mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Cleanup core module API
* Drop some low level API * Remove outdated overloads * Utilize Input/OutputArray
This commit is contained in:
parent
f4ae0cf19c
commit
b0e6606b98
@ -109,15 +109,6 @@ public:
|
||||
CV_EXPORTS void error( const Exception& exc );
|
||||
|
||||
|
||||
typedef void (*BinaryFunc)(const uchar* src1, size_t step1,
|
||||
const uchar* src2, size_t step2,
|
||||
uchar* dst, size_t step, Size sz,
|
||||
void*);
|
||||
|
||||
CV_EXPORTS BinaryFunc getConvertFunc(int sdepth, int ddepth);
|
||||
CV_EXPORTS BinaryFunc getConvertScaleFunc(int sdepth, int ddepth);
|
||||
CV_EXPORTS BinaryFunc getCopyMaskFunc(size_t esz);
|
||||
|
||||
//! swaps two matrices
|
||||
CV_EXPORTS void swap(Mat& a, Mat& b);
|
||||
|
||||
@ -153,8 +144,7 @@ CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
|
||||
double alpha = 1, double beta = 0);
|
||||
|
||||
//! transforms array of numbers using a lookup table: dst(i)=lut(src(i))
|
||||
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst,
|
||||
int interpolation = 0);
|
||||
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
|
||||
|
||||
//! computes sum of array elements
|
||||
CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
|
||||
@ -227,11 +217,11 @@ CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
|
||||
CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
|
||||
const int* fromTo, size_t npairs);
|
||||
|
||||
CV_EXPORTS void mixChannels(const std::vector<Mat>& src, std::vector<Mat>& dst,
|
||||
const int* fromTo, size_t npairs); //TODO: use arrays
|
||||
CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
||||
const int* fromTo, size_t npairs);
|
||||
|
||||
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputArrayOfArrays dst,
|
||||
const std::vector<int>& fromTo); //TODO: InputOutputArrayOfArrays
|
||||
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
||||
const std::vector<int>& fromTo);
|
||||
|
||||
//! extracts a single channel from src (coi is 0-based index)
|
||||
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
|
||||
@ -291,15 +281,12 @@ CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
|
||||
//! computes per-element maximum of two arrays (dst = max(src1, src2))
|
||||
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
|
||||
|
||||
//TODO: can we drop these versions?
|
||||
// the following overloads are needed to avoid conflicts with
|
||||
// const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
|
||||
//! computes per-element minimum of two arrays (dst = min(src1, src2))
|
||||
CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
|
||||
//! computes per-element minimum of array and scalar (dst = min(src1, src2))
|
||||
CV_EXPORTS void min(const Mat& src1, double src2, Mat& dst);
|
||||
//! computes per-element maximum of two arrays (dst = max(src1, src2))
|
||||
CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
|
||||
//! computes per-element maximum of array and scalar (dst = max(src1, src2))
|
||||
CV_EXPORTS void max(const Mat& src1, double src2, Mat& dst);
|
||||
|
||||
//! computes square root of each matrix element (dst = src**0.5)
|
||||
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
|
||||
@ -393,17 +380,9 @@ CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
|
||||
//! finds real and complex roots of a polynomial
|
||||
CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
|
||||
|
||||
//! finds eigenvalues of a symmetric matrix
|
||||
CV_EXPORTS bool eigen(InputArray src, OutputArray eigenvalues, int lowindex = -1,
|
||||
int highindex = -1);
|
||||
|
||||
//! finds eigenvalues and eigenvectors of a symmetric matrix
|
||||
CV_EXPORTS bool eigen(InputArray src, OutputArray eigenvalues,
|
||||
OutputArray eigenvectors,
|
||||
int lowindex = -1, int highindex = -1);
|
||||
|
||||
CV_EXPORTS_W bool eigen(InputArray src, bool computeEigenvectors,
|
||||
OutputArray eigenvalues, OutputArray eigenvectors);
|
||||
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
|
||||
OutputArray eigenvectors = noArray());
|
||||
|
||||
enum
|
||||
{
|
||||
@ -417,10 +396,10 @@ enum
|
||||
|
||||
//! computes covariation matrix of a set of samples
|
||||
CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
|
||||
int flags, int ctype = CV_64F); //TODO: output arrays or drop
|
||||
int flags, int ctype = CV_64F); //TODO: InputArrayOfArrays
|
||||
|
||||
//! computes covariation matrix of a set of samples
|
||||
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar, //TODO: InputArrayOfArrays
|
||||
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
|
||||
OutputArray mean, int flags, int ctype = CV_64F);
|
||||
|
||||
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
|
||||
@ -445,9 +424,6 @@ CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
|
||||
//! computes Mahalanobis distance between two vectors: sqrt((v1-v2)'*icovar*(v1-v2)), where icovar is the inverse covariation matrix
|
||||
CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
|
||||
|
||||
//! a synonym for Mahalanobis
|
||||
CV_EXPORTS double Mahalonobis(InputArray v1, InputArray v2, InputArray icovar); //TODO: check if we can drop it or move to legacy
|
||||
|
||||
//! performs forward or inverse 1D or 2D Discrete Fourier Transformation
|
||||
CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
|
||||
|
||||
@ -492,9 +468,7 @@ CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
|
||||
CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
|
||||
|
||||
//! shuffles the input array elements
|
||||
CV_EXPORTS void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
|
||||
|
||||
CV_EXPORTS_AS(randShuffle) void randShuffle_(InputOutputArray dst, double iterFactor = 1.);
|
||||
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
|
||||
|
||||
enum { FILLED = -1,
|
||||
LINE_4 = 4,
|
||||
@ -601,17 +575,6 @@ CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
|
||||
double fontScale, int thickness,
|
||||
CV_OUT int* baseLine);
|
||||
|
||||
typedef void (*ConvertData)(const void* from, void* to, int cn);
|
||||
typedef void (*ConvertScaleData)(const void* from, void* to, int cn, double alpha, double beta);
|
||||
|
||||
//! returns the function for converting pixels from one data type to another
|
||||
CV_EXPORTS ConvertData getConvertElem(int fromType, int toType);
|
||||
|
||||
//! returns the function for converting pixels from one data type to another with the optional scaling
|
||||
CV_EXPORTS ConvertScaleData getConvertScaleElem(int fromType, int toType);
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
Principal Component Analysis
|
||||
|
||||
|
@ -1197,17 +1197,6 @@ void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
|
||||
binary_op(src1, src2, _dst, noArray(), minTab, false );
|
||||
}
|
||||
|
||||
void cv::max(const Mat& src1, double src2, Mat& dst)
|
||||
{
|
||||
OutputArray _dst(dst);
|
||||
binary_op(src1, src2, _dst, noArray(), maxTab, false );
|
||||
}
|
||||
|
||||
void cv::min(const Mat& src1, double src2, Mat& dst)
|
||||
{
|
||||
OutputArray _dst(dst);
|
||||
binary_op(src1, src2, _dst, noArray(), minTab, false );
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* add/subtract *
|
||||
|
@ -505,14 +505,30 @@ void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, cons
|
||||
}
|
||||
|
||||
|
||||
void cv::mixChannels(const std::vector<Mat>& src, std::vector<Mat>& dst,
|
||||
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
||||
const int* fromTo, size_t npairs)
|
||||
{
|
||||
mixChannels(!src.empty() ? &src[0] : 0, src.size(),
|
||||
!dst.empty() ? &dst[0] : 0, dst.size(), fromTo, npairs);
|
||||
if(npairs == 0)
|
||||
return;
|
||||
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT &&
|
||||
src.kind() != _InputArray::STD_VECTOR_VECTOR;
|
||||
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT &&
|
||||
dst.kind() != _InputArray::STD_VECTOR_VECTOR;
|
||||
int i;
|
||||
int nsrc = src_is_mat ? 1 : (int)src.total();
|
||||
int ndst = dst_is_mat ? 1 : (int)dst.total();
|
||||
|
||||
CV_Assert(nsrc > 0 && ndst > 0);
|
||||
cv::AutoBuffer<Mat> _buf(nsrc + ndst);
|
||||
Mat* buf = _buf;
|
||||
for( i = 0; i < nsrc; i++ )
|
||||
buf[i] = src.getMat(src_is_mat ? -1 : i);
|
||||
for( i = 0; i < ndst; i++ )
|
||||
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i);
|
||||
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs);
|
||||
}
|
||||
|
||||
void cv::mixChannels(InputArrayOfArrays src, InputArrayOfArrays dst,
|
||||
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
||||
const std::vector<int>& fromTo)
|
||||
{
|
||||
if(fromTo.empty())
|
||||
@ -1027,7 +1043,7 @@ BinaryFunc getConvertFunc(int sdepth, int ddepth)
|
||||
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
|
||||
}
|
||||
|
||||
BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
|
||||
static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
|
||||
{
|
||||
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
|
||||
}
|
||||
@ -1173,10 +1189,9 @@ static LUTFunc lutTab[] =
|
||||
|
||||
}
|
||||
|
||||
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst, int interpolation )
|
||||
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst )
|
||||
{
|
||||
Mat src = _src.getMat(), lut = _lut.getMat();
|
||||
CV_Assert( interpolation == 0 );
|
||||
int cn = src.channels();
|
||||
int lutcn = lut.channels();
|
||||
|
||||
|
@ -1464,7 +1464,7 @@ bool cv::solve( InputArray _src, InputArray _src2arg, OutputArray _dst, int meth
|
||||
|
||||
/////////////////// finding eigenvalues and eigenvectors of a symmetric matrix ///////////////
|
||||
|
||||
bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputArray _evects )
|
||||
bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
int type = src.type();
|
||||
@ -1474,7 +1474,7 @@ bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputA
|
||||
CV_Assert (type == CV_32F || type == CV_64F);
|
||||
|
||||
Mat v;
|
||||
if( computeEvects )
|
||||
if( _evects.needed() )
|
||||
{
|
||||
_evects.create(n, n, type);
|
||||
v = _evects.getMat();
|
||||
@ -1494,16 +1494,6 @@ bool cv::eigen( InputArray _src, bool computeEvects, OutputArray _evals, OutputA
|
||||
return ok;
|
||||
}
|
||||
|
||||
bool cv::eigen( InputArray src, OutputArray evals, int, int )
|
||||
{
|
||||
return eigen(src, false, evals, noArray());
|
||||
}
|
||||
|
||||
bool cv::eigen( InputArray src, OutputArray evals, OutputArray evects, int, int)
|
||||
{
|
||||
return eigen(src, true, evals, evects);
|
||||
}
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
@ -1705,13 +1695,13 @@ cvSolve( const CvArr* Aarr, const CvArr* barr, CvArr* xarr, int method )
|
||||
|
||||
CV_IMPL void
|
||||
cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
|
||||
int lowindex, int highindex)
|
||||
int, int )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), evals0 = cv::cvarrToMat(evalsarr), evals = evals0;
|
||||
if( evectsarr )
|
||||
{
|
||||
cv::Mat evects0 = cv::cvarrToMat(evectsarr), evects = evects0;
|
||||
eigen(src, evals, evects, lowindex, highindex);
|
||||
eigen(src, evals, evects);
|
||||
if( evects0.data != evects.data )
|
||||
{
|
||||
uchar* p = evects0.data;
|
||||
@ -1720,7 +1710,7 @@ cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
|
||||
}
|
||||
}
|
||||
else
|
||||
eigen(src, evals, lowindex, highindex);
|
||||
eigen(src, evals);
|
||||
if( evals0.data != evals.data )
|
||||
{
|
||||
uchar* p = evals0.data;
|
||||
|
@ -2308,11 +2308,6 @@ double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar )
|
||||
return std::sqrt(result);
|
||||
}
|
||||
|
||||
double cv::Mahalonobis( InputArray _v1, InputArray _v2, InputArray _icovar )
|
||||
{
|
||||
return Mahalanobis(_v1, _v2, _icovar);
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* MulTransposed *
|
||||
\****************************************************************************************/
|
||||
|
@ -3448,7 +3448,10 @@ convertScaleData_(const void* _from, void* _to, int cn, double alpha, double bet
|
||||
to[i] = saturate_cast<T2>(from[i]*alpha + beta);
|
||||
}
|
||||
|
||||
ConvertData getConvertElem(int fromType, int toType)
|
||||
typedef void (*ConvertData)(const void* from, void* to, int cn);
|
||||
typedef void (*ConvertScaleData)(const void* from, void* to, int cn, double alpha, double beta);
|
||||
|
||||
static ConvertData getConvertElem(int fromType, int toType)
|
||||
{
|
||||
static ConvertData tab[][8] =
|
||||
{{ convertData_<uchar, uchar>, convertData_<uchar, schar>,
|
||||
@ -3493,7 +3496,7 @@ ConvertData getConvertElem(int fromType, int toType)
|
||||
return func;
|
||||
}
|
||||
|
||||
ConvertScaleData getConvertScaleElem(int fromType, int toType)
|
||||
static ConvertScaleData getConvertScaleElem(int fromType, int toType)
|
||||
{
|
||||
static ConvertScaleData tab[][8] =
|
||||
{{ convertScaleData_<uchar, uchar>, convertScaleData_<uchar, schar>,
|
||||
|
@ -69,6 +69,14 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
typedef void (*BinaryFunc)(const uchar* src1, size_t step1,
|
||||
const uchar* src2, size_t step2,
|
||||
uchar* dst, size_t step, Size sz,
|
||||
void*);
|
||||
|
||||
BinaryFunc getConvertFunc(int sdepth, int ddepth);
|
||||
BinaryFunc getCopyMaskFunc(size_t esz);
|
||||
|
||||
/* default memory block for sparse array elements */
|
||||
#define CV_SPARSE_MAT_BLOCK (1<<12)
|
||||
|
||||
|
@ -861,11 +861,6 @@ void cv::randShuffle( InputOutputArray _dst, double iterFactor, RNG* _rng )
|
||||
func( dst, rng, iterFactor );
|
||||
}
|
||||
|
||||
void cv::randShuffle_( InputOutputArray _dst, double iterFactor )
|
||||
{
|
||||
randShuffle(_dst, iterFactor);
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvRandArr( CvRNG* _rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 )
|
||||
{
|
||||
|
@ -294,7 +294,7 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src)
|
||||
|
||||
cv::Mat eigen_values, eigen_vectors;
|
||||
|
||||
cv::eigen(src, true, eigen_values, eigen_vectors);
|
||||
cv::eigen(src, eigen_values, eigen_vectors);
|
||||
|
||||
if (!check_pair_count(src, eigen_values, eigen_vectors)) return false;
|
||||
|
||||
@ -362,8 +362,8 @@ bool Core_EigenTest::test_values(const cv::Mat& src)
|
||||
|
||||
if (!test_pairs(src)) return false;
|
||||
|
||||
cv::eigen(src, true, eigen_values_1, eigen_vectors);
|
||||
cv::eigen(src, false, eigen_values_2, eigen_vectors);
|
||||
cv::eigen(src, eigen_values_1, eigen_vectors);
|
||||
cv::eigen(src, eigen_values_2);
|
||||
|
||||
if (!check_pair_count(src, eigen_values_2)) return false;
|
||||
|
||||
|
@ -460,7 +460,7 @@ public class CoreTest extends OpenCVTestCase {
|
||||
Mat eigenVals = new Mat();
|
||||
Mat eigenVecs = new Mat();
|
||||
|
||||
Core.eigen(src, true, eigenVals, eigenVecs);
|
||||
Core.eigen(src, eigenVals, eigenVecs);
|
||||
|
||||
Mat expectedEigenVals = new Mat(3, 1, CvType.CV_32FC1) {
|
||||
{
|
||||
@ -1113,18 +1113,6 @@ public class CoreTest extends OpenCVTestCase {
|
||||
assertMatEqual(gray255, dst);
|
||||
}
|
||||
|
||||
public void testLUTMatMatMatInt() {
|
||||
Mat lut = new Mat(1, 256, CvType.CV_8UC1);
|
||||
// TODO: ban this overload
|
||||
try
|
||||
{
|
||||
Core.LUT(grayRnd, lut, dst, 1);
|
||||
fail("Last parameter for LUT was not supported");
|
||||
} catch (CvException e) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
public void testMagnitude() {
|
||||
Mat x = new Mat(1, 4, CvType.CV_32F);
|
||||
Mat y = new Mat(1, 4, CvType.CV_32F);
|
||||
|
@ -996,6 +996,11 @@ extern "C" {
|
||||
return
|
||||
for a in fi.args:
|
||||
if a.ctype not in type_dict:
|
||||
if not a.defval and a.ctype.endswith("*"):
|
||||
a.defval = 0
|
||||
if a.defval:
|
||||
a.ctype = ''
|
||||
continue
|
||||
msg = "// Unknown type '%s' (%s), skipping the function\n\n" % (a.ctype, a.out or "I")
|
||||
self.skipped_func_list.append(c_decl + "\n" + msg)
|
||||
j_code.write( " "*4 + msg )
|
||||
|
@ -3,6 +3,8 @@
|
||||
import hdr_parser, sys, re, os, cStringIO
|
||||
from string import Template
|
||||
|
||||
ignored_arg_types = ["RNG*"]
|
||||
|
||||
gen_template_check_self = Template(""" if(!PyObject_TypeCheck(self, &pyopencv_${name}_Type))
|
||||
return failmsgp("Incorrect type of self (must be '${name}' or its derivative)");
|
||||
$cname* _self_ = ${amp}((pyopencv_${name}_t*)self)->v;
|
||||
@ -426,6 +428,8 @@ class FuncVariant(object):
|
||||
argno += 1
|
||||
if a.name in self.array_counters:
|
||||
continue
|
||||
if a.tp in ignored_arg_types:
|
||||
continue
|
||||
if a.returnarg:
|
||||
outlist.append((a.name, argno))
|
||||
if (not a.inputarg) and a.isbig():
|
||||
@ -586,6 +590,16 @@ class FuncInfo(object):
|
||||
# form the function/method call,
|
||||
# for the list of type mappings
|
||||
for a in v.args:
|
||||
if a.tp in ignored_arg_types:
|
||||
defval = a.defval
|
||||
if not defval and a.tp.endswith("*"):
|
||||
defval = 0
|
||||
assert defval
|
||||
if not code_fcall.endswith("("):
|
||||
code_fcall += ", "
|
||||
code_fcall += defval
|
||||
all_cargs.append([[None, ""], ""])
|
||||
continue
|
||||
tp1 = tp = a.tp
|
||||
amp = ""
|
||||
defval0 = ""
|
||||
|
@ -486,8 +486,6 @@ public:
|
||||
tau = _tau;
|
||||
detectShadows = _detectShadows;
|
||||
shadowVal = _shadowVal;
|
||||
|
||||
cvtfunc = src->depth() != CV_32F ? getConvertFunc(src->depth(), CV_32F) : 0;
|
||||
}
|
||||
|
||||
void operator()(const Range& range) const
|
||||
@ -501,8 +499,8 @@ public:
|
||||
for( int y = y0; y < y1; y++ )
|
||||
{
|
||||
const float* data = buf;
|
||||
if( cvtfunc )
|
||||
cvtfunc( src->ptr(y), src->step, 0, 0, (uchar*)data, 0, Size(ncols*nchannels, 1), 0);
|
||||
if( src->depth() != CV_32F )
|
||||
src->row(y).convertTo(Mat(1, ncols, CV_32FC(nchannels), (void*)data), CV_32F);
|
||||
else
|
||||
data = src->ptr<float>(y);
|
||||
|
||||
@ -685,8 +683,6 @@ public:
|
||||
|
||||
bool detectShadows;
|
||||
uchar shadowVal;
|
||||
|
||||
BinaryFunc cvtfunc;
|
||||
};
|
||||
|
||||
void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
||||
|
Loading…
Reference in New Issue
Block a user