
margin=args.margin, video_width=args.video_width, video_height=args.video_height,
score_threshold=args.score_threshold, nms_threshold=args.nms_threshold, labels=args.labels,
top_k=args.top_k, backend=args.backend, show_video=args.show_video)
recognizer.run()
if __name__ == '__main__':
main()