mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
minor modification of gpu video tests
disabled NVidia Visualization test, it's functionality (draw rectangles) doesn't used in gpu module
This commit is contained in:
parent
7a62413c94
commit
b2a6a257b7
@ -52,9 +52,9 @@ void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat&, GpuMat
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace gfft
|
||||
namespace gfft
|
||||
{
|
||||
int findCorners_gpu(DevMem2Df eig, float threshold, DevMem2Db mask, float2* corners, int max_count);
|
||||
void sortCorners_gpu(DevMem2Df eig, float2* corners, int count);
|
||||
@ -67,7 +67,9 @@ void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image,
|
||||
|
||||
CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
|
||||
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS));
|
||||
|
||||
if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
|
||||
CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");
|
||||
|
||||
ensureSizeIsEnough(image.size(), CV_32F, eig_);
|
||||
|
||||
@ -106,7 +108,7 @@ void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image,
|
||||
{
|
||||
Point2f p = tmp[i];
|
||||
|
||||
bool good = true;
|
||||
bool good = true;
|
||||
|
||||
int x_cell = static_cast<int>(p.x / cell_size);
|
||||
int y_cell = static_cast<int>(p.y / cell_size);
|
||||
@ -125,7 +127,7 @@ void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image,
|
||||
for (int yy = y1; yy <= y2; yy++)
|
||||
{
|
||||
for (int xx = x1; xx <= x2; xx++)
|
||||
{
|
||||
{
|
||||
vector<Point2f>& m = grid[yy * grid_width + xx];
|
||||
|
||||
if (!m.empty())
|
||||
@ -141,7 +143,7 @@ void cv::gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image,
|
||||
goto break_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -71,7 +71,7 @@ struct NVidiaTest : TestWithParam<cv::gpu::DeviceInfo>
|
||||
|
||||
std::string path;
|
||||
|
||||
virtual void SetUp()
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
@ -86,84 +86,85 @@ struct NCV : NVidiaTest {};
|
||||
|
||||
OutputLevel nvidiaTestOutputLevel = OutputLevelNone;
|
||||
|
||||
TEST_P(NPPST, Integral)
|
||||
TEST_P(NPPST, Integral)
|
||||
{
|
||||
bool res = nvidia_NPPST_Integral_Image(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NPPST, SquaredIntegral)
|
||||
TEST_P(NPPST, SquaredIntegral)
|
||||
{
|
||||
bool res = nvidia_NPPST_Squared_Integral_Image(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NPPST, RectStdDev)
|
||||
TEST_P(NPPST, RectStdDev)
|
||||
{
|
||||
bool res = nvidia_NPPST_RectStdDev(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NPPST, Resize)
|
||||
TEST_P(NPPST, Resize)
|
||||
{
|
||||
bool res = nvidia_NPPST_Resize(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NPPST, VectorOperations)
|
||||
TEST_P(NPPST, VectorOperations)
|
||||
{
|
||||
bool res = nvidia_NPPST_Vector_Operations(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NPPST, Transpose)
|
||||
TEST_P(NPPST, Transpose)
|
||||
{
|
||||
bool res = nvidia_NPPST_Transpose(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NCV, VectorOperations)
|
||||
TEST_P(NCV, VectorOperations)
|
||||
{
|
||||
bool res = nvidia_NCV_Vector_Operations(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NCV, HaarCascadeLoader)
|
||||
TEST_P(NCV, HaarCascadeLoader)
|
||||
{
|
||||
bool res = nvidia_NCV_Haar_Cascade_Loader(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NCV, HaarCascadeApplication)
|
||||
TEST_P(NCV, HaarCascadeApplication)
|
||||
{
|
||||
bool res = nvidia_NCV_Haar_Cascade_Application(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NCV, HypothesesFiltration)
|
||||
TEST_P(NCV, HypothesesFiltration)
|
||||
{
|
||||
bool res = nvidia_NCV_Hypotheses_Filtration(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
TEST_P(NCV, Visualization)
|
||||
TEST_P(NCV, DISABLED_Visualization)
|
||||
{
|
||||
// this functionality doesn't used in gpu module
|
||||
bool res = nvidia_NCV_Visualization(path, nvidiaTestOutputLevel);
|
||||
|
||||
ASSERT_TRUE(res);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(NVidia, NPPST, ALL_DEVICES);
|
||||
INSTANTIATE_TEST_CASE_P(NVidia, NCV, ALL_DEVICES);
|
||||
INSTANTIATE_TEST_CASE_P(GPU_NVidia, NPPST, ALL_DEVICES);
|
||||
INSTANTIATE_TEST_CASE_P(GPU_NVidia, NCV, ALL_DEVICES);
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
@ -41,340 +41,218 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
namespace {
|
||||
|
||||
//#define DUMP
|
||||
|
||||
#define OPTICAL_FLOW_DUMP_FILE "opticalflow/opticalflow_gold.bin"
|
||||
#define OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/opticalflow_gold_cc20.bin"
|
||||
#define INTERPOLATE_FRAMES_DUMP_FILE "opticalflow/interpolate_frames_gold.bin"
|
||||
#define INTERPOLATE_FRAMES_DUMP_FILE_CC20 "opticalflow/interpolate_frames_gold_cc20.bin"
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// BroxOpticalFlow
|
||||
|
||||
struct BroxOpticalFlow : TestWithParam<cv::gpu::DeviceInfo>
|
||||
#define BROX_OPTICAL_FLOW_DUMP_FILE "opticalflow/brox_optical_flow.bin"
|
||||
#define BROX_OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/brox_optical_flow_cc20.bin"
|
||||
|
||||
struct BroxOpticalFlow : testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
cv::Mat frame0;
|
||||
cv::Mat frame1;
|
||||
|
||||
cv::Mat u_gold;
|
||||
cv::Mat v_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0);
|
||||
|
||||
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0);
|
||||
|
||||
#ifndef DUMP
|
||||
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
int rows, cols;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
|
||||
u_gold.create(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < u_gold.rows; ++i)
|
||||
f.read((char*)u_gold.ptr(i), u_gold.cols * sizeof(float));
|
||||
|
||||
v_gold.create(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < v_gold.rows; ++i)
|
||||
f.read((char*)v_gold.ptr(i), v_gold.cols * sizeof(float));
|
||||
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(BroxOpticalFlow, Regression)
|
||||
{
|
||||
cv::Mat u;
|
||||
cv::Mat v;
|
||||
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::gpu::GpuMat d_u;
|
||||
cv::gpu::GpuMat d_v;
|
||||
cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
|
||||
d_flow(cv::gpu::GpuMat(frame0), cv::gpu::GpuMat(frame1), d_u, d_v);
|
||||
|
||||
d_u.download(u);
|
||||
d_v.download(v);
|
||||
cv::gpu::GpuMat u;
|
||||
cv::gpu::GpuMat v;
|
||||
brox(loadMat(frame0), loadMat(frame1), u, v);
|
||||
|
||||
#ifndef DUMP
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
int rows, cols;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
|
||||
cv::Mat u_gold(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < u_gold.rows; ++i)
|
||||
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
|
||||
|
||||
cv::Mat v_gold(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < v_gold.rows; ++i)
|
||||
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
|
||||
|
||||
EXPECT_MAT_NEAR(u_gold, u, 0);
|
||||
EXPECT_MAT_NEAR(v_gold, v, 0);
|
||||
|
||||
#else
|
||||
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += OPTICAL_FLOW_DUMP_FILE;
|
||||
fname += BROX_OPTICAL_FLOW_DUMP_FILE;
|
||||
|
||||
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
f.write((char*)&u.rows, sizeof(u.rows));
|
||||
f.write((char*)&u.cols, sizeof(u.cols));
|
||||
|
||||
cv::Mat h_u(u);
|
||||
cv::Mat h_v(v);
|
||||
|
||||
for (int i = 0; i < u.rows; ++i)
|
||||
f.write((char*)u.ptr(i), u.cols * sizeof(float));
|
||||
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
|
||||
|
||||
for (int i = 0; i < v.rows; ++i)
|
||||
f.write((char*)v.ptr(i), v.cols * sizeof(float));
|
||||
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// InterpolateFrames
|
||||
|
||||
struct InterpolateFrames : TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
cv::Mat frame0;
|
||||
cv::Mat frame1;
|
||||
|
||||
cv::Mat newFrame_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0);
|
||||
|
||||
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0);
|
||||
|
||||
#ifndef DUMP
|
||||
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += INTERPOLATE_FRAMES_DUMP_FILE;
|
||||
|
||||
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
int rows, cols;
|
||||
|
||||
f.read((char*)&rows, sizeof(rows));
|
||||
f.read((char*)&cols, sizeof(cols));
|
||||
|
||||
newFrame_gold.create(rows, cols, CV_32FC1);
|
||||
|
||||
for (int i = 0; i < newFrame_gold.rows; ++i)
|
||||
f.read((char*)newFrame_gold.ptr(i), newFrame_gold.cols * sizeof(float));
|
||||
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(InterpolateFrames, Regression)
|
||||
{
|
||||
cv::Mat newFrame;
|
||||
|
||||
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
|
||||
cv::gpu::GpuMat d_frame0(frame0);
|
||||
cv::gpu::GpuMat d_frame1(frame1);
|
||||
|
||||
cv::gpu::GpuMat d_fu;
|
||||
cv::gpu::GpuMat d_fv;
|
||||
cv::gpu::GpuMat d_bu;
|
||||
cv::gpu::GpuMat d_bv;
|
||||
|
||||
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
||||
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
||||
|
||||
cv::gpu::GpuMat d_newFrame;
|
||||
cv::gpu::GpuMat d_buf;
|
||||
|
||||
cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, d_newFrame, d_buf);
|
||||
|
||||
d_newFrame.download(newFrame);
|
||||
|
||||
#ifndef DUMP
|
||||
|
||||
EXPECT_MAT_NEAR(newFrame_gold, newFrame, 1e-3);
|
||||
|
||||
#else
|
||||
|
||||
std::string fname(cvtest::TS::ptr()->get_data_path());
|
||||
if (devInfo.majorVersion() >= 2)
|
||||
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20;
|
||||
else
|
||||
fname += INTERPOLATE_FRAMES_DUMP_FILE;
|
||||
|
||||
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
||||
|
||||
f.write((char*)&newFrame.rows, sizeof(newFrame.rows));
|
||||
f.write((char*)&newFrame.cols, sizeof(newFrame.cols));
|
||||
|
||||
for (int i = 0; i < newFrame.rows; ++i)
|
||||
f.write((char*)newFrame.ptr(i), newFrame.cols * sizeof(float));
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES);
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// GoodFeaturesToTrack
|
||||
|
||||
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double)
|
||||
IMPLEMENT_PARAM_CLASS(MinDistance, double)
|
||||
|
||||
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
cv::Mat image;
|
||||
|
||||
int maxCorners;
|
||||
double qualityLevel;
|
||||
double minDistance;
|
||||
|
||||
std::vector<cv::Point2f> pts_gold;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
minDistance = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
maxCorners = 1000;
|
||||
qualityLevel= 0.01;
|
||||
|
||||
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(GoodFeaturesToTrack, Accuracy)
|
||||
{
|
||||
cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(image.empty());
|
||||
|
||||
int maxCorners = 1000;
|
||||
double qualityLevel = 0.01;
|
||||
|
||||
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance);
|
||||
|
||||
cv::gpu::GpuMat d_pts;
|
||||
|
||||
detector(loadMat(image), d_pts);
|
||||
|
||||
std::vector<cv::Point2f> pts(d_pts.cols);
|
||||
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.download(pts_mat);
|
||||
|
||||
ASSERT_EQ(pts_gold.size(), pts.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
|
||||
for (size_t i = 0; i < pts.size(); ++i)
|
||||
if (!supportFeature(devInfo, cv::gpu::GLOBAL_ATOMICS))
|
||||
{
|
||||
cv::Point2i a = pts_gold[i];
|
||||
cv::Point2i b = pts[i];
|
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
|
||||
if (!eq)
|
||||
++mistmatch;
|
||||
try
|
||||
{
|
||||
cv::gpu::GpuMat d_pts;
|
||||
detector(loadMat(image), d_pts);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
ASSERT_EQ(CV_StsNotImplemented, e.code);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::GpuMat d_pts;
|
||||
detector(loadMat(image), d_pts);
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
||||
std::vector<cv::Point2f> pts(d_pts.cols);
|
||||
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.download(pts_mat);
|
||||
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
std::vector<cv::Point2f> pts_gold;
|
||||
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance);
|
||||
|
||||
ASSERT_EQ(pts_gold.size(), pts.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
for (size_t i = 0; i < pts.size(); ++i)
|
||||
{
|
||||
cv::Point2i a = pts_gold[i];
|
||||
cv::Point2i b = pts[i];
|
||||
|
||||
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
||||
|
||||
if (!eq)
|
||||
++mistmatch;
|
||||
}
|
||||
|
||||
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
||||
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, Combine(ALL_DEVICES, Values(0.0, 3.0)));
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(MinDistance(0.0), MinDistance(3.0))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// PyrLKOpticalFlow
|
||||
|
||||
PARAM_TEST_CASE(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool)
|
||||
IMPLEMENT_PARAM_CLASS(UseGray, bool)
|
||||
|
||||
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
cv::Mat frame0;
|
||||
cv::Mat frame1;
|
||||
|
||||
std::vector<cv::Point2f> pts;
|
||||
|
||||
std::vector<cv::Point2f> nextPts_gold;
|
||||
std::vector<unsigned char> status_gold;
|
||||
std::vector<float> err_gold;
|
||||
bool useGray;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
bool useGray = GET_PARAM(1);
|
||||
useGray = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
|
||||
frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::Mat gray_frame;
|
||||
if (useGray)
|
||||
gray_frame = frame0;
|
||||
else
|
||||
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
||||
|
||||
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
||||
|
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold, cv::Size(21, 21), 3,
|
||||
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(PyrLKOpticalFlowSparse, Accuracy)
|
||||
TEST_P(PyrLKOpticalFlow, Sparse)
|
||||
{
|
||||
cv::gpu::PyrLKOpticalFlow d_pyrLK;
|
||||
cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::Mat gray_frame;
|
||||
if (useGray)
|
||||
gray_frame = frame0;
|
||||
else
|
||||
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
||||
|
||||
std::vector<cv::Point2f> pts;
|
||||
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
||||
|
||||
cv::gpu::GpuMat d_pts;
|
||||
cv::Mat pts_mat(1, pts.size(), CV_32FC2, (void*)&pts[0]);
|
||||
d_pts.upload(pts_mat);
|
||||
|
||||
cv::gpu::PyrLKOpticalFlow pyrLK;
|
||||
|
||||
cv::gpu::GpuMat d_nextPts;
|
||||
cv::gpu::GpuMat d_status;
|
||||
cv::gpu::GpuMat d_err;
|
||||
|
||||
d_pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
|
||||
pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err);
|
||||
|
||||
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
|
||||
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
|
||||
@ -388,12 +266,16 @@ TEST_P(PyrLKOpticalFlowSparse, Accuracy)
|
||||
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
|
||||
d_err.download(err_mat);
|
||||
|
||||
std::vector<cv::Point2f> nextPts_gold;
|
||||
std::vector<unsigned char> status_gold;
|
||||
std::vector<float> err_gold;
|
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold);
|
||||
|
||||
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
|
||||
ASSERT_EQ(status_gold.size(), status.size());
|
||||
ASSERT_EQ(err_gold.size(), err.size());
|
||||
|
||||
size_t mistmatch = 0;
|
||||
|
||||
for (size_t i = 0; i < nextPts.size(); ++i)
|
||||
{
|
||||
if (status[i] != status_gold[i])
|
||||
@ -420,77 +302,86 @@ TEST_P(PyrLKOpticalFlowSparse, Accuracy)
|
||||
ASSERT_LE(bad_ratio, 0.01);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, Combine(ALL_DEVICES, Bool()));
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(UseGray(true), UseGray(false))));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FarnebackOpticalFlow
|
||||
|
||||
PARAM_TEST_CASE(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo, double, int, int, bool)
|
||||
IMPLEMENT_PARAM_CLASS(PyrScale, double)
|
||||
IMPLEMENT_PARAM_CLASS(PolyN, int)
|
||||
CV_FLAGS(FarnebackOptFlowFlags, 0, cv::OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
|
||||
|
||||
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
|
||||
{
|
||||
cv::Mat frame0, frame1;
|
||||
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
double pyrScale;
|
||||
int polyN;
|
||||
double polySigma;
|
||||
int flags;
|
||||
bool useInitFlow;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty()); ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
||||
|
||||
devInfo = GET_PARAM(0);
|
||||
pyrScale = GET_PARAM(1);
|
||||
polyN = GET_PARAM(2);
|
||||
polySigma = polyN <= 5 ? 1.1 : 1.5;
|
||||
flags = GET_PARAM(3);
|
||||
useInitFlow = GET_PARAM(4);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(FarnebackOpticalFlowTest, Accuracy)
|
||||
TEST_P(FarnebackOpticalFlow, Accuracy)
|
||||
{
|
||||
using namespace cv;
|
||||
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
gpu::FarnebackOpticalFlow calc;
|
||||
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
double polySigma = polyN <= 5 ? 1.1 : 1.5;
|
||||
|
||||
cv::gpu::FarnebackOpticalFlow calc;
|
||||
calc.pyrScale = pyrScale;
|
||||
calc.polyN = polyN;
|
||||
calc.polySigma = polySigma;
|
||||
calc.flags = flags;
|
||||
|
||||
gpu::GpuMat d_flowx, d_flowy;
|
||||
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy);
|
||||
cv::gpu::GpuMat d_flowx, d_flowy;
|
||||
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
|
||||
|
||||
Mat flow;
|
||||
cv::Mat flow;
|
||||
if (useInitFlow)
|
||||
{
|
||||
Mat flowxy[] = {(Mat)d_flowx, (Mat)d_flowy};
|
||||
merge(flowxy, 2, flow);
|
||||
cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)};
|
||||
cv::merge(flowxy, 2, flow);
|
||||
}
|
||||
|
||||
if (useInitFlow)
|
||||
{
|
||||
calc.flags |= OPTFLOW_USE_INITIAL_FLOW;
|
||||
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy);
|
||||
calc.flags |= cv::OPTFLOW_USE_INITIAL_FLOW;
|
||||
calc(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy);
|
||||
}
|
||||
|
||||
calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
|
||||
calc.numIters, calc.polyN, calc.polySigma, calc.flags);
|
||||
cv::calcOpticalFlowFarneback(
|
||||
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize,
|
||||
calc.numIters, calc.polyN, calc.polySigma, calc.flags);
|
||||
|
||||
std::vector<Mat> flowxy; split(flow, flowxy);
|
||||
/*std::cout << checkSimilarity(flowxy[0], (Mat)d_flowx) << " "
|
||||
<< checkSimilarity(flowxy[1], (Mat)d_flowy) << std::endl;*/
|
||||
EXPECT_LT(checkSimilarity(flowxy[0], (Mat)d_flowx), 0.1);
|
||||
EXPECT_LT(checkSimilarity(flowxy[1], (Mat)d_flowy), 0.1);
|
||||
std::vector<cv::Mat> flowxy;
|
||||
cv::split(flow, flowxy);
|
||||
|
||||
EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1);
|
||||
EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest,
|
||||
Combine(ALL_DEVICES,
|
||||
Values(0.3, 0.5, 0.8),
|
||||
Values(5, 7),
|
||||
Values(0, (int)cv::OPTFLOW_FARNEBACK_GAUSSIAN),
|
||||
Values(false, true)));
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
|
||||
testing::Values(PolyN(5), PolyN(7)),
|
||||
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
|
||||
testing::Values(UseInitFlow(false), UseInitFlow(true))));
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
} // namespace
|
||||
|
@ -122,7 +122,7 @@ Mat readImageType(const string& fname, int type)
|
||||
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
|
||||
swap(src, temp);
|
||||
}
|
||||
src.convertTo(src, CV_MAT_DEPTH(type));
|
||||
src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
|
||||
return src;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user