mirror of
https://github.com/opencv/opencv.git
synced 2025-06-08 01:53:19 +08:00
fix 3.4 links
This commit is contained in:
parent
54c180092d
commit
b1a57c4cb2
@ -116,7 +116,7 @@ swapRB = false;
|
||||
needSoftmax = false;
|
||||
|
||||
// url for label file, can from local or Internet
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt";
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt";
|
||||
</script>
|
||||
|
||||
<script id="codeSnippet1" type="text/code-snippet">
|
||||
|
@ -6,7 +6,7 @@
|
||||
"std": "1",
|
||||
"swapRB": "false",
|
||||
"needSoftmax": "false",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"modelUrl": "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel",
|
||||
"configUrl": "https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt"
|
||||
},
|
||||
@ -16,7 +16,7 @@
|
||||
"std": "0.007843",
|
||||
"swapRB": "false",
|
||||
"needSoftmax": "true",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"modelUrl": "https://drive.google.com/open?id=0B7ubpZO7HnlCcHlfNmJkU2VPelE",
|
||||
"configUrl": "https://raw.githubusercontent.com/shicai/DenseNet-Caffe/master/DenseNet_121.prototxt"
|
||||
},
|
||||
@ -26,7 +26,7 @@
|
||||
"std": "1",
|
||||
"swapRB": "false",
|
||||
"needSoftmax": "false",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"modelUrl": "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel",
|
||||
"configUrl": "https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_googlenet/deploy.prototxt"
|
||||
},
|
||||
@ -36,7 +36,7 @@
|
||||
"std": "1",
|
||||
"swapRB": "false",
|
||||
"needSoftmax": "false",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"modelUrl": "https://raw.githubusercontent.com/forresti/SqueezeNet/master/SqueezeNet_v1.0/squeezenet_v1.0.caffemodel",
|
||||
"configUrl": "https://raw.githubusercontent.com/forresti/SqueezeNet/master/SqueezeNet_v1.0/deploy.prototxt"
|
||||
},
|
||||
@ -46,7 +46,7 @@
|
||||
"std": "1",
|
||||
"swapRB": "false",
|
||||
"needSoftmax": "false",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt",
|
||||
"modelUrl": "http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel",
|
||||
"configUrl": "https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt"
|
||||
}
|
||||
|
@ -116,7 +116,7 @@ swapRB = false;
|
||||
needSoftmax = false;
|
||||
|
||||
// url for label file, can from local or Internet
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt";
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/classification_classes_ILSVRC2012.txt";
|
||||
</script>
|
||||
|
||||
<script id="codeSnippet1" type="text/code-snippet">
|
||||
|
@ -94,7 +94,7 @@ nmsThreshold = 0.4;
|
||||
outType = "SSD";
|
||||
|
||||
// url for label file, can from local or Internet
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt";
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/object_detection_classes_pascal_voc.txt";
|
||||
</script>
|
||||
|
||||
<script id="codeSnippet1" type="text/code-snippet">
|
||||
|
@ -7,7 +7,7 @@
|
||||
"std": "0.007843",
|
||||
"swapRB": "false",
|
||||
"outType": "SSD",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/object_detection_classes_pascal_voc.txt",
|
||||
"modelUrl": "https://raw.githubusercontent.com/chuanqi305/MobileNet-SSD/master/mobilenet_iter_73000.caffemodel",
|
||||
"configUrl": "https://raw.githubusercontent.com/chuanqi305/MobileNet-SSD/master/deploy.prototxt"
|
||||
},
|
||||
@ -18,7 +18,7 @@
|
||||
"std": "1",
|
||||
"swapRB": "false",
|
||||
"outType": "SSD",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/object_detection_classes_pascal_voc.txt",
|
||||
"modelUrl": "https://drive.google.com/uc?id=0BzKzrI_SkD1_WVVTSmQxU0dVRzA&export=download",
|
||||
"configUrl": "https://drive.google.com/uc?id=0BzKzrI_SkD1_WVVTSmQxU0dVRzA&export=download"
|
||||
}
|
||||
@ -31,7 +31,7 @@
|
||||
"std": "0.00392",
|
||||
"swapRB": "false",
|
||||
"outType": "YOLO",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_yolov3.txt",
|
||||
"labelsUrl": "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/object_detection_classes_yolov3.txt",
|
||||
"modelUrl": "https://pjreddie.com/media/files/yolov2-tiny.weights",
|
||||
"configUrl": "https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg"
|
||||
}
|
||||
|
@ -94,7 +94,7 @@ nmsThreshold = 0.4;
|
||||
outType = "SSD";
|
||||
|
||||
// url for label file, can from local or Internet
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt";
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/3.4/samples/data/dnn/object_detection_classes_pascal_voc.txt";
|
||||
</script>
|
||||
|
||||
<script id="codeSnippet1" type="text/code-snippet">
|
||||
|
@ -333,7 +333,7 @@ function installDOM(){
|
||||
### Execute it ###
|
||||
|
||||
- Save the file as `exampleNodeCanvasData.js`.
|
||||
- Make sure the files `aarcascade_frontalface_default.xml` and `haarcascade_eye.xml` are present in project's directory. They can be obtained from [OpenCV sources](https://github.com/opencv/opencv/tree/master/data/haarcascades).
|
||||
- Make sure the files `aarcascade_frontalface_default.xml` and `haarcascade_eye.xml` are present in project's directory. They can be obtained from [OpenCV sources](https://github.com/opencv/opencv/tree/3.4/data/haarcascades).
|
||||
- Make sure a sample image file `lena.jpg` exists in project's directory. It should display people's faces for this example to make sense. The following image is known to work:
|
||||
|
||||

|
||||
|
@ -4,7 +4,9 @@ Using OpenCV.js {#tutorial_js_usage}
|
||||
Steps
|
||||
-----
|
||||
|
||||
In this tutorial, you will learn how to include and start to use `opencv.js` inside a web page. You can get a copy of `opencv.js` from `opencv-{VERSION_NUMBER}-docs.zip` in each [release](https://github.com/opencv/opencv/releases), or simply download the prebuilt script from the online documentations at "https://docs.opencv.org/{VERSION_NUMBER}/opencv.js" (For example, [https://docs.opencv.org/3.4.0/opencv.js](https://docs.opencv.org/3.4.0/opencv.js). Use `master` if you want the latest build). You can also build your own copy by following the tutorial on Build Opencv.js.
|
||||
In this tutorial, you will learn how to include and start to use `opencv.js` inside a web page.
|
||||
You can get a copy of `opencv.js` from `opencv-{VERSION_NUMBER}-docs.zip` in each [release](https://github.com/opencv/opencv/releases), or simply download the prebuilt script from the online documentations at "https://docs.opencv.org/{VERSION_NUMBER}/opencv.js" (For example, [https://docs.opencv.org/3.4.0/opencv.js](https://docs.opencv.org/3.4.0/opencv.js). Use `3.4` if you want the latest build).
|
||||
You can also build your own copy by following the tutorial @ref tutorial_js_setup.
|
||||
|
||||
### Create a web page
|
||||
|
||||
|
@ -95,7 +95,7 @@ QR faster than SVD, but potentially less precise
|
||||
- *camera_resolution*: resolution of camera which is used for calibration
|
||||
|
||||
**Note:** *charuco_dict*, *charuco_square_length* and *charuco_marker_size* are used for chAruco pattern generation
|
||||
(see Aruco module description for details: [Aruco tutorials](https://github.com/opencv/opencv_contrib/tree/master/modules/aruco/tutorials))
|
||||
(see Aruco module description for details: [Aruco tutorials](https://github.com/opencv/opencv_contrib/tree/3.4/modules/aruco/tutorials))
|
||||
|
||||
Default chAruco pattern:
|
||||
|
||||
|
@ -23,7 +23,7 @@ Explanation
|
||||
-----------
|
||||
|
||||
-# Firstly, download GoogLeNet model files:
|
||||
[bvlc_googlenet.prototxt ](https://github.com/opencv/opencv_extra/blob/master/testdata/dnn/bvlc_googlenet.prototxt) and
|
||||
[bvlc_googlenet.prototxt](https://github.com/opencv/opencv_extra/blob/3.4/testdata/dnn/bvlc_googlenet.prototxt) and
|
||||
[bvlc_googlenet.caffemodel](http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel)
|
||||
|
||||
Also you need file with names of [ILSVRC2012](http://image-net.org/challenges/LSVRC/2012/browse-synsets) classes:
|
||||
|
@ -38,7 +38,7 @@ correspondingly. In example, for variable `x` in range `[0, 10)` directive
|
||||
`split: { x: 2 }` gives new ones `xo` in range `[0, 5)` and `xi` in range `[0, 2)`.
|
||||
Variable name `x` is no longer available in the same scheduling node.
|
||||
|
||||
You can find scheduling examples at [opencv_extra/testdata/dnn](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn)
|
||||
You can find scheduling examples at [opencv_extra/testdata/dnn](https://github.com/opencv/opencv_extra/tree/3.4/testdata/dnn)
|
||||
and use it for schedule your networks.
|
||||
|
||||
## Layers fusing
|
||||
|
@ -273,7 +273,7 @@ Results
|
||||
|
||||
Compile the code above and execute it (or run the script if using python) with an image as argument.
|
||||
If you do not provide an image as argument the default sample image
|
||||
([LinuxLogo.jpg](https://github.com/opencv/opencv/tree/master/samples/data/LinuxLogo.jpg)) will be used.
|
||||
([LinuxLogo.jpg](https://github.com/opencv/opencv/tree/3.4/samples/data/LinuxLogo.jpg)) will be used.
|
||||
|
||||
For instance, using this image:
|
||||
|
||||
|
@ -23,7 +23,7 @@ Code
|
||||
to populate our image with a big number of geometric figures. Since we will be initializing them
|
||||
in a random fashion, this process will be automatic and made by using *loops* .
|
||||
- This code is in your OpenCV sample folder. Otherwise you can grab it from
|
||||
[here](http://code.opencv.org/projects/opencv/repository/revisions/master/raw/samples/cpp/tutorial_code/core/Matrix/Drawing_2.cpp)
|
||||
[here](https://github.com/opencv/opencv/blob/3.4/samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp)
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
@ -18,7 +18,7 @@ parser = argparse.ArgumentParser(description="Use this script to create TensorFl
|
||||
"with weights from OpenCV's face detection network. "
|
||||
"Only backbone part of SSD model is converted this way. "
|
||||
"Look for .pbtxt configuration file at "
|
||||
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/opencv_face_detector.pbtxt")
|
||||
"https://github.com/opencv/opencv_extra/tree/3.4/testdata/dnn/opencv_face_detector.pbtxt")
|
||||
parser.add_argument('--model', help='Path to .caffemodel weights', required=True)
|
||||
parser.add_argument('--proto', help='Path to .prototxt Caffe model definition', required=True)
|
||||
parser.add_argument('--pb', help='Path to output .pb TensorFlow model', required=True)
|
||||
|
@ -58,7 +58,7 @@ if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
|
||||
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, download it here:"
|
||||
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/img_classes_inception.txt")
|
||||
"https://github.com/opencv/opencv_extra/tree/3.4/testdata/dnn/img_classes_inception.txt")
|
||||
parser.add_argument("--model", help="path to tensorflow model, download it here:"
|
||||
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip")
|
||||
parser.add_argument("--log", help="path to logging file")
|
||||
|
@ -24,7 +24,7 @@ class NewOpenCVTests(unittest.TestCase):
|
||||
repoPath = None
|
||||
extraTestDataPath = None
|
||||
# github repository url
|
||||
repoUrl = 'https://raw.github.com/opencv/opencv/master'
|
||||
repoUrl = 'https://raw.github.com/opencv/opencv/3.4'
|
||||
|
||||
def find_file(self, filename, searchPaths=[], required=True):
|
||||
searchPaths = searchPaths if searchPaths else [self.repoPath, self.extraTestDataPath]
|
||||
|
@ -1,3 +1,3 @@
|
||||
This folder contains toolchains and additional files that are needed for cross compilation.
|
||||
For more information see introduction tutorials for target platform in documentation:
|
||||
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
|
||||
https://docs.opencv.org/3.4/df/d65/tutorial_table_of_content_introduction.html
|
||||
|
@ -7,7 +7,7 @@ Check [a wiki](https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV) fo
|
||||
If OpenCV is built with [Intel's Inference Engine support](https://github.com/opencv/opencv/wiki/Intel%27s-Deep-Learning-Inference-Engine-backend) you can use [Intel's pre-trained](https://github.com/opencv/open_model_zoo) models.
|
||||
|
||||
There are different preprocessing parameters such mean subtraction or scale factors for different models.
|
||||
You may check the most popular models and their parameters at [models.yml](https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml) configuration file. It might be also used for aliasing samples parameters. In example,
|
||||
You may check the most popular models and their parameters at [models.yml](https://github.com/opencv/opencv/blob/3.4/samples/dnn/models.yml) configuration file. It might be also used for aliasing samples parameters. In example,
|
||||
|
||||
```bash
|
||||
python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt
|
||||
@ -27,7 +27,7 @@ You can download sample models using ```download_models.py```. For example, the
|
||||
python download_models.py --save_dir FaceDetector opencv_fd
|
||||
```
|
||||
|
||||
You can use default configuration files adopted for OpenCV from [here](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn).
|
||||
You can use default configuration files adopted for OpenCV from [here](https://github.com/opencv/opencv_extra/tree/3.4/testdata/dnn).
|
||||
|
||||
You also can use the script to download necessary files from your code. Assume you have the following code inside ```your_script.py```:
|
||||
|
||||
@ -79,6 +79,6 @@ AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528 | 0.528 |
|
||||
|
||||
## References
|
||||
* [Models downloading script](https://github.com/opencv/opencv/samples/dnn/download_models.py)
|
||||
* [Configuration files adopted for OpenCV](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn)
|
||||
* [Configuration files adopted for OpenCV](https://github.com/opencv/opencv_extra/tree/3.4/testdata/dnn)
|
||||
* [How to import models from TensorFlow Object Detection API](https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API)
|
||||
* [Names of classes from different datasets](https://github.com/opencv/opencv/tree/3.4/samples/data/dnn)
|
||||
|
@ -3,11 +3,11 @@
|
||||
//
|
||||
// it can be used for body pose detection, using either the COCO model(18 parts):
|
||||
// http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel
|
||||
// https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/openpose_pose_coco.prototxt
|
||||
// https://raw.githubusercontent.com/opencv/opencv_extra/3.4/testdata/dnn/openpose_pose_coco.prototxt
|
||||
//
|
||||
// or the MPI model(16 parts):
|
||||
// http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel
|
||||
// https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/openpose_pose_mpi_faster_4_stages.prototxt
|
||||
// https://raw.githubusercontent.com/opencv/opencv_extra/3.4/testdata/dnn/openpose_pose_mpi_faster_4_stages.prototxt
|
||||
//
|
||||
// (to simplify this sample, the body models are restricted to a single person.)
|
||||
//
|
||||
|
Loading…
Reference in New Issue
Block a user