add feature to convert FP32(float) to FP16(half)

* check compiler support
  * check HW support before executing
  * add test doing round trip conversion from / to FP32
  * treat array correctly if size is not multiple of 4
  * add declaration to prevent warning
  * make it possible to enable fp16 on 32bit ARM
  * let the conversion possible on non-supported HW, too.
  * add test using both HW and SW implementation
This commit is contained in:
Tomoaki Teshima 2016-05-21 21:31:33 +09:00
parent c3d1f94ee6
commit b2ad7cd9c0
8 changed files with 459 additions and 5 deletions

View File

@ -146,8 +146,11 @@ if(CMAKE_COMPILER_IS_GNUCXX)
elseif(X86 OR X86_64)
add_extra_compiler_option(-mno-sse2)
endif()
if(ARM)
add_extra_compiler_option("-mfp16-format=ieee")
endif(ARM)
if(ENABLE_NEON)
add_extra_compiler_option("-mfpu=neon")
add_extra_compiler_option("-mfpu=neon-fp16")
endif()
if(ENABLE_VFPV3 AND NOT ENABLE_NEON)
add_extra_compiler_option("-mfpu=vfpv3")
@ -167,6 +170,9 @@ if(CMAKE_COMPILER_IS_GNUCXX)
add_extra_compiler_option(-mfma)
endif()
endif()
if((X86 OR X86_64) AND NOT MSVC)
add_extra_compiler_option(-mf16c)
endif((X86 OR X86_64) AND NOT MSVC)
# GCC depresses SSEx instructions when -mavx is used. Instead, it generates new AVX instructions or AVX equivalence for all SSEx instructions when needed.
if(NOT OPENCV_EXTRA_CXX_FLAGS MATCHES "-mavx")

View File

@ -524,6 +524,17 @@ For example:
CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
double alpha = 1, double beta = 0);
/** @brief Converts an array to half precision floating number.
convertFp16 converts FP32 to FP16 or FP16 to FP32. The input array has to have type of CV_32F or
CV_16S to represent the bit depth. If the input array is neither of them, it'll do nothing.
@param src input array.
@param dst output array.
@param useHW if possible use HW SIMD instruction to convert
*/
CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst, bool useHW = true);
/** @brief Performs a look-up table transform of an array.
The function LUT fills the output array with values from the look-up table. Indices of the entries

View File

@ -112,7 +112,7 @@
#define CV_CPU_SSE4_1 6
#define CV_CPU_SSE4_2 7
#define CV_CPU_POPCNT 8
#define CV_CPU_FP16 9
#define CV_CPU_AVX 10
#define CV_CPU_AVX2 11
#define CV_CPU_FMA3 12
@ -143,7 +143,7 @@ enum CpuFeatures {
CPU_SSE4_1 = 6,
CPU_SSE4_2 = 7,
CPU_POPCNT = 8,
CPU_FP16 = 9,
CPU_AVX = 10,
CPU_AVX2 = 11,
CPU_FMA3 = 12,
@ -193,6 +193,10 @@ enum CpuFeatures {
# endif
# define CV_POPCNT 1
# endif
# if defined __F16C__ || (defined _MSC_VER && _MSC_VER >= 1700)
# include <immintrin.h>
# define CV_FP16 1
# endif
# if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0)
// MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX
// See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32
@ -223,6 +227,10 @@ enum CpuFeatures {
# define CV_NEON 1
#endif
#if defined __GNUC__ && ((defined (__arm__) && (__ARM_FP & 0x2)) || defined(__aarch64__))
# define CV_FP16 1
#endif
#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__
# define CV_VFP 1
#endif
@ -253,6 +261,9 @@ enum CpuFeatures {
#ifndef CV_SSE4_2
# define CV_SSE4_2 0
#endif
#ifndef CV_FP16
# define CV_FP16 0
#endif
#ifndef CV_AVX
# define CV_AVX 0
#endif

View File

@ -4356,6 +4356,283 @@ struct Cvt_SIMD<float, int>
#endif
#if !(defined (__arm__) || defined (__aarch64__))
// const numbers for floating points format
const unsigned int kShiftSignificand = 13;
const unsigned int kMaskFp16Significand = 0x3ff;
const unsigned int kBiasFp16Exponent = 15;
const unsigned int kBiasFp32Exponent = 127;
union fp32Int32
{
int i;
float f;
struct _fp32Format
{
unsigned int significand : 23;
unsigned int exponent : 8;
unsigned int sign : 1;
} fmt;
};
#endif
union fp16Int16
{
short i;
#if defined (__arm__) || defined (__aarch64__)
__fp16 h;
#endif
struct _fp16Format
{
unsigned int significand : 10;
unsigned int exponent : 5;
unsigned int sign : 1;
} fmt;
};
#if defined (__arm__) || defined (__aarch64__)
static float convertFp16SW(short fp16)
{
// Fp16 -> Fp32
fp16Int16 a;
a.i = fp16;
return (float)a.h;
}
#else
static float convertFp16SW(short fp16)
{
// Fp16 -> Fp32
fp16Int16 b;
b.i = fp16;
int exponent = b.fmt.exponent - kBiasFp16Exponent;
int significand = b.fmt.significand;
fp32Int32 a;
a.i = 0;
a.fmt.sign = b.fmt.sign; // sign bit
if( exponent == 16 )
{
// Inf or NaN
a.i = a.i | 0x7F800000;
if( significand != 0 )
{
// NaN
#if defined(__x86_64__) || defined(_M_X64)
// 64bit
a.i = a.i | 0x7FC00000;
#endif
a.fmt.significand = a.fmt.significand | (significand << kShiftSignificand);
}
return a.f;
}
else if ( exponent == -15 )
{
// subnormal in Fp16
if( significand == 0 )
{
// zero
return a.f;
}
else
{
int shift = -1;
while( ( significand & 0x400 ) == 0 )
{
significand = significand << 1;
shift++;
}
significand = significand & kMaskFp16Significand;
exponent -= shift;
}
}
a.fmt.exponent = (exponent+kBiasFp32Exponent);
a.fmt.significand = significand << kShiftSignificand;
return a.f;
}
#endif
#if defined (__arm__) || defined (__aarch64__)
static short convertFp16SW(float fp32)
{
// Fp32 -> Fp16
fp16Int16 a;
a.h = (__fp16)fp32;
return a.i;
}
#else
static short convertFp16SW(float fp32)
{
// Fp32 -> Fp16
fp32Int32 a;
a.f = fp32;
int exponent = a.fmt.exponent - kBiasFp32Exponent;
int significand = a.fmt.significand;
fp16Int16 result;
result.i = 0;
if( 0x477ff000 <= ( a.i & 0x7fffffff ) )
{
// Inf in Fp16
result.i = result.i | 0x7C00;
if( exponent == 128 && significand != 0 )
{
// NaN
result.i = (short)(result.i | 0x200 | (significand >> kShiftSignificand));
}
}
else if ( ( a.i & 0x7fffffff ) <= 0x387fe000 )
{
// subnormal in Fp16
int fp16Significand = significand | 0x800000;
int bitShift = (-exponent) - 1;
fp16Significand = fp16Significand >> bitShift;
// special cases to round up
int threshold = 0x8000 + ( ( fp16Significand & 1 ) ? 0 : 1 );
if( threshold <= ( significand & 0xffff ) )
{
fp16Significand++;
}
result.i = (short)fp16Significand;
}
else
{
// usual situation
// exponent
result.fmt.exponent = (exponent + kBiasFp16Exponent);
// significand;
short fp16Significand = (short)(significand >> kShiftSignificand);
result.fmt.significand = fp16Significand;
// special cases to round up
short lsb10bitsFp32 = (significand & 0x1fff);
short threshold = 0x1000 + ( ( fp16Significand & 0x1 ) ? 0 : 1 );
if( threshold <= lsb10bitsFp32 )
{
result.i++;
}
else if ( fp16Significand == 0x3ff && exponent == -15)
{
result.i++;
}
}
// sign bit
result.fmt.sign = a.fmt.sign;
return result.i;
}
#endif
template<typename T, typename DT> static void
cvtScaleHalfSW_( const T* src, size_t sstep, DT* dst, size_t dstep, Size size)
{
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
for ( int x = 0 ; x < size.width; x ++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
// template for FP16 HW conversion function
template<typename T, typename DT> static void
cvtScaleHalfHW_( const T* src, size_t sstep, DT* dst, size_t dstep, Size size)
{
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
for ( ; x < size.width; x++ )
{
}
}
}
template<> void
cvtScaleHalfHW_<float, short>( const float* src, size_t sstep, short* dst, size_t dstep, Size size)
{
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
if ( ( (intptr_t)dst & 0xf ) == 0 && ( (intptr_t)src & 0xf ) == 0 )
{
#if CV_FP16
for ( ; x <= size.width - 4; x += 4)
{
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_IX86) || defined(i386)
__m128 v_src = _mm_load_ps(src + x);
__m128i v_dst = _mm_cvtps_ph(v_src, 0);
_mm_storel_epi64((__m128i *)(dst + x), v_dst);
#elif defined __GNUC__ && (defined __arm__ || defined __aarch64__)
float32x4_t v_src = *(float32x4_t*)(src + x);
float16x4_t v_dst = vcvt_f16_f32(v_src);
*(float16x4_t*)(dst + x) = v_dst;
#endif
}
#endif
}
for ( ; x < size.width; x++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
template<> void
cvtScaleHalfHW_<short, float>( const short* src, size_t sstep, float* dst, size_t dstep, Size size)
{
sstep /= sizeof(src[0]);
dstep /= sizeof(dst[0]);
for( ; size.height--; src += sstep, dst += dstep )
{
int x = 0;
if ( ( (intptr_t)dst & 0xf ) == 0 && ( (intptr_t)src & 0xf ) == 0 )
{
#if CV_FP16
for ( ; x <= size.width - 4; x += 4)
{
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_IX86) || defined(i386)
__m128i v_src = _mm_loadl_epi64((__m128i*)(src+x));
__m128 v_dst = _mm_cvtph_ps(v_src);
_mm_store_ps((dst + x), v_dst);
#elif defined __GNUC__ && (defined __arm__ || defined __aarch64__)
float16x4_t v_src = *(float16x4_t*)(src + x);
float32x4_t v_dst = vcvt_f32_f16(v_src);
*(float32x4_t*)(dst + x) = v_dst;
#endif
}
#endif
}
for ( ; x < size.width; x++ )
{
dst[x] = convertFp16SW(src[x]);
}
}
}
template<typename T, typename DT> static void
cvt_( const T* src, size_t sstep,
DT* dst, size_t dstep, Size size )
@ -4443,6 +4720,13 @@ static void cvtScaleAbs##suffix( const stype* src, size_t sstep, const uchar*, s
tfunc(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \
}
#define DEF_CVT_SCALE_FP16_FUNC(suffix, stype, dtype, resource) \
static void cvtScaleHalf##suffix##resource( const stype* src, size_t sstep, const uchar*, size_t, \
dtype* dst, size_t dstep, Size size, double*) \
{ \
cvtScaleHalf##resource##_<stype,dtype>(src, sstep, dst, dstep, size); \
}
#define DEF_CVT_SCALE_FUNC(suffix, stype, dtype, wtype) \
static void cvtScale##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
dtype* dst, size_t dstep, Size size, double* scale) \
@ -4499,6 +4783,11 @@ DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float)
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float)
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float)
DEF_CVT_SCALE_FP16_FUNC(32f16f, float, short, SW)
DEF_CVT_SCALE_FP16_FUNC(16f32f, short, float, SW)
DEF_CVT_SCALE_FP16_FUNC(32f16f, float, short, HW)
DEF_CVT_SCALE_FP16_FUNC(16f32f, short, float, HW)
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float)
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float)
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float)
@ -4620,6 +4909,30 @@ static BinaryFunc getCvtScaleAbsFunc(int depth)
return cvtScaleAbsTab[depth];
}
BinaryFunc getConvertFuncFp16(int ddepth, bool useHW)
{
static BinaryFunc cvtTabHW[] =
{
0, 0, 0,
(BinaryFunc)(cvtScaleHalf32f16fHW), 0, (BinaryFunc)(cvtScaleHalf16f32fHW),
0, 0,
};
static BinaryFunc cvtTabSW[] =
{
0, 0, 0,
(BinaryFunc)(cvtScaleHalf32f16fSW), 0, (BinaryFunc)(cvtScaleHalf16f32fSW),
0, 0,
};
if( useHW == true)
{
return cvtTabHW[CV_MAT_DEPTH(ddepth)];
}
else
{
return cvtTabSW[CV_MAT_DEPTH(ddepth)];
}
}
BinaryFunc getConvertFunc(int sdepth, int ddepth)
{
static BinaryFunc cvtTab[][8] =
@ -4804,6 +5117,52 @@ void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, doubl
}
}
void cv::convertFp16( InputArray _src, OutputArray _dst, bool useHW )
{
if ( checkHardwareSupport(CV_CPU_FP16) == false)
{
useHW = false;
}
Mat src = _src.getMat();
int ddepth = 0;
switch( src.depth() )
{
case CV_32F:
ddepth = CV_16S;
break;
case CV_16S:
ddepth = CV_32F;
break;
default:
return;
}
int type = CV_MAKETYPE(ddepth, src.channels());
_dst.create( src.dims, src.size, type );
Mat dst = _dst.getMat();
BinaryFunc func = getConvertFuncFp16(ddepth, useHW);
int cn = src.channels();
CV_Assert( func != 0 );
if( src.dims <= 2 )
{
Size sz = getContinuousSize(src, dst, cn);
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, 0);
}
else
{
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
Size sz((int)(it.size*cn), 1);
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, 0);
}
}
void cv::Mat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
{
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON;

View File

@ -135,6 +135,7 @@ typedef void (*BinaryFuncC)(const uchar* src1, size_t step1,
uchar* dst, size_t step, int width, int height,
void*);
BinaryFunc getConvertFuncFp16(int ddepth, bool useHW);
BinaryFunc getConvertFunc(int sdepth, int ddepth);
BinaryFunc getCopyMaskFunc(size_t esz);

View File

@ -291,6 +291,7 @@ struct HWFeatures
f.have[CV_CPU_SSE4_2] = (cpuid_data[2] & (1<<20)) != 0;
f.have[CV_CPU_POPCNT] = (cpuid_data[2] & (1<<23)) != 0;
f.have[CV_CPU_AVX] = (((cpuid_data[2] & (1<<28)) != 0)&&((cpuid_data[2] & (1<<27)) != 0));//OS uses XSAVE_XRSTORE and CPU support AVX
f.have[CV_CPU_FP16] = (cpuid_data[2] & (1<<29)) != 0;
// make the second call to the cpuid command in order to get
// information about extended features like AVX2
@ -338,7 +339,8 @@ struct HWFeatures
#if defined ANDROID || defined __linux__
#ifdef __aarch64__
f.have[CV_CPU_NEON] = true;
#else
f.have[CV_CPU_FP16] = true;
#elif defined __arm__
int cpufile = open("/proc/self/auxv", O_RDONLY);
if (cpufile >= 0)
@ -351,6 +353,7 @@ struct HWFeatures
if (auxv.a_type == AT_HWCAP)
{
f.have[CV_CPU_NEON] = (auxv.a_un.a_val & 4096) != 0;
f.have[CV_CPU_FP16] = (auxv.a_un.a_val & 2) != 0;
break;
}
}
@ -358,8 +361,13 @@ struct HWFeatures
close(cpufile);
}
#endif
#elif (defined __clang__ || defined __APPLE__) && (defined __ARM_NEON__ || (defined __ARM_NEON && defined __aarch64__))
#elif (defined __clang__ || defined __APPLE__)
#if (defined __ARM_NEON__ || (defined __ARM_NEON && defined __aarch64__))
f.have[CV_CPU_NEON] = true;
#endif
#if (defined __ARM_FP && (((__ARM_FP & 0x2) != 0) && defined __ARM_NEON__))
f.have[CV_CPU_FP16] = true;
#endif
#endif
return f;

View File

@ -737,6 +737,60 @@ struct ConvertScaleOp : public BaseElemWiseOp
int ddepth;
};
struct ConvertScaleFp16Op : public BaseElemWiseOp
{
ConvertScaleFp16Op() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), nextRange(0) { }
void op(const vector<Mat>& src, Mat& dst, const Mat&)
{
convertFp16(src[0], dst, true);
}
void refop(const vector<Mat>& src, Mat& dst, const Mat&)
{
convertFp16(src[0], dst, false);
}
int getRandomType(RNG&)
{
// 0: FP32 -> FP16
// 1: FP16 -> FP32
int srctype = (nextRange & 1) == 0 ? CV_32F : CV_16S;
return srctype;
}
void getValueRange(int, double& minval, double& maxval)
{
// 0: FP32 -> FP16
// 1: FP16 -> FP32
if( (nextRange & 1) == 0 )
{
// largest integer number that fp16 can express
maxval = 65504.f;
minval = -maxval;
}
else
{
// 0: positive number range
// 1: negative number range
if( (nextRange & 2) == 0 )
{
minval = 0; // 0x0000 +0
maxval = 31744; // 0x7C00 +Inf
}
else
{
minval = -32768; // 0x8000 -0
maxval = -1024; // 0xFC00 -Inf
}
}
}
double getMaxErr(int)
{
return 0.5f;
}
void generateScalars(int, RNG& rng)
{
nextRange = rng.next();
}
int nextRange;
};
struct ConvertScaleAbsOp : public BaseElemWiseOp
{
@ -1371,6 +1425,7 @@ INSTANTIATE_TEST_CASE_P(Core_Copy, ElemWiseTest, ::testing::Values(ElemWiseOpPtr
INSTANTIATE_TEST_CASE_P(Core_Set, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::SetOp)));
INSTANTIATE_TEST_CASE_P(Core_SetZero, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::SetZeroOp)));
INSTANTIATE_TEST_CASE_P(Core_ConvertScale, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::ConvertScaleOp)));
INSTANTIATE_TEST_CASE_P(Core_ConvertScaleFp16, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::ConvertScaleFp16Op)));
INSTANTIATE_TEST_CASE_P(Core_ConvertScaleAbs, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::ConvertScaleAbsOp)));
INSTANTIATE_TEST_CASE_P(Core_Add, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::AddOp)));

View File

@ -3064,6 +3064,9 @@ void printVersionInfo(bool useStdOut)
#if CV_NEON
if (checkHardwareSupport(CV_CPU_NEON)) cpu_features += " neon";
#endif
#if CV_FP16
if (checkHardwareSupport(CV_CPU_FP16)) cpu_features += " fp16";
#endif
cpu_features.erase(0, 1); // erase initial space