mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
Merge pull request #5335 from Dikay900:ports_to_master
This commit is contained in:
commit
af0942c78f
@ -56,6 +56,8 @@ foreach(mod ${OPENCV_MODULES_BUILD} ${OPENCV_MODULES_DISABLED_USER} ${OPENCV_MOD
|
||||
if(HAVE_${mod})
|
||||
unset(HAVE_${mod} CACHE)
|
||||
endif()
|
||||
unset(OPENCV_MODULE_${mod}_DEPS CACHE)
|
||||
unset(OPENCV_MODULE_${mod}_DEPS_EXT CACHE)
|
||||
unset(OPENCV_MODULE_${mod}_REQ_DEPS CACHE)
|
||||
unset(OPENCV_MODULE_${mod}_OPT_DEPS CACHE)
|
||||
unset(OPENCV_MODULE_${mod}_PRIVATE_REQ_DEPS CACHE)
|
||||
|
@ -352,6 +352,7 @@ CV_IMPL CvString
|
||||
cvMemStorageAllocString( CvMemStorage* storage, const char* ptr, int len )
|
||||
{
|
||||
CvString str;
|
||||
memset(&str, 0, sizeof(CvString));
|
||||
|
||||
str.len = len >= 0 ? len : (int)strlen(ptr);
|
||||
str.ptr = (char*)cvMemStorageAlloc( storage, str.len + 1 );
|
||||
|
@ -491,6 +491,7 @@ class Core_SeqBaseTest : public Core_DynStructBaseTest
|
||||
{
|
||||
public:
|
||||
Core_SeqBaseTest();
|
||||
virtual ~Core_SeqBaseTest();
|
||||
void clear();
|
||||
void run( int );
|
||||
|
||||
@ -501,11 +502,14 @@ protected:
|
||||
int test_seq_ops( int iters );
|
||||
};
|
||||
|
||||
|
||||
Core_SeqBaseTest::Core_SeqBaseTest()
|
||||
{
|
||||
}
|
||||
|
||||
Core_SeqBaseTest::~Core_SeqBaseTest()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
void Core_SeqBaseTest::clear()
|
||||
{
|
||||
@ -1206,6 +1210,7 @@ class Core_SetTest : public Core_DynStructBaseTest
|
||||
{
|
||||
public:
|
||||
Core_SetTest();
|
||||
virtual ~Core_SetTest();
|
||||
void clear();
|
||||
void run( int );
|
||||
|
||||
@ -1219,6 +1224,10 @@ Core_SetTest::Core_SetTest()
|
||||
{
|
||||
}
|
||||
|
||||
Core_SetTest::~Core_SetTest()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
void Core_SetTest::clear()
|
||||
{
|
||||
@ -1417,6 +1426,7 @@ class Core_GraphTest : public Core_DynStructBaseTest
|
||||
{
|
||||
public:
|
||||
Core_GraphTest();
|
||||
virtual ~Core_GraphTest();
|
||||
void clear();
|
||||
void run( int );
|
||||
|
||||
@ -1430,6 +1440,10 @@ Core_GraphTest::Core_GraphTest()
|
||||
{
|
||||
}
|
||||
|
||||
Core_GraphTest::~Core_GraphTest()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
void Core_GraphTest::clear()
|
||||
{
|
||||
@ -2042,6 +2056,8 @@ void Core_GraphScanTest::run( int )
|
||||
CV_TS_SEQ_CHECK_CONDITION( vtx_count == 0 && edge_count == 0,
|
||||
"Not every vertex/edge has been visited" );
|
||||
update_progressbar();
|
||||
|
||||
cvReleaseGraphScanner( &scanner );
|
||||
}
|
||||
|
||||
// for a random graph the test just checks that every graph vertex and
|
||||
@ -2106,8 +2122,6 @@ void Core_GraphScanTest::run( int )
|
||||
catch(int)
|
||||
{
|
||||
}
|
||||
|
||||
cvReleaseGraphScanner( &scanner );
|
||||
}
|
||||
|
||||
|
||||
|
@ -60,7 +60,7 @@ static void writeMatInBin( const Mat& mat, const string& filename )
|
||||
fwrite( (void*)&mat.rows, sizeof(int), 1, f );
|
||||
fwrite( (void*)&mat.cols, sizeof(int), 1, f );
|
||||
fwrite( (void*)&type, sizeof(int), 1, f );
|
||||
int dataSize = (int)(mat.step * mat.rows * mat.channels());
|
||||
int dataSize = (int)(mat.step * mat.rows);
|
||||
fwrite( (void*)&dataSize, sizeof(int), 1, f );
|
||||
fwrite( (void*)mat.ptr(), 1, dataSize, f );
|
||||
fclose(f);
|
||||
@ -82,13 +82,14 @@ static Mat readMatFromBin( const string& filename )
|
||||
int step = dataSize / rows / CV_ELEM_SIZE(type);
|
||||
CV_Assert(step >= cols);
|
||||
|
||||
Mat m = Mat(rows, step, type).colRange(0, cols);
|
||||
Mat returnMat = Mat(rows, step, type).colRange(0, cols);
|
||||
|
||||
size_t elements_read = fread( m.ptr(), 1, dataSize, f );
|
||||
size_t elements_read = fread( returnMat.ptr(), 1, dataSize, f );
|
||||
CV_Assert(elements_read == (size_t)(dataSize));
|
||||
|
||||
fclose(f);
|
||||
|
||||
return m;
|
||||
return returnMat;
|
||||
}
|
||||
return Mat();
|
||||
}
|
||||
|
@ -67,13 +67,13 @@ protected:
|
||||
virtual void run( int start_from );
|
||||
virtual void createModel( const Mat& data ) = 0;
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
|
||||
virtual int checkGetPoins( const Mat& data );
|
||||
virtual int checkGetPoints( const Mat& data );
|
||||
virtual int checkFindBoxed();
|
||||
virtual int checkFind( const Mat& data );
|
||||
virtual void releaseModel() = 0;
|
||||
};
|
||||
|
||||
int NearestNeighborTest::checkGetPoins( const Mat& )
|
||||
int NearestNeighborTest::checkGetPoints( const Mat& )
|
||||
{
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
@ -127,11 +127,11 @@ int NearestNeighborTest::checkFind( const Mat& data )
|
||||
void NearestNeighborTest::run( int /*start_from*/ ) {
|
||||
int code = cvtest::TS::OK, tempCode;
|
||||
Mat desc( featuresCount, dims, CV_32FC1 );
|
||||
randu( desc, Scalar(minValue), Scalar(maxValue) );
|
||||
ts->get_rng().fill( desc, RNG::UNIFORM, minValue, maxValue );
|
||||
|
||||
createModel( desc );
|
||||
|
||||
tempCode = checkGetPoins( desc );
|
||||
tempCode = checkGetPoints( desc );
|
||||
if( tempCode != cvtest::TS::OK )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
|
||||
@ -161,7 +161,7 @@ void NearestNeighborTest::run( int /*start_from*/ ) {
|
||||
class CV_FlannTest : public NearestNeighborTest
|
||||
{
|
||||
public:
|
||||
CV_FlannTest() {}
|
||||
CV_FlannTest() : NearestNeighborTest(), index(NULL) { }
|
||||
protected:
|
||||
void createIndex( const Mat& data, const IndexParams& params );
|
||||
int knnSearch( Mat& points, Mat& neighbors );
|
||||
@ -172,6 +172,9 @@ protected:
|
||||
|
||||
void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params )
|
||||
{
|
||||
// release previously allocated index
|
||||
releaseModel();
|
||||
|
||||
index = new Index( data, params );
|
||||
}
|
||||
|
||||
@ -238,7 +241,11 @@ int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
|
||||
|
||||
void CV_FlannTest::releaseModel()
|
||||
{
|
||||
delete index;
|
||||
if (index)
|
||||
{
|
||||
delete index;
|
||||
index = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
//---------------------------------------
|
||||
|
@ -377,6 +377,7 @@ private:
|
||||
// evaluate kdtree for all parameter combinations
|
||||
for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
|
||||
CostData cost;
|
||||
cost.params["algorithm"] = FLANN_INDEX_KDTREE;
|
||||
cost.params["trees"] = testTrees[i];
|
||||
|
||||
evaluate_kdtree(cost);
|
||||
|
@ -441,6 +441,8 @@ public:
|
||||
}
|
||||
|
||||
root_ = pool_.allocate<KMeansNode>();
|
||||
std::memset(root_, 0, sizeof(KMeansNode));
|
||||
|
||||
computeNodeStatistics(root_, indices_, (int)size_);
|
||||
computeClustering(root_, indices_, (int)size_, branching_,0);
|
||||
}
|
||||
@ -864,11 +866,11 @@ private:
|
||||
variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
|
||||
|
||||
node->childs[c] = pool_.allocate<KMeansNode>();
|
||||
std::memset(node->childs[c], 0, sizeof(KMeansNode));
|
||||
node->childs[c]->radius = radiuses[c];
|
||||
node->childs[c]->pivot = centers[c];
|
||||
node->childs[c]->variance = variance;
|
||||
node->childs[c]->mean_radius = mean_radius;
|
||||
node->childs[c]->indices = NULL;
|
||||
computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
|
||||
start=end;
|
||||
}
|
||||
|
@ -2232,6 +2232,7 @@ void cv::polylines(InputOutputArray _img, InputArrayOfArrays pts,
|
||||
Mat p = pts.getMat(manyContours ? i : -1);
|
||||
if( p.total() == 0 )
|
||||
{
|
||||
ptsptr[i] = NULL;
|
||||
npts[i] = 0;
|
||||
continue;
|
||||
}
|
||||
|
@ -184,24 +184,28 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
|
||||
|
||||
/* compute cosine of angle between calipers side and polygon edge */
|
||||
/* dp - dot product */
|
||||
float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y;
|
||||
float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y;
|
||||
float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y;
|
||||
float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y;
|
||||
float dp[4] = {
|
||||
+base_a * vect[seq[0]].x + base_b * vect[seq[0]].y,
|
||||
-base_b * vect[seq[1]].x + base_a * vect[seq[1]].y,
|
||||
-base_a * vect[seq[2]].x - base_b * vect[seq[2]].y,
|
||||
+base_b * vect[seq[3]].x - base_a * vect[seq[3]].y,
|
||||
};
|
||||
|
||||
float cosalpha = dp0 * inv_vect_length[seq[0]];
|
||||
float maxcos = cosalpha;
|
||||
float maxcos = dp[0] * inv_vect_length[seq[0]];
|
||||
|
||||
/* number of calipers edges, that has minimal angle with edge */
|
||||
int main_element = 0;
|
||||
|
||||
/* choose minimal angle */
|
||||
cosalpha = dp1 * inv_vect_length[seq[1]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos;
|
||||
cosalpha = dp2 * inv_vect_length[seq[2]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos;
|
||||
cosalpha = dp3 * inv_vect_length[seq[3]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos;
|
||||
for ( i = 1; i < 4; ++i )
|
||||
{
|
||||
float cosalpha = dp[i] * inv_vect_length[seq[i]];
|
||||
if (cosalpha > maxcos)
|
||||
{
|
||||
main_element = i;
|
||||
maxcos = cosalpha;
|
||||
}
|
||||
}
|
||||
|
||||
/*rotate calipers*/
|
||||
{
|
||||
|
@ -548,7 +548,7 @@ void referenceRGB2YUV(const Mat& rgb, Mat& yuv, RGBreader* rgbReader, YUVwriter*
|
||||
|
||||
struct ConversionYUV
|
||||
{
|
||||
ConversionYUV( const int code )
|
||||
explicit ConversionYUV( const int code )
|
||||
{
|
||||
yuvReader_ = YUVreader :: getReader(code);
|
||||
yuvWriter_ = YUVwriter :: getWriter(code);
|
||||
@ -557,6 +557,24 @@ struct ConversionYUV
|
||||
grayWriter_ = GRAYwriter:: getWriter(code);
|
||||
}
|
||||
|
||||
~ConversionYUV()
|
||||
{
|
||||
if (yuvReader_)
|
||||
delete yuvReader_;
|
||||
|
||||
if (yuvWriter_)
|
||||
delete yuvWriter_;
|
||||
|
||||
if (rgbReader_)
|
||||
delete rgbReader_;
|
||||
|
||||
if (rgbWriter_)
|
||||
delete rgbWriter_;
|
||||
|
||||
if (grayWriter_)
|
||||
delete grayWriter_;
|
||||
}
|
||||
|
||||
int getDcn()
|
||||
{
|
||||
return (rgbWriter_ != 0) ? rgbWriter_->channels() : ((grayWriter_ != 0) ? grayWriter_->channels() : yuvWriter_->channels());
|
||||
|
@ -508,6 +508,8 @@ _exit_:
|
||||
comp[7] = new_val.val[2];
|
||||
#endif
|
||||
comp[8] = 0;
|
||||
|
||||
cvReleaseMemStorage(&st);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1377,12 +1377,17 @@ TEST(Imgproc_cvWarpAffine, regression)
|
||||
IplImage* src = cvCreateImage(cvSize(100, 100), IPL_DEPTH_8U, 1);
|
||||
IplImage* dst = cvCreateImage(cvSize(100, 100), IPL_DEPTH_8U, 1);
|
||||
|
||||
cvZero(src);
|
||||
|
||||
float m[6];
|
||||
CvMat M = cvMat( 2, 3, CV_32F, m );
|
||||
int w = src->width;
|
||||
int h = src->height;
|
||||
cv2DRotationMatrix(cvPoint2D32f(w*0.5f, h*0.5f), 45.0, 1.0, &M);
|
||||
cvWarpAffine(src, dst, &M);
|
||||
|
||||
cvReleaseImage(&src);
|
||||
cvReleaseImage(&dst);
|
||||
}
|
||||
|
||||
TEST(Imgproc_fitLine_vector_3d, regression)
|
||||
|
@ -651,8 +651,7 @@ private:
|
||||
};
|
||||
|
||||
CV_Remap_Test::CV_Remap_Test() :
|
||||
CV_ImageWarpBaseTest(), mapx(), mapy(),
|
||||
borderType(-1), borderValue()
|
||||
CV_ImageWarpBaseTest(), borderType(-1)
|
||||
{
|
||||
funcs[0] = &CV_Remap_Test::remap_nearest;
|
||||
funcs[1] = &CV_Remap_Test::remap_generic;
|
||||
@ -673,7 +672,7 @@ void CV_Remap_Test::generate_test_data()
|
||||
// generating the mapx, mapy matrices
|
||||
static const int mapx_types[] = { CV_16SC2, CV_32FC1, CV_32FC2 };
|
||||
mapx.create(dst.size(), mapx_types[rng.uniform(0, sizeof(mapx_types) / sizeof(int))]);
|
||||
mapy = Mat();
|
||||
mapy.release();
|
||||
|
||||
const int n = std::min(std::min(src.cols, src.rows) / 10 + 1, 2);
|
||||
float _n = 0; //static_cast<float>(-n);
|
||||
@ -700,7 +699,7 @@ void CV_Remap_Test::generate_test_data()
|
||||
{
|
||||
MatIterator_<ushort> begin_y = mapy.begin<ushort>(), end_y = mapy.end<ushort>();
|
||||
for ( ; begin_y != end_y; ++begin_y)
|
||||
begin_y[0] = static_cast<short>(rng.uniform(0, 1024));
|
||||
*begin_y = static_cast<ushort>(rng.uniform(0, 1024));
|
||||
}
|
||||
break;
|
||||
|
||||
@ -708,7 +707,7 @@ void CV_Remap_Test::generate_test_data()
|
||||
{
|
||||
MatIterator_<short> begin_y = mapy.begin<short>(), end_y = mapy.end<short>();
|
||||
for ( ; begin_y != end_y; ++begin_y)
|
||||
begin_y[0] = static_cast<short>(rng.uniform(0, 1024));
|
||||
*begin_y = static_cast<short>(rng.uniform(0, 1024));
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -725,8 +724,8 @@ void CV_Remap_Test::generate_test_data()
|
||||
MatIterator_<float> begin_y = mapy.begin<float>();
|
||||
for ( ; begin_x != end_x; ++begin_x, ++begin_y)
|
||||
{
|
||||
begin_x[0] = rng.uniform(_n, fscols);
|
||||
begin_y[0] = rng.uniform(_n, fsrows);
|
||||
*begin_x = rng.uniform(_n, fscols);
|
||||
*begin_y = rng.uniform(_n, fsrows);
|
||||
}
|
||||
}
|
||||
break;
|
||||
@ -794,23 +793,6 @@ void CV_Remap_Test::prepare_test_data_for_reference_func()
|
||||
{
|
||||
CV_ImageWarpBaseTest::prepare_test_data_for_reference_func();
|
||||
convert_maps();
|
||||
/*
|
||||
const int ksize = 3;
|
||||
Mat kernel = getStructuringElement(CV_MOP_ERODE, Size(ksize, ksize));
|
||||
Mat mask(src.size(), CV_8UC1, Scalar::all(255)), dst_mask;
|
||||
cv::erode(src, erode_src, kernel);
|
||||
cv::erode(mask, dst_mask, kernel, Point(-1, -1), 1, BORDER_CONSTANT, Scalar::all(0));
|
||||
bitwise_not(dst_mask, mask);
|
||||
src.copyTo(erode_src, mask);
|
||||
dst_mask.release();
|
||||
|
||||
mask = Scalar::all(0);
|
||||
kernel = getStructuringElement(CV_MOP_DILATE, kernel.size());
|
||||
cv::dilate(src, dilate_src, kernel);
|
||||
cv::dilate(mask, dst_mask, kernel, Point(-1, -1), 1, BORDER_CONSTANT, Scalar::all(255));
|
||||
src.copyTo(dilate_src, dst_mask);
|
||||
dst_mask.release();
|
||||
*/
|
||||
}
|
||||
|
||||
void CV_Remap_Test::run_reference_func()
|
||||
|
@ -243,7 +243,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
|
||||
for (int i=1; i<n; ++i)
|
||||
{
|
||||
int k = 0;
|
||||
while ((int(orig_response->data.fl[i]) - class_labels->data.i[k]) && (k<j))
|
||||
while ((k<j) && (int(orig_response->data.fl[i]) - class_labels->data.i[k]))
|
||||
k++;
|
||||
if (k == j)
|
||||
{
|
||||
@ -1274,13 +1274,18 @@ CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp )
|
||||
return -FLT_MAX;
|
||||
|
||||
float* pred_resp = 0;
|
||||
bool needsFreeing = false;
|
||||
|
||||
if (resp)
|
||||
{
|
||||
resp->resize(n);
|
||||
pred_resp = &((*resp)[0]);
|
||||
}
|
||||
else
|
||||
{
|
||||
pred_resp = new float[n];
|
||||
needsFreeing = true;
|
||||
}
|
||||
|
||||
Sample_predictor predictor = Sample_predictor(this, pred_resp, _data->get_values(),
|
||||
_data->get_missing(), _sample_idx);
|
||||
@ -1313,6 +1318,9 @@ CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp )
|
||||
err = err / (float)n;
|
||||
}
|
||||
|
||||
if (needsFreeing)
|
||||
delete[]pred_resp;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user