mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
aebb65e983
@ -21,15 +21,15 @@
|
||||
# include "opencv2/core/eigen.hpp"
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
namespace cv {
|
||||
|
||||
dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
|
||||
dls::dls(const Mat& opoints, const Mat& ipoints)
|
||||
{
|
||||
|
||||
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
||||
p = cv::Mat(3, N, CV_64F);
|
||||
z = cv::Mat(3, N, CV_64F);
|
||||
mn = cv::Mat::zeros(3, 1, CV_64F);
|
||||
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
||||
p = Mat(3, N, CV_64F);
|
||||
z = Mat(3, N, CV_64F);
|
||||
mn = Mat::zeros(3, 1, CV_64F);
|
||||
|
||||
cost__ = 9999;
|
||||
|
||||
@ -40,14 +40,14 @@ dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
|
||||
if (opoints.depth() == ipoints.depth())
|
||||
{
|
||||
if (opoints.depth() == CV_32F)
|
||||
init_points<cv::Point3f, cv::Point2f>(opoints, ipoints);
|
||||
init_points<Point3f, Point2f>(opoints, ipoints);
|
||||
else
|
||||
init_points<cv::Point3d, cv::Point2d>(opoints, ipoints);
|
||||
init_points<Point3d, Point2d>(opoints, ipoints);
|
||||
}
|
||||
else if (opoints.depth() == CV_32F)
|
||||
init_points<cv::Point3f, cv::Point2d>(opoints, ipoints);
|
||||
init_points<Point3f, Point2d>(opoints, ipoints);
|
||||
else
|
||||
init_points<cv::Point3d, cv::Point2f>(opoints, ipoints);
|
||||
init_points<Point3d, Point2f>(opoints, ipoints);
|
||||
}
|
||||
|
||||
dls::~dls()
|
||||
@ -55,10 +55,10 @@ dls::~dls()
|
||||
// TODO Auto-generated destructor stub
|
||||
}
|
||||
|
||||
bool dls::compute_pose(cv::Mat& R, cv::Mat& t)
|
||||
bool dls::compute_pose(Mat& R, Mat& t)
|
||||
{
|
||||
|
||||
std::vector<cv::Mat> R_;
|
||||
std::vector<Mat> R_;
|
||||
R_.push_back(rotx(CV_PI/2));
|
||||
R_.push_back(roty(CV_PI/2));
|
||||
R_.push_back(rotz(CV_PI/2));
|
||||
@ -67,7 +67,7 @@ bool dls::compute_pose(cv::Mat& R, cv::Mat& t)
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
// Make a random rotation
|
||||
cv::Mat pp = R_[i] * ( p - cv::repeat(mn, 1, p.cols) );
|
||||
Mat pp = R_[i] * ( p - repeat(mn, 1, p.cols) );
|
||||
|
||||
// clear for new data
|
||||
C_est_.clear();
|
||||
@ -99,13 +99,13 @@ bool dls::compute_pose(cv::Mat& R, cv::Mat& t)
|
||||
return false;
|
||||
}
|
||||
|
||||
void dls::run_kernel(const cv::Mat& pp)
|
||||
void dls::run_kernel(const Mat& pp)
|
||||
{
|
||||
cv::Mat Mtilde(27, 27, CV_64F);
|
||||
cv::Mat D = cv::Mat::zeros(9, 9, CV_64F);
|
||||
Mat Mtilde(27, 27, CV_64F);
|
||||
Mat D = Mat::zeros(9, 9, CV_64F);
|
||||
build_coeff_matrix(pp, Mtilde, D);
|
||||
|
||||
cv::Mat eigenval_r, eigenval_i, eigenvec_r, eigenvec_i;
|
||||
Mat eigenval_r, eigenval_i, eigenvec_r, eigenvec_i;
|
||||
compute_eigenvec(Mtilde, eigenval_r, eigenval_i, eigenvec_r, eigenvec_i);
|
||||
|
||||
/*
|
||||
@ -115,16 +115,16 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
// extract the optimal solutions from the eigen decomposition of the
|
||||
// Multiplication matrix
|
||||
|
||||
cv::Mat sols = cv::Mat::zeros(3, 27, CV_64F);
|
||||
Mat sols = Mat::zeros(3, 27, CV_64F);
|
||||
std::vector<double> cost;
|
||||
int count = 0;
|
||||
for (int k = 0; k < 27; ++k)
|
||||
{
|
||||
// V(:,k) = V(:,k)/V(1,k);
|
||||
cv::Mat V_kA = eigenvec_r.col(k); // 27x1
|
||||
cv::Mat V_kB = cv::Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
|
||||
cv::Mat V_k; cv::solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
|
||||
cv::Mat( V_k.t()).copyTo( eigenvec_r.col(k) );
|
||||
Mat V_kA = eigenvec_r.col(k); // 27x1
|
||||
Mat V_kB = Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
|
||||
Mat V_k; solve(V_kB.t(), V_kA.t(), V_k); // A/B = B'\A'
|
||||
Mat( V_k.t()).copyTo( eigenvec_r.col(k) );
|
||||
|
||||
//if (imag(V(2,k)) == 0)
|
||||
#ifdef HAVE_EIGEN
|
||||
@ -138,24 +138,24 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
stmp[1] = eigenvec_r.at<double>(3, k);
|
||||
stmp[2] = eigenvec_r.at<double>(1, k);
|
||||
|
||||
cv::Mat H = Hessian(stmp);
|
||||
Mat H = Hessian(stmp);
|
||||
|
||||
cv::Mat eigenvalues, eigenvectors;
|
||||
cv::eigen(H, eigenvalues, eigenvectors);
|
||||
Mat eigenvalues, eigenvectors;
|
||||
eigen(H, eigenvalues, eigenvectors);
|
||||
|
||||
if(positive_eigenvalues(&eigenvalues))
|
||||
{
|
||||
|
||||
// sols(:,i) = stmp;
|
||||
cv::Mat stmp_mat(3, 1, CV_64F, &stmp);
|
||||
Mat stmp_mat(3, 1, CV_64F, &stmp);
|
||||
|
||||
stmp_mat.copyTo( sols.col(count) );
|
||||
|
||||
cv::Mat Cbar = cayley2rotbar(stmp_mat);
|
||||
cv::Mat Cbarvec = Cbar.reshape(1,1).t();
|
||||
Mat Cbar = cayley2rotbar(stmp_mat);
|
||||
Mat Cbarvec = Cbar.reshape(1,1).t();
|
||||
|
||||
// cost(i) = CbarVec' * D * CbarVec;
|
||||
cv::Mat cost_mat = Cbarvec.t() * D * Cbarvec;
|
||||
Mat cost_mat = Cbarvec.t() * D * Cbarvec;
|
||||
cost.push_back( cost_mat.at<double>(0) );
|
||||
|
||||
count++;
|
||||
@ -166,30 +166,30 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
// extract solutions
|
||||
sols = sols.clone().colRange(0, count);
|
||||
|
||||
std::vector<cv::Mat> C_est, t_est;
|
||||
std::vector<Mat> C_est, t_est;
|
||||
for (int j = 0; j < sols.cols; ++j)
|
||||
{
|
||||
// recover the optimal orientation
|
||||
// C_est(:,:,j) = 1/(1 + sols(:,j)' * sols(:,j)) * cayley2rotbar(sols(:,j));
|
||||
|
||||
cv::Mat sols_j = sols.col(j);
|
||||
double sols_mult = 1./(1.+cv::Mat( sols_j.t() * sols_j ).at<double>(0));
|
||||
cv::Mat C_est_j = cayley2rotbar(sols_j).mul(sols_mult);
|
||||
Mat sols_j = sols.col(j);
|
||||
double sols_mult = 1./(1.+Mat( sols_j.t() * sols_j ).at<double>(0));
|
||||
Mat C_est_j = cayley2rotbar(sols_j).mul(sols_mult);
|
||||
C_est.push_back( C_est_j );
|
||||
|
||||
cv::Mat A2 = cv::Mat::zeros(3, 3, CV_64F);
|
||||
cv::Mat b2 = cv::Mat::zeros(3, 1, CV_64F);
|
||||
Mat A2 = Mat::zeros(3, 3, CV_64F);
|
||||
Mat b2 = Mat::zeros(3, 1, CV_64F);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F);
|
||||
cv::Mat z_mul = z.col(i)*z.col(i).t();
|
||||
Mat eye = Mat::eye(3, 3, CV_64F);
|
||||
Mat z_mul = z.col(i)*z.col(i).t();
|
||||
|
||||
A2 += eye - z_mul;
|
||||
b2 += (z_mul - eye) * C_est_j * pp.col(i);
|
||||
}
|
||||
|
||||
// recover the optimal translation
|
||||
cv::Mat X2; cv::solve(A2, b2, X2); // A\B
|
||||
Mat X2; solve(A2, b2, X2); // A\B
|
||||
t_est.push_back(X2);
|
||||
|
||||
}
|
||||
@ -197,12 +197,12 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
// check that the points are infront of the center of perspectivity
|
||||
for (int k = 0; k < sols.cols; ++k)
|
||||
{
|
||||
cv::Mat cam_points = C_est[k] * pp + cv::repeat(t_est[k], 1, pp.cols);
|
||||
cv::Mat cam_points_k = cam_points.row(2);
|
||||
Mat cam_points = C_est[k] * pp + repeat(t_est[k], 1, pp.cols);
|
||||
Mat cam_points_k = cam_points.row(2);
|
||||
|
||||
if(is_empty(&cam_points_k))
|
||||
{
|
||||
cv::Mat C_valid = C_est[k], t_valid = t_est[k];
|
||||
Mat C_valid = C_est[k], t_valid = t_est[k];
|
||||
double cost_valid = cost[k];
|
||||
|
||||
C_est_.push_back(C_valid);
|
||||
@ -213,20 +213,20 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
|
||||
}
|
||||
|
||||
void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
|
||||
void dls::build_coeff_matrix(const Mat& pp, Mat& Mtilde, Mat& D)
|
||||
{
|
||||
CV_Assert(!pp.empty() && N > 0);
|
||||
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F);
|
||||
Mat eye = Mat::eye(3, 3, CV_64F);
|
||||
|
||||
// build coeff matrix
|
||||
// An intermediate matrix, the inverse of what is called "H" in the paper
|
||||
// (see eq. 25)
|
||||
|
||||
cv::Mat H = cv::Mat::zeros(3, 3, CV_64F);
|
||||
cv::Mat A = cv::Mat::zeros(3, 9, CV_64F);
|
||||
cv::Mat pp_i(3, 1, CV_64F);
|
||||
Mat H = Mat::zeros(3, 3, CV_64F);
|
||||
Mat A = Mat::zeros(3, 9, CV_64F);
|
||||
Mat pp_i(3, 1, CV_64F);
|
||||
|
||||
cv::Mat z_i(3, 1, CV_64F);
|
||||
Mat z_i(3, 1, CV_64F);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
z.col(i).copyTo(z_i);
|
||||
@ -236,10 +236,10 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
|
||||
H = eye.mul(N) - z * z.t();
|
||||
|
||||
// A\B
|
||||
cv::solve(H, A, A, cv::DECOMP_NORMAL);
|
||||
solve(H, A, A, DECOMP_NORMAL);
|
||||
H.release();
|
||||
|
||||
cv::Mat ppi_A(3, 1, CV_64F);
|
||||
Mat ppi_A(3, 1, CV_64F);
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
z.col(i).copyTo(z_i);
|
||||
@ -253,18 +253,18 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
|
||||
|
||||
// generate random samples
|
||||
std::vector<double> u(5);
|
||||
cv::randn(u, 0, 200);
|
||||
randn(u, 0, 200);
|
||||
|
||||
cv::Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u);
|
||||
Mat M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff, u);
|
||||
|
||||
cv::Mat M2_1 = M2(cv::Range(0,27), cv::Range(0,27));
|
||||
cv::Mat M2_2 = M2(cv::Range(0,27), cv::Range(27,120));
|
||||
cv::Mat M2_3 = M2(cv::Range(27,120), cv::Range(27,120));
|
||||
cv::Mat M2_4 = M2(cv::Range(27,120), cv::Range(0,27));
|
||||
Mat M2_1 = M2(Range(0,27), Range(0,27));
|
||||
Mat M2_2 = M2(Range(0,27), Range(27,120));
|
||||
Mat M2_3 = M2(Range(27,120), Range(27,120));
|
||||
Mat M2_4 = M2(Range(27,120), Range(0,27));
|
||||
M2.release();
|
||||
|
||||
// A/B = B'\A'
|
||||
cv::Mat M2_5; cv::solve(M2_3.t(), M2_2.t(), M2_5);
|
||||
Mat M2_5; solve(M2_3.t(), M2_2.t(), M2_5);
|
||||
M2_2.release(); M2_3.release();
|
||||
|
||||
// construct the multiplication matrix via schur compliment of the Macaulay
|
||||
@ -273,13 +273,13 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
|
||||
|
||||
}
|
||||
|
||||
void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
|
||||
cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag)
|
||||
void dls::compute_eigenvec(const Mat& Mtilde, Mat& eigenval_real, Mat& eigenval_imag,
|
||||
Mat& eigenvec_real, Mat& eigenvec_imag)
|
||||
{
|
||||
#ifdef HAVE_EIGEN
|
||||
Eigen::MatrixXd Mtilde_eig, zeros_eig;
|
||||
cv::cv2eigen(Mtilde, Mtilde_eig);
|
||||
cv::cv2eigen(cv::Mat::zeros(27, 27, CV_64F), zeros_eig);
|
||||
cv2eigen(Mtilde, Mtilde_eig);
|
||||
cv2eigen(Mat::zeros(27, 27, CV_64F), zeros_eig);
|
||||
|
||||
Eigen::MatrixXcd Mtilde_eig_cmplx(27, 27);
|
||||
Mtilde_eig_cmplx.real() = Mtilde_eig;
|
||||
@ -293,20 +293,20 @@ void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Ma
|
||||
Eigen::MatrixXd eigvec_real = ces.eigenvectors().real();
|
||||
Eigen::MatrixXd eigvec_imag = ces.eigenvectors().imag();
|
||||
|
||||
cv::eigen2cv(eigval_real, eigenval_real);
|
||||
cv::eigen2cv(eigval_imag, eigenval_imag);
|
||||
cv::eigen2cv(eigvec_real, eigenvec_real);
|
||||
cv::eigen2cv(eigvec_imag, eigenvec_imag);
|
||||
eigen2cv(eigval_real, eigenval_real);
|
||||
eigen2cv(eigval_imag, eigenval_imag);
|
||||
eigen2cv(eigvec_real, eigenvec_real);
|
||||
eigen2cv(eigvec_imag, eigenvec_imag);
|
||||
#else
|
||||
EigenvalueDecomposition es(Mtilde);
|
||||
eigenval_real = es.eigenvalues();
|
||||
eigenvec_real = es.eigenvectors();
|
||||
eigenval_imag = eigenvec_imag = cv::Mat();
|
||||
eigenval_imag = eigenvec_imag = Mat();
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void dls::fill_coeff(const cv::Mat * D_mat)
|
||||
void dls::fill_coeff(const Mat * D_mat)
|
||||
{
|
||||
// TODO: shift D and coefficients one position to left
|
||||
|
||||
@ -394,9 +394,9 @@ void dls::fill_coeff(const cv::Mat * D_mat)
|
||||
|
||||
}
|
||||
|
||||
cv::Mat dls::LeftMultVec(const cv::Mat& v)
|
||||
Mat dls::LeftMultVec(const Mat& v)
|
||||
{
|
||||
cv::Mat mat_ = cv::Mat::zeros(3, 9, CV_64F);
|
||||
Mat mat_ = Mat::zeros(3, 9, CV_64F);
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
@ -407,12 +407,12 @@ cv::Mat dls::LeftMultVec(const cv::Mat& v)
|
||||
return mat_;
|
||||
}
|
||||
|
||||
cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u)
|
||||
Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b, const std::vector<double>& c, const std::vector<double>& u)
|
||||
{
|
||||
// TODO: input matrix pointer
|
||||
// TODO: shift coefficients one position to left
|
||||
|
||||
cv::Mat M = cv::Mat::zeros(120, 120, CV_64F);
|
||||
Mat M = Mat::zeros(120, 120, CV_64F);
|
||||
|
||||
M.at<double>(0,0)=u[1]; M.at<double>(0,35)=a[1]; M.at<double>(0,83)=b[1]; M.at<double>(0,118)=c[1];
|
||||
M.at<double>(1,0)=u[4]; M.at<double>(1,1)=u[1]; M.at<double>(1,34)=a[1]; M.at<double>(1,35)=a[10]; M.at<double>(1,54)=b[1]; M.at<double>(1,83)=b[10]; M.at<double>(1,99)=c[1]; M.at<double>(1,118)=c[10];
|
||||
@ -538,7 +538,7 @@ cv::Mat dls::cayley_LS_M(const std::vector<double>& a, const std::vector<double>
|
||||
return M.t();
|
||||
}
|
||||
|
||||
cv::Mat dls::Hessian(const double s[])
|
||||
Mat dls::Hessian(const double s[])
|
||||
{
|
||||
// the vector of monomials is
|
||||
// m = [ const ; s1^2 * s2 ; s1 * s2 ; s1 * s3 ; s2 * s3 ; s2^2 * s3 ; s2^3 ; ...
|
||||
@ -577,73 +577,73 @@ cv::Mat dls::Hessian(const double s[])
|
||||
Hs3[14]=0; Hs3[15]=3*s[2]*s[2]; Hs3[16]=s[0]*s[1]; Hs3[17]=0; Hs3[18]=s[0]*s[0]; Hs3[19]=0;
|
||||
|
||||
// fill Hessian matrix
|
||||
cv::Mat H(3, 3, CV_64F);
|
||||
H.at<double>(0,0) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
|
||||
H.at<double>(0,1) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
|
||||
H.at<double>(0,2) = cv::Mat(cv::Mat(f1coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
|
||||
Mat H(3, 3, CV_64F);
|
||||
H.at<double>(0,0) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
|
||||
H.at<double>(0,1) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
|
||||
H.at<double>(0,2) = Mat(Mat(f1coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
|
||||
|
||||
H.at<double>(1,0) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
|
||||
H.at<double>(1,1) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
|
||||
H.at<double>(1,2) = cv::Mat(cv::Mat(f2coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
|
||||
H.at<double>(1,0) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
|
||||
H.at<double>(1,1) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
|
||||
H.at<double>(1,2) = Mat(Mat(f2coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
|
||||
|
||||
H.at<double>(2,0) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
|
||||
H.at<double>(2,1) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
|
||||
H.at<double>(2,2) = cv::Mat(cv::Mat(f3coeff).rowRange(1,21).t()*cv::Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
|
||||
H.at<double>(2,0) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs1)).at<double>(0,0);
|
||||
H.at<double>(2,1) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs2)).at<double>(0,0);
|
||||
H.at<double>(2,2) = Mat(Mat(f3coeff).rowRange(1,21).t()*Mat(20, 1, CV_64F, &Hs3)).at<double>(0,0);
|
||||
|
||||
return H;
|
||||
}
|
||||
|
||||
cv::Mat dls::cayley2rotbar(const cv::Mat& s)
|
||||
Mat dls::cayley2rotbar(const Mat& s)
|
||||
{
|
||||
double s_mul1 = cv::Mat(s.t()*s).at<double>(0,0);
|
||||
cv::Mat s_mul2 = s*s.t();
|
||||
cv::Mat eye = cv::Mat::eye(3, 3, CV_64F);
|
||||
double s_mul1 = Mat(s.t()*s).at<double>(0,0);
|
||||
Mat s_mul2 = s*s.t();
|
||||
Mat eye = Mat::eye(3, 3, CV_64F);
|
||||
|
||||
return cv::Mat( eye.mul(1.-s_mul1) + skewsymm(&s).mul(2.) + s_mul2.mul(2.) ).t();
|
||||
return Mat( eye.mul(1.-s_mul1) + skewsymm(&s).mul(2.) + s_mul2.mul(2.) ).t();
|
||||
}
|
||||
|
||||
cv::Mat dls::skewsymm(const cv::Mat * X1)
|
||||
Mat dls::skewsymm(const Mat * X1)
|
||||
{
|
||||
cv::MatConstIterator_<double> it = X1->begin<double>();
|
||||
return (cv::Mat_<double>(3,3) << 0, -*(it+2), *(it+1),
|
||||
*(it+2), 0, -*(it+0),
|
||||
-*(it+1), *(it+0), 0);
|
||||
MatConstIterator_<double> it = X1->begin<double>();
|
||||
return (Mat_<double>(3,3) << 0, -*(it+2), *(it+1),
|
||||
*(it+2), 0, -*(it+0),
|
||||
-*(it+1), *(it+0), 0);
|
||||
}
|
||||
|
||||
cv::Mat dls::rotx(const double t)
|
||||
Mat dls::rotx(const double t)
|
||||
{
|
||||
// rotx: rotation about y-axis
|
||||
double ct = cos(t);
|
||||
double st = sin(t);
|
||||
return (cv::Mat_<double>(3,3) << 1, 0, 0, 0, ct, -st, 0, st, ct);
|
||||
return (Mat_<double>(3,3) << 1, 0, 0, 0, ct, -st, 0, st, ct);
|
||||
}
|
||||
|
||||
cv::Mat dls::roty(const double t)
|
||||
Mat dls::roty(const double t)
|
||||
{
|
||||
// roty: rotation about y-axis
|
||||
double ct = cos(t);
|
||||
double st = sin(t);
|
||||
return (cv::Mat_<double>(3,3) << ct, 0, st, 0, 1, 0, -st, 0, ct);
|
||||
return (Mat_<double>(3,3) << ct, 0, st, 0, 1, 0, -st, 0, ct);
|
||||
}
|
||||
|
||||
cv::Mat dls::rotz(const double t)
|
||||
Mat dls::rotz(const double t)
|
||||
{
|
||||
// rotz: rotation about y-axis
|
||||
double ct = cos(t);
|
||||
double st = sin(t);
|
||||
return (cv::Mat_<double>(3,3) << ct, -st, 0, st, ct, 0, 0, 0, 1);
|
||||
return (Mat_<double>(3,3) << ct, -st, 0, st, ct, 0, 0, 0, 1);
|
||||
}
|
||||
|
||||
cv::Mat dls::mean(const cv::Mat& M)
|
||||
Mat dls::mean(const Mat& M)
|
||||
{
|
||||
cv::Mat m = cv::Mat::zeros(3, 1, CV_64F);
|
||||
Mat m = Mat::zeros(3, 1, CV_64F);
|
||||
for (int i = 0; i < M.cols; ++i) m += M.col(i);
|
||||
return m.mul(1./(double)M.cols);
|
||||
}
|
||||
|
||||
bool dls::is_empty(const cv::Mat * M)
|
||||
bool dls::is_empty(const Mat * M)
|
||||
{
|
||||
cv::MatConstIterator_<double> it = M->begin<double>(), it_end = M->end<double>();
|
||||
MatConstIterator_<double> it = M->begin<double>(), it_end = M->end<double>();
|
||||
for(; it != it_end; ++it)
|
||||
{
|
||||
if(*it < 0) return false;
|
||||
@ -651,9 +651,11 @@ bool dls::is_empty(const cv::Mat * M)
|
||||
return true;
|
||||
}
|
||||
|
||||
bool dls::positive_eigenvalues(const cv::Mat * eigenvalues)
|
||||
bool dls::positive_eigenvalues(const Mat * eigenvalues)
|
||||
{
|
||||
CV_Assert(eigenvalues && !eigenvalues->empty());
|
||||
cv::MatConstIterator_<double> it = eigenvalues->begin<double>();
|
||||
MatConstIterator_<double> it = eigenvalues->begin<double>();
|
||||
return *(it) > 0 && *(it+1) > 0 && *(it+2) > 0;
|
||||
}
|
||||
|
||||
} // namespace cv
|
||||
|
@ -5,22 +5,21 @@
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
namespace cv {
|
||||
|
||||
class dls
|
||||
{
|
||||
public:
|
||||
dls(const cv::Mat& opoints, const cv::Mat& ipoints);
|
||||
dls(const Mat& opoints, const Mat& ipoints);
|
||||
~dls();
|
||||
|
||||
bool compute_pose(cv::Mat& R, cv::Mat& t);
|
||||
bool compute_pose(Mat& R, Mat& t);
|
||||
|
||||
private:
|
||||
|
||||
// initialisation
|
||||
template <typename OpointType, typename IpointType>
|
||||
void init_points(const cv::Mat& opoints, const cv::Mat& ipoints)
|
||||
void init_points(const Mat& opoints, const Mat& ipoints)
|
||||
{
|
||||
for(int i = 0; i < N; i++)
|
||||
{
|
||||
@ -49,33 +48,33 @@ private:
|
||||
}
|
||||
|
||||
// main algorithm
|
||||
cv::Mat LeftMultVec(const cv::Mat& v);
|
||||
void run_kernel(const cv::Mat& pp);
|
||||
void build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D);
|
||||
void compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
|
||||
cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag);
|
||||
void fill_coeff(const cv::Mat * D);
|
||||
Mat LeftMultVec(const Mat& v);
|
||||
void run_kernel(const Mat& pp);
|
||||
void build_coeff_matrix(const Mat& pp, Mat& Mtilde, Mat& D);
|
||||
void compute_eigenvec(const Mat& Mtilde, Mat& eigenval_real, Mat& eigenval_imag,
|
||||
Mat& eigenvec_real, Mat& eigenvec_imag);
|
||||
void fill_coeff(const Mat * D);
|
||||
|
||||
// useful functions
|
||||
cv::Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b,
|
||||
const std::vector<double>& c, const std::vector<double>& u);
|
||||
cv::Mat Hessian(const double s[]);
|
||||
cv::Mat cayley2rotbar(const cv::Mat& s);
|
||||
cv::Mat skewsymm(const cv::Mat * X1);
|
||||
Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b,
|
||||
const std::vector<double>& c, const std::vector<double>& u);
|
||||
Mat Hessian(const double s[]);
|
||||
Mat cayley2rotbar(const Mat& s);
|
||||
Mat skewsymm(const Mat * X1);
|
||||
|
||||
// extra functions
|
||||
cv::Mat rotx(const double t);
|
||||
cv::Mat roty(const double t);
|
||||
cv::Mat rotz(const double t);
|
||||
cv::Mat mean(const cv::Mat& M);
|
||||
bool is_empty(const cv::Mat * v);
|
||||
bool positive_eigenvalues(const cv::Mat * eigenvalues);
|
||||
Mat rotx(const double t);
|
||||
Mat roty(const double t);
|
||||
Mat rotz(const double t);
|
||||
Mat mean(const Mat& M);
|
||||
bool is_empty(const Mat * v);
|
||||
bool positive_eigenvalues(const Mat * eigenvalues);
|
||||
|
||||
cv::Mat p, z, mn; // object-image points
|
||||
Mat p, z, mn; // object-image points
|
||||
int N; // number of input points
|
||||
std::vector<double> f1coeff, f2coeff, f3coeff, cost_; // coefficient for coefficients matrix
|
||||
std::vector<cv::Mat> C_est_, t_est_; // optimal candidates
|
||||
cv::Mat C_est__, t_est__; // optimal found solution
|
||||
std::vector<Mat> C_est_, t_est_; // optimal candidates
|
||||
Mat C_est__, t_est__; // optimal found solution
|
||||
double cost__; // optimal found solution
|
||||
};
|
||||
|
||||
@ -738,7 +737,7 @@ public:
|
||||
{
|
||||
/*if(isSymmetric(src)) {
|
||||
// Fall back to OpenCV for a symmetric matrix!
|
||||
cv::eigen(src, _eigenvalues, _eigenvectors);
|
||||
eigen(src, _eigenvalues, _eigenvectors);
|
||||
} else {*/
|
||||
Mat tmp;
|
||||
// Convert the given input matrix to double. Is there any way to
|
||||
@ -770,4 +769,5 @@ public:
|
||||
Mat eigenvectors() { return _eigenvectors; }
|
||||
};
|
||||
|
||||
} // namespace cv
|
||||
#endif // DLS_H
|
||||
|
@ -103,12 +103,12 @@ void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray d
|
||||
CV_Assert(length > 0);
|
||||
|
||||
// project axes points
|
||||
vector<Point3f> axesPoints;
|
||||
std::vector<Point3f> axesPoints;
|
||||
axesPoints.push_back(Point3f(0, 0, 0));
|
||||
axesPoints.push_back(Point3f(length, 0, 0));
|
||||
axesPoints.push_back(Point3f(0, length, 0));
|
||||
axesPoints.push_back(Point3f(0, 0, length));
|
||||
vector<Point2f> imagePoints;
|
||||
std::vector<Point2f> imagePoints;
|
||||
projectPoints(axesPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints);
|
||||
|
||||
// draw axes lines
|
||||
@ -123,7 +123,7 @@ bool solvePnP( InputArray opoints, InputArray ipoints,
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
vector<Mat> rvecs, tvecs;
|
||||
std::vector<Mat> rvecs, tvecs;
|
||||
int solutions = solvePnPGeneric(opoints, ipoints, cameraMatrix, distCoeffs, rvecs, tvecs, useExtrinsicGuess, (SolvePnPMethod)flags, rvec, tvec);
|
||||
|
||||
if (solutions > 0)
|
||||
@ -321,8 +321,8 @@ bool solvePnPRansac(InputArray _opoints, InputArray _ipoints,
|
||||
return false;
|
||||
}
|
||||
|
||||
vector<Point3d> opoints_inliers;
|
||||
vector<Point2d> ipoints_inliers;
|
||||
std::vector<Point3d> opoints_inliers;
|
||||
std::vector<Point2d> ipoints_inliers;
|
||||
opoints = opoints.reshape(3);
|
||||
ipoints = ipoints.reshape(2);
|
||||
opoints.convertTo(opoints_inliers, CV_64F);
|
||||
@ -472,7 +472,7 @@ int solveP3P( InputArray _opoints, InputArray _ipoints,
|
||||
else
|
||||
imgPts = imgPts.reshape(1, 2*imgPts.rows);
|
||||
|
||||
vector<double> reproj_errors(solutions);
|
||||
std::vector<double> reproj_errors(solutions);
|
||||
for (size_t i = 0; i < reproj_errors.size(); i++)
|
||||
{
|
||||
Mat rvec;
|
||||
@ -762,7 +762,7 @@ static void solvePnPRefine(InputArray _objectPoints, InputArray _imagePoints,
|
||||
rvec0.convertTo(rvec, CV_64F);
|
||||
tvec0.convertTo(tvec, CV_64F);
|
||||
|
||||
vector<Point2d> ipoints_normalized;
|
||||
std::vector<Point2d> ipoints_normalized;
|
||||
undistortPoints(ipoints, ipoints_normalized, cameraMatrix, distCoeffs);
|
||||
Mat sd = Mat(ipoints_normalized).reshape(1, npoints*2);
|
||||
Mat objectPoints0 = opoints.reshape(1, npoints);
|
||||
@ -856,7 +856,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
|
||||
Mat cameraMatrix = Mat_<double>(cameraMatrix0);
|
||||
Mat distCoeffs = Mat_<double>(distCoeffs0);
|
||||
|
||||
vector<Mat> vec_rvecs, vec_tvecs;
|
||||
std::vector<Mat> vec_rvecs, vec_tvecs;
|
||||
if (flags == SOLVEPNP_EPNP || flags == SOLVEPNP_DLS || flags == SOLVEPNP_UPNP)
|
||||
{
|
||||
if (flags == SOLVEPNP_DLS)
|
||||
@ -881,7 +881,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
|
||||
}
|
||||
else if (flags == SOLVEPNP_P3P || flags == SOLVEPNP_AP3P)
|
||||
{
|
||||
vector<Mat> rvecs, tvecs;
|
||||
std::vector<Mat> rvecs, tvecs;
|
||||
solveP3P(opoints, ipoints, _cameraMatrix, _distCoeffs, rvecs, tvecs, flags);
|
||||
vec_rvecs.insert(vec_rvecs.end(), rvecs.begin(), rvecs.end());
|
||||
vec_tvecs.insert(vec_tvecs.end(), tvecs.begin(), tvecs.end());
|
||||
@ -1134,7 +1134,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
|
||||
|
||||
for (size_t i = 0; i < vec_rvecs.size(); i++)
|
||||
{
|
||||
vector<Point2d> projectedPoints;
|
||||
std::vector<Point2d> projectedPoints;
|
||||
projectPoints(objectPoints, vec_rvecs[i], vec_tvecs[i], cameraMatrix, distCoeffs, projectedPoints);
|
||||
double rmse = norm(Mat(projectedPoints, false), imagePoints, NORM_L2) / sqrt(2*projectedPoints.size());
|
||||
|
||||
|
@ -449,7 +449,16 @@ CV_EXPORTS InputOutputArray noArray();
|
||||
|
||||
/////////////////////////////////// MatAllocator //////////////////////////////////////
|
||||
|
||||
//! Usage flags for allocator
|
||||
/** @brief Usage flags for allocator
|
||||
|
||||
@warning All flags except `USAGE_DEFAULT` are experimental.
|
||||
|
||||
@warning For the OpenCL allocator, `USAGE_ALLOCATE_SHARED_MEMORY` depends on
|
||||
OpenCV's optional, experimental integration with OpenCL SVM. To enable this
|
||||
integration, build OpenCV using the `WITH_OPENCL_SVM=ON` CMake option and, at
|
||||
runtime, call `cv::ocl::Context::getDefault().setUseSVM(true);` or similar
|
||||
code. Note that SVM is incompatible with OpenCL 1.x.
|
||||
*/
|
||||
enum UMatUsageFlags
|
||||
{
|
||||
USAGE_DEFAULT = 0,
|
||||
@ -2077,7 +2086,7 @@ public:
|
||||
|
||||
Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3);
|
||||
|
||||
image.forEach<Pixel>([&](Pixel& pixel, const int position[]) -> void {
|
||||
image.forEach<Pixel>([](Pixel& pixel, const int position[]) -> void {
|
||||
pixel.x = position[0];
|
||||
pixel.y = position[1];
|
||||
pixel.z = position[2];
|
||||
|
@ -240,7 +240,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
|
||||
attempts = std::max(attempts, 1);
|
||||
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
|
||||
CV_CheckGE(N, K, "Number of clusters should be more than number of elements");
|
||||
CV_CheckGE(N, K, "There can't be more clusters than elements");
|
||||
|
||||
Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step));
|
||||
|
||||
|
@ -269,7 +269,7 @@ void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool auto
|
||||
else if( autoSteps )
|
||||
{
|
||||
m.step.p[i] = total;
|
||||
int64 total1 = (int64)total*s;
|
||||
uint64 total1 = (uint64)total*s;
|
||||
if( (uint64)total1 != (size_t)total1 )
|
||||
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
||||
total = (size_t)total1;
|
||||
|
@ -421,7 +421,9 @@ public:
|
||||
if (!blobs.empty())
|
||||
{
|
||||
Mat wm = blobs[0].reshape(1, numOutput);
|
||||
if( wm.step1() % VEC_ALIGN != 0 )
|
||||
if ((wm.step1() % VEC_ALIGN != 0) ||
|
||||
!isAligned<VEC_ALIGN * sizeof(float)>(wm.data)
|
||||
)
|
||||
{
|
||||
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
||||
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
|
||||
@ -1660,7 +1662,6 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// now compute dot product of the weights
|
||||
// and im2row-transformed part of the tensor
|
||||
#if CV_TRY_AVX512_SKX
|
||||
|
@ -81,6 +81,8 @@ void fastConv( const float* weights, size_t wstep, const float* bias,
|
||||
int blockSize, int vecsize, int vecsize_aligned,
|
||||
const float* relu, bool initOutput )
|
||||
{
|
||||
CV_Assert(isAligned<32>(weights));
|
||||
|
||||
int outCn = outShape[1];
|
||||
size_t outPlaneSize = outShape[2]*outShape[3];
|
||||
float r0 = 1.f, r1 = 1.f, r2 = 1.f;
|
||||
|
@ -1570,7 +1570,7 @@ namespace cv{
|
||||
#define CONDITION_S img_row[c - 1] > 0
|
||||
#define CONDITION_X img_row[c] > 0
|
||||
|
||||
#define ACTION_1 // nothing to do
|
||||
#define ACTION_1 img_labels_row[c] = 0;
|
||||
#define ACTION_2 img_labels_row[c] = label; \
|
||||
P_[label] = label; \
|
||||
label = label + 1;
|
||||
@ -1831,7 +1831,7 @@ namespace cv{
|
||||
|
||||
std::vector<LabelT> P_(Plength, 0);
|
||||
LabelT* P = P_.data();
|
||||
//P[0] = 0;
|
||||
P[0] = 0;
|
||||
LabelT lunique = 1;
|
||||
|
||||
// First scan
|
||||
@ -1851,7 +1851,7 @@ namespace cv{
|
||||
#define CONDITION_S img_row[c - 1] > 0
|
||||
#define CONDITION_X img_row[c] > 0
|
||||
|
||||
#define ACTION_1 // nothing to do
|
||||
#define ACTION_1 img_labels_row[c] = 0;
|
||||
#define ACTION_2 img_labels_row[c] = lunique; \
|
||||
P[lunique] = lunique; \
|
||||
lunique = lunique + 1; // new label
|
||||
|
@ -789,5 +789,16 @@ TEST(Imgproc_ConnectedComponents, single_column)
|
||||
}
|
||||
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, 4conn_regression_21366)
|
||||
{
|
||||
Mat src = Mat::zeros(Size(10, 10), CV_8UC1);
|
||||
{
|
||||
Mat labels, stats, centroids;
|
||||
EXPECT_NO_THROW(cv::connectedComponentsWithStats(src, labels, stats, centroids, 4));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
} // namespace
|
||||
|
@ -536,7 +536,7 @@ private:
|
||||
// Destructor is private. Caller should call Release.
|
||||
virtual ~SourceReaderCB()
|
||||
{
|
||||
CV_LOG_WARNING(NULL, "terminating async callback");
|
||||
CV_LOG_INFO(NULL, "terminating async callback");
|
||||
}
|
||||
|
||||
public:
|
||||
|
Loading…
Reference in New Issue
Block a user