mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
b39cd06249
2
3rdparty/carotene/hal/tegra_hal.hpp
vendored
2
3rdparty/carotene/hal/tegra_hal.hpp
vendored
@ -1531,7 +1531,7 @@ class TegraCvtColor_##name##_Invoker : public cv::ParallelLoopBody \
|
||||
public: \
|
||||
TegraCvtColor_##name##_Invoker(const uchar * src_data_, size_t src_step_, uchar * dst_data_, size_t dst_step_, int width_, int height_) : \
|
||||
cv::ParallelLoopBody(), src_data(src_data_), src_step(src_step_), dst_data(dst_data_), dst_step(dst_step_), width(width_), height(height_) {} \
|
||||
virtual void operator()(const cv::Range& range) const \
|
||||
virtual void operator()(const cv::Range& range) const CV_OVERRIDE \
|
||||
{ \
|
||||
CAROTENE_NS::func(CAROTENE_NS::Size2D(width, range.end-range.start), __VA_ARGS__); \
|
||||
} \
|
||||
|
@ -1,6 +1,39 @@
|
||||
add_definitions(-D__OPENCV_BUILD=1)
|
||||
add_definitions(-D__OPENCV_APPS=1)
|
||||
|
||||
# Unified function for creating OpenCV applications:
|
||||
# ocv_add_application(tgt [MODULES <m1> [<m2> ...]] SRCS <src1> [<src2> ...])
|
||||
function(ocv_add_application the_target)
|
||||
cmake_parse_arguments(APP "" "" "MODULES;SRCS" ${ARGN})
|
||||
ocv_check_dependencies(${APP_MODULES})
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(${the_target})
|
||||
ocv_target_include_modules_recurse(${the_target} ${APP_MODULES})
|
||||
ocv_target_include_directories(${the_target} PRIVATE "${OpenCV_SOURCE_DIR}/include/opencv")
|
||||
ocv_add_executable(${the_target} ${APP_SRCS})
|
||||
ocv_target_link_libraries(${the_target} ${APP_MODULES})
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "${the_target}")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
endif()
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT dev)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT dev)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
link_libraries(${OPENCV_LINKER_LIBS})
|
||||
|
||||
macro(ocv_add_app directory)
|
||||
|
@ -1,36 +1,3 @@
|
||||
SET(OPENCV_ANNOTATION_DEPS opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs opencv_videoio)
|
||||
ocv_check_dependencies(${OPENCV_ANNOTATION_DEPS})
|
||||
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(annotation)
|
||||
set(the_target opencv_annotation)
|
||||
|
||||
ocv_target_include_directories(${the_target} PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${OpenCV_SOURCE_DIR}/include/opencv")
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_ANNOTATION_DEPS})
|
||||
|
||||
file(GLOB SRCS *.cpp)
|
||||
|
||||
set(annotation_files ${SRCS})
|
||||
ocv_add_executable(${the_target} ${annotation_files})
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_ANNOTATION_DEPS})
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_annotation")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
endif()
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT dev)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT dev)
|
||||
endif()
|
||||
ocv_add_application(opencv_annotation
|
||||
MODULES opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs opencv_videoio
|
||||
SRCS opencv_annotation.cpp)
|
||||
|
@ -1,38 +1,4 @@
|
||||
set(OPENCV_CREATESAMPLES_DEPS opencv_core opencv_imgproc opencv_objdetect opencv_imgcodecs opencv_highgui opencv_calib3d opencv_features2d opencv_videoio)
|
||||
ocv_check_dependencies(${OPENCV_CREATESAMPLES_DEPS})
|
||||
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(createsamples)
|
||||
set(the_target opencv_createsamples)
|
||||
|
||||
ocv_target_include_directories(${the_target} PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${OpenCV_SOURCE_DIR}/include/opencv")
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_CREATESAMPLES_DEPS})
|
||||
|
||||
file(GLOB SRCS *.cpp)
|
||||
file(GLOB HDRS *.h*)
|
||||
|
||||
set(createsamples_files ${SRCS} ${HDRS})
|
||||
|
||||
ocv_add_executable(${the_target} ${createsamples_files})
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_CREATESAMPLES_DEPS})
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_createsamples")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
endif()
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT dev)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} OPTIONAL RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT dev)
|
||||
endif()
|
||||
ocv_add_application(opencv_createsamples
|
||||
MODULES opencv_core opencv_imgproc opencv_objdetect opencv_imgcodecs opencv_highgui opencv_calib3d opencv_features2d opencv_videoio
|
||||
SRCS ${SRCS})
|
||||
|
@ -1,41 +1,6 @@
|
||||
set(OPENCV_INTERACTIVECALIBRATION_DEPS opencv_core opencv_imgproc opencv_features2d opencv_highgui opencv_calib3d opencv_videoio)
|
||||
set(DEPS opencv_core opencv_imgproc opencv_features2d opencv_highgui opencv_calib3d opencv_videoio)
|
||||
if(${BUILD_opencv_aruco})
|
||||
list(APPEND OPENCV_INTERACTIVECALIBRATION_DEPS opencv_aruco)
|
||||
list(APPEND DEPS opencv_aruco)
|
||||
endif()
|
||||
ocv_check_dependencies(${OPENCV_INTERACTIVECALIBRATION_DEPS})
|
||||
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(interactive-calibration)
|
||||
set(the_target opencv_interactive-calibration)
|
||||
|
||||
ocv_target_include_directories(${the_target} PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${OpenCV_SOURCE_DIR}/include/opencv")
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_INTERACTIVECALIBRATION_DEPS})
|
||||
|
||||
file(GLOB SRCS *.cpp)
|
||||
file(GLOB HDRS *.h*)
|
||||
|
||||
set(interactive-calibration_files ${SRCS} ${HDRS})
|
||||
|
||||
ocv_add_executable(${the_target} ${interactive-calibration_files})
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_INTERACTIVECALIBRATION_DEPS})
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_interactive-calibration")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
endif()
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT dev)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} OPTIONAL RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT dev)
|
||||
endif()
|
||||
ocv_add_application(opencv_interactive-calibration MODULES ${DEPS} SRCS ${SRCS})
|
||||
|
@ -1,42 +1,5 @@
|
||||
set(OPENCV_TRAINCASCADE_DEPS opencv_core opencv_imgproc opencv_objdetect opencv_imgcodecs opencv_highgui opencv_calib3d opencv_features2d)
|
||||
ocv_check_dependencies(${OPENCV_TRAINCASCADE_DEPS})
|
||||
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(traincascade)
|
||||
set(the_target opencv_traincascade)
|
||||
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS -Woverloaded-virtual
|
||||
-Winconsistent-missing-override -Wsuggest-override
|
||||
)
|
||||
|
||||
ocv_target_include_directories(${the_target} PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${OpenCV_SOURCE_DIR}/include/opencv")
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_TRAINCASCADE_DEPS})
|
||||
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS -Woverloaded-virtual -Winconsistent-missing-override -Wsuggest-override)
|
||||
file(GLOB SRCS *.cpp)
|
||||
file(GLOB HDRS *.h*)
|
||||
|
||||
set(traincascade_files ${SRCS} ${HDRS})
|
||||
|
||||
ocv_add_executable(${the_target} ${traincascade_files})
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_TRAINCASCADE_DEPS})
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_traincascade")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
endif()
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT dev)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} OPTIONAL RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT dev)
|
||||
endif()
|
||||
ocv_add_application(opencv_traincascade
|
||||
MODULES opencv_core opencv_imgproc opencv_objdetect opencv_imgcodecs opencv_highgui opencv_calib3d opencv_features2d
|
||||
SRCS ${SRCS})
|
||||
|
@ -1,49 +1,5 @@
|
||||
set(OPENCV_APPLICATION_DEPS opencv_core)
|
||||
ocv_check_dependencies(${OPENCV_APPLICATION_DEPS})
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(opencv_version)
|
||||
set(the_target opencv_version)
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_APPLICATION_DEPS})
|
||||
ocv_add_executable(${the_target} opencv_version.cpp)
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_APPLICATION_DEPS})
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_version")
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT libs)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT libs)
|
||||
endif()
|
||||
|
||||
ocv_add_application(opencv_version MODULES opencv_core SRCS opencv_version.cpp)
|
||||
if(WIN32)
|
||||
project(opencv_version_win32)
|
||||
set(the_target opencv_version_win32)
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_APPLICATION_DEPS})
|
||||
ocv_add_executable(${the_target} opencv_version.cpp)
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_APPLICATION_DEPS})
|
||||
target_compile_definitions(${the_target} PRIVATE "OPENCV_WIN32_API=1")
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_version_win32")
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT libs)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT libs)
|
||||
endif()
|
||||
ocv_add_application(opencv_version_win32 MODULES opencv_core SRCS opencv_version.cpp)
|
||||
target_compile_definitions(opencv_version_win32 PRIVATE "OPENCV_WIN32_API=1")
|
||||
endif()
|
||||
|
@ -1,36 +1,3 @@
|
||||
SET(OPENCV_VISUALISATION_DEPS opencv_core opencv_highgui opencv_imgproc opencv_videoio opencv_imgcodecs)
|
||||
ocv_check_dependencies(${OPENCV_VISUALISATION_DEPS})
|
||||
|
||||
if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
project(visualisation)
|
||||
set(the_target opencv_visualisation)
|
||||
|
||||
ocv_target_include_directories(${the_target} PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${OpenCV_SOURCE_DIR}/include/opencv")
|
||||
ocv_target_include_modules_recurse(${the_target} ${OPENCV_VISUALISATION_DEPS})
|
||||
|
||||
file(GLOB SRCS *.cpp)
|
||||
|
||||
set(visualisation_files ${SRCS})
|
||||
ocv_add_executable(${the_target} ${visualisation_files})
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_VISUALISATION_DEPS})
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
OUTPUT_NAME "opencv_visualisation")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
endif()
|
||||
|
||||
if(INSTALL_CREATE_DISTRIB)
|
||||
if(BUILD_SHARED_LIBS)
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} CONFIGURATIONS Release COMPONENT dev)
|
||||
endif()
|
||||
else()
|
||||
install(TARGETS ${the_target} RUNTIME DESTINATION ${OPENCV_BIN_INSTALL_PATH} COMPONENT dev)
|
||||
endif()
|
||||
ocv_add_application(opencv_visualisation
|
||||
MODULES opencv_core opencv_highgui opencv_imgproc opencv_videoio opencv_imgcodecs
|
||||
SRCS opencv_visualisation.cpp)
|
||||
|
@ -361,6 +361,23 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
static Ptr<PermuteLayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
/**
|
||||
* Permute channels of 4-dimensional input blob.
|
||||
* @param group Number of groups to split input channels and pick in turns
|
||||
* into output blob.
|
||||
*
|
||||
* \f[ groupSize = \frac{number\ of\ channels}{group} \f]
|
||||
* \f[ output(n, c, h, w) = input(n, groupSize \times (c \% group) + \lfloor \frac{c}{group} \rfloor, h, w) \f]
|
||||
* Read more at https://arxiv.org/pdf/1707.01083.pdf
|
||||
*/
|
||||
class CV_EXPORTS ShuffleChannelLayer : public Layer
|
||||
{
|
||||
public:
|
||||
static Ptr<Layer> create(const LayerParams& params);
|
||||
|
||||
int group;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Adds extra values for specific axes.
|
||||
* @param paddings Vector of paddings in format
|
||||
@ -575,6 +592,17 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
static Ptr<ResizeLayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Bilinear resize layer from https://github.com/cdmh/deeplab-public
|
||||
*
|
||||
* It differs from @ref ResizeLayer in output shape and resize scales computations.
|
||||
*/
|
||||
class CV_EXPORTS InterpLayer : public Layer
|
||||
{
|
||||
public:
|
||||
static Ptr<Layer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
class CV_EXPORTS ProposalLayer : public Layer
|
||||
{
|
||||
public:
|
||||
|
@ -988,52 +988,26 @@ struct Net::Impl
|
||||
ld.inputBlobsId[inNum] = from;
|
||||
}
|
||||
|
||||
static void splitPin(const String &pinAlias, String &layerName, String &outName)
|
||||
{
|
||||
size_t delimPos = pinAlias.find('.');
|
||||
layerName = pinAlias.substr(0, delimPos);
|
||||
outName = (delimPos == String::npos) ? String() : pinAlias.substr(delimPos + 1);
|
||||
}
|
||||
|
||||
int resolvePinOutputName(LayerData &ld, const String &outName)
|
||||
{
|
||||
if (outName.empty())
|
||||
return 0;
|
||||
|
||||
if (std::isdigit(outName[0]))
|
||||
{
|
||||
char *lastChar;
|
||||
long inum = std::strtol(outName.c_str(), &lastChar, 10);
|
||||
|
||||
if (*lastChar == 0)
|
||||
{
|
||||
CV_Assert(inum == (int)inum);
|
||||
return (int)inum;
|
||||
}
|
||||
}
|
||||
|
||||
return ld.getLayerInstance()->outputNameToIndex(outName);
|
||||
}
|
||||
|
||||
LayerPin getPinByAlias(const String &pinAlias)
|
||||
LayerPin getPinByAlias(const String &layerName)
|
||||
{
|
||||
LayerPin pin;
|
||||
String layerName, outName;
|
||||
splitPin(pinAlias, layerName, outName);
|
||||
|
||||
pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);
|
||||
|
||||
if (pin.lid >= 0)
|
||||
pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName);
|
||||
pin.oid = resolvePinOutputName(getLayerData(pin.lid), layerName);
|
||||
|
||||
return pin;
|
||||
}
|
||||
|
||||
std::vector<LayerPin> getLayerOutPins(const String &pinAlias)
|
||||
std::vector<LayerPin> getLayerOutPins(const String &layerName)
|
||||
{
|
||||
String layerName, outName;
|
||||
splitPin(pinAlias, layerName, outName);
|
||||
|
||||
int lid = (layerName.empty()) ? 0 : getLayerId(layerName);
|
||||
|
||||
std::vector<LayerPin> pins;
|
||||
@ -2044,12 +2018,6 @@ int Net::addLayer(const String &name, const String &type, LayerParams ¶ms)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
if (name.find('.') != String::npos)
|
||||
{
|
||||
CV_Error(Error::StsBadArg, "Added layer name \"" + name + "\" must not contain dot symbol");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (impl->getLayerId(name) >= 0)
|
||||
{
|
||||
CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net");
|
||||
@ -2689,7 +2657,7 @@ int Layer::inputNameToIndex(String)
|
||||
|
||||
int Layer::outputNameToIndex(const String&)
|
||||
{
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool Layer::supportBackend(int backendId)
|
||||
|
@ -84,6 +84,7 @@ void initializeLayerFactory()
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Reshape, ReshapeLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Flatten, FlattenLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Resize, ResizeLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(CropAndResize, CropAndResizeLayer);
|
||||
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer);
|
||||
@ -115,6 +116,7 @@ void initializeLayerFactory()
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Crop, CropLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Eltwise, EltwiseLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Permute, PermuteLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(ShuffleChannel, ShuffleChannelLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(PriorBox, PriorBoxLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(PriorBoxClustered, PriorBoxLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Reorg, ReorgLayer);
|
||||
|
@ -1,3 +1,9 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
|
||||
|
@ -310,7 +310,6 @@ public:
|
||||
innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
|
||||
}
|
||||
|
||||
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
MatShape inshape, outshape;
|
||||
@ -320,7 +319,6 @@ public:
|
||||
UMat srcMat, dstMat;
|
||||
srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
|
||||
dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);
|
||||
dstMat.setTo(0.0f);
|
||||
|
||||
if (!innerProductOp->Forward(srcMat, (use_half) ? half_blobs[0] : umat_blobs[0],
|
||||
(bias) ? (use_half ? half_blobs[1] : umat_blobs[1]) : UMat(),
|
||||
@ -332,6 +330,7 @@ public:
|
||||
|
||||
if (!use_half && bias && (outerSize > 1))
|
||||
{
|
||||
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
|
||||
UMat& biases = umat_blobs[1];
|
||||
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
|
||||
}
|
||||
@ -354,6 +353,7 @@ public:
|
||||
|
||||
if (bias)
|
||||
{
|
||||
UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
|
||||
UMat& biases = umat_blobs[1];
|
||||
cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
|
||||
}
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
class ResizeLayerImpl CV_FINAL : public ResizeLayer
|
||||
class ResizeLayerImpl : public ResizeLayer
|
||||
{
|
||||
public:
|
||||
ResizeLayerImpl(const LayerParams& params)
|
||||
@ -33,7 +33,7 @@ public:
|
||||
interpolation = params.get<String>("interpolation");
|
||||
CV_Assert(interpolation == "nearest" || interpolation == "bilinear");
|
||||
|
||||
alignCorners = params.get<bool>("align_corners", false);
|
||||
bool alignCorners = params.get<bool>("align_corners", false);
|
||||
if (alignCorners)
|
||||
CV_Error(Error::StsNotImplemented, "Resize with align_corners=true is not implemented");
|
||||
}
|
||||
@ -66,6 +66,8 @@ public:
|
||||
outHeight = outputs[0].size[2];
|
||||
outWidth = outputs[0].size[3];
|
||||
}
|
||||
scaleHeight = static_cast<float>(inputs[0]->size[2]) / outHeight;
|
||||
scaleWidth = static_cast<float>(inputs[0]->size[3]) / outWidth;
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
@ -103,8 +105,6 @@ public:
|
||||
const int inpWidth = inp.size[3];
|
||||
const int inpSpatialSize = inpHeight * inpWidth;
|
||||
const int outSpatialSize = outHeight * outWidth;
|
||||
const float heightScale = static_cast<float>(inpHeight) / (outHeight);
|
||||
const float widthScale = static_cast<float>(inpWidth) / (outWidth);
|
||||
const int numPlanes = inp.size[0] * inp.size[1];
|
||||
CV_Assert(inp.isContinuous(), out.isContinuous());
|
||||
|
||||
@ -112,13 +112,13 @@ public:
|
||||
Mat outPlanes = out.reshape(1, numPlanes * outHeight);
|
||||
for (int y = 0; y < outHeight; ++y)
|
||||
{
|
||||
float input_y = y * heightScale;
|
||||
float input_y = y * scaleHeight;
|
||||
int y0 = static_cast<int>(input_y);
|
||||
const float* inpData_row0 = inpPlanes.ptr<float>(y0);
|
||||
const float* inpData_row1 = inpPlanes.ptr<float>(std::min(y0 + 1, inpHeight - 1));
|
||||
for (int x = 0; x < outWidth; ++x)
|
||||
{
|
||||
float input_x = x * widthScale;
|
||||
float input_x = x * scaleWidth;
|
||||
int x0 = static_cast<int>(input_x);
|
||||
int x1 = std::min(x0 + 1, inpWidth - 1);
|
||||
|
||||
@ -162,10 +162,10 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
private:
|
||||
protected:
|
||||
int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight;
|
||||
String interpolation;
|
||||
bool alignCorners;
|
||||
float scaleWidth, scaleHeight;
|
||||
};
|
||||
|
||||
|
||||
@ -174,5 +174,44 @@ Ptr<ResizeLayer> ResizeLayer::create(const LayerParams& params)
|
||||
return Ptr<ResizeLayer>(new ResizeLayerImpl(params));
|
||||
}
|
||||
|
||||
class InterpLayerImpl CV_FINAL : public ResizeLayerImpl
|
||||
{
|
||||
public:
|
||||
InterpLayerImpl(const LayerParams& params) : ResizeLayerImpl(params) {}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
|
||||
outputs.resize(1, inputs[0]);
|
||||
outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1));
|
||||
outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1));
|
||||
// We can work in-place (do nothing) if input shape == output shape.
|
||||
return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
|
||||
}
|
||||
|
||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||
{
|
||||
if (!outWidth && !outHeight)
|
||||
{
|
||||
outHeight = outputs[0].size[2];
|
||||
outWidth = outputs[0].size[3];
|
||||
}
|
||||
int inpHeight = inputs[0]->size[2];
|
||||
int inpWidth = inputs[0]->size[3];
|
||||
scaleHeight = (outHeight > 1) ? (static_cast<float>(inpHeight - 1) / (outHeight - 1)) : 0.f;
|
||||
scaleWidth = (outWidth > 1) ? (static_cast<float>(inpWidth - 1) / (outWidth - 1)) : 0.f;
|
||||
}
|
||||
};
|
||||
|
||||
Ptr<Layer> InterpLayer::create(const LayerParams& params)
|
||||
{
|
||||
LayerParams lp(params);
|
||||
lp.set("interpolation", "bilinear");
|
||||
return Ptr<Layer>(new InterpLayerImpl(lp));
|
||||
}
|
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
||||
|
104
modules/dnn/src/layers/shuffle_channel_layer.cpp
Normal file
104
modules/dnn/src/layers/shuffle_channel_layer.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "../precomp.hpp"
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
class ShuffleChannelLayerImpl CV_FINAL : public ShuffleChannelLayer
|
||||
{
|
||||
public:
|
||||
ShuffleChannelLayerImpl(const LayerParams& params)
|
||||
{
|
||||
group = params.get<int>("group", 1);
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 1 && inputs[0].size() == 4);
|
||||
CV_Assert(inputs[0][1] % group == 0);
|
||||
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
||||
return group == 1;
|
||||
}
|
||||
|
||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||
{
|
||||
if (group != 1)
|
||||
{
|
||||
LayerParams lp;
|
||||
float order[] = {0, 2, 1, 3};
|
||||
lp.set("order", DictValue::arrayInt(&order[0], 4));
|
||||
permute = PermuteLayer::create(lp);
|
||||
|
||||
Mat inp = *inputs[0];
|
||||
Mat out = outputs[0];
|
||||
|
||||
permuteInpShape.resize(4);
|
||||
permuteInpShape[0] = inp.size[0];
|
||||
permuteInpShape[1] = group;
|
||||
permuteInpShape[2] = inp.size[1] / group;
|
||||
permuteInpShape[3] = inp.size[2]*inp.size[3];
|
||||
|
||||
permuteOutShape.resize(4);
|
||||
permuteOutShape[0] = permuteInpShape[0];
|
||||
permuteOutShape[1] = permuteInpShape[2];
|
||||
permuteOutShape[2] = permuteInpShape[1];
|
||||
permuteOutShape[3] = permuteInpShape[3];
|
||||
|
||||
inp = inp.reshape(1, permuteInpShape);
|
||||
out = out.reshape(1, permuteOutShape);
|
||||
|
||||
std::vector<Mat*> permuteInputs(1, &inp);
|
||||
std::vector<Mat> permuteOutputs(1, out);
|
||||
permute->finalize(permuteInputs, permuteOutputs);
|
||||
}
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||
}
|
||||
|
||||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
Mat inp = *inputs[0];
|
||||
Mat out = outputs[0];
|
||||
if (inp.data != out.data)
|
||||
{
|
||||
if (!permute.empty())
|
||||
{
|
||||
inp = inp.reshape(1, permuteInpShape);
|
||||
out = out.reshape(1, permuteOutShape);
|
||||
std::vector<Mat*> permuteInputs(1, &inp);
|
||||
std::vector<Mat> permuteOutputs(1, out);
|
||||
permute->forward(permuteInputs, permuteOutputs, internals);
|
||||
}
|
||||
else
|
||||
inp.copyTo(out);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Ptr<PermuteLayer> permute;
|
||||
std::vector<int> permuteInpShape, permuteOutShape;
|
||||
};
|
||||
|
||||
Ptr<Layer> ShuffleChannelLayer::create(const LayerParams& params)
|
||||
{
|
||||
return Ptr<Layer>(new ShuffleChannelLayerImpl(params));
|
||||
}
|
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
File diff suppressed because it is too large
Load Diff
@ -306,6 +306,7 @@ class OCL4DNNConvSpatial
|
||||
std::string kernel_name_;
|
||||
std::string cache_path_;
|
||||
bool use_cache_path_; // true if cache_path_ directory exists
|
||||
bool run_auto_tuning_;
|
||||
bool force_auto_tuning_;
|
||||
int32_t kernel_index_;
|
||||
std::vector< cv::Ptr<kernelConfig> > kernelQueue;
|
||||
|
@ -55,6 +55,7 @@
|
||||
#include "../include/math_functions.hpp"
|
||||
#include "../include/default_kernel_config.hpp"
|
||||
#include "opencv2/dnn/shape_utils.hpp"
|
||||
#include "opencv2/core/utils/logger.hpp"
|
||||
|
||||
#if defined WIN32 || defined _WIN32
|
||||
#include <windows.h>
|
||||
@ -67,6 +68,69 @@ typedef std::map<std::string, std::string> kernel_hash_t;
|
||||
static kernel_hash_t kernelConfigMap;
|
||||
static bool defaultConfigLoaded = false;
|
||||
|
||||
static std::string sanitize(const std::string& s)
|
||||
{
|
||||
std::string s_ = s;
|
||||
for (size_t i = 0; i < s_.size(); i++)
|
||||
{
|
||||
char c = s_[i];
|
||||
if (!((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_'))
|
||||
{
|
||||
s_[i] = '_';
|
||||
}
|
||||
}
|
||||
// TODO add hash?
|
||||
// s_ = s_ + cv::format("_%08llx", crc64((uchar*)s.c_str(), s.size()));
|
||||
return s_;
|
||||
}
|
||||
|
||||
static void initializeGlobalBuiltinConfigurations(const std::string& cache_path)
|
||||
{
|
||||
CV_Assert(defaultConfigLoaded == false);
|
||||
CV_Assert(kernelConfigMap.empty());
|
||||
|
||||
/* fp32 config */
|
||||
size_t numConfigs = sizeof(default_kernel_config_intel_fp32) /
|
||||
sizeof(default_kernel_config_intel_fp32[0]) / 2;
|
||||
for (size_t i = 0; i < numConfigs; i++)
|
||||
{
|
||||
std::string key = std::string("Intel(R) Corporation_") + default_kernel_config_intel_fp32[2 * i];
|
||||
if (!cache_path.empty())
|
||||
{
|
||||
std::string cacheFile = cache_path + sanitize(key);
|
||||
std::ifstream cachedKernel(cacheFile.c_str());
|
||||
if (cachedKernel)
|
||||
continue; // external configuration found, skip builtin
|
||||
}
|
||||
std::pair<std::string, std::string> entry(
|
||||
key,
|
||||
default_kernel_config_intel_fp32[2 * i + 1]);
|
||||
kernelConfigMap.insert(entry);
|
||||
}
|
||||
|
||||
/* fp16 config */
|
||||
numConfigs = sizeof(default_kernel_config_intel_fp16) /
|
||||
sizeof(default_kernel_config_intel_fp16[0]) / 2;
|
||||
for (size_t i = 0; i < numConfigs; i++)
|
||||
{
|
||||
std::string key = std::string("Intel(R) Corporation_") + default_kernel_config_intel_fp16[2 * i];
|
||||
if (!cache_path.empty())
|
||||
{
|
||||
std::string cacheFile = cache_path + sanitize(key);
|
||||
std::ifstream cachedKernel(cacheFile.c_str());
|
||||
if (cachedKernel)
|
||||
continue; // external configuration found, skip builtin
|
||||
}
|
||||
std::pair<std::string, std::string> entry(
|
||||
key,
|
||||
default_kernel_config_intel_fp16[2 * i + 1]);
|
||||
kernelConfigMap.insert(entry);
|
||||
}
|
||||
|
||||
defaultConfigLoaded = true;
|
||||
}
|
||||
|
||||
|
||||
template<typename Dtype>
|
||||
OCL4DNNConvSpatial<Dtype>::OCL4DNNConvSpatial(OCL4DNNConvConfig config)
|
||||
{
|
||||
@ -139,9 +203,8 @@ OCL4DNNConvSpatial<Dtype>::OCL4DNNConvSpatial(OCL4DNNConvConfig config)
|
||||
}
|
||||
}
|
||||
|
||||
force_auto_tuning_ =
|
||||
(use_cache_path_ && !utils::getConfigurationParameterBool("OPENCV_OCL4DNN_DISABLE_AUTO_TUNING", false))
|
||||
|| utils::getConfigurationParameterBool("OPENCV_OCL4DNN_FORCE_AUTO_TUNING", false);
|
||||
run_auto_tuning_ = use_cache_path_ && !utils::getConfigurationParameterBool("OPENCV_OCL4DNN_DISABLE_AUTO_TUNING", false);
|
||||
force_auto_tuning_ = utils::getConfigurationParameterBool("OPENCV_OCL4DNN_FORCE_AUTO_TUNING", false);
|
||||
}
|
||||
|
||||
template<typename Dtype>
|
||||
@ -272,40 +335,38 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType,
|
||||
|
||||
// options
|
||||
options_ << " -cl-fast-relaxed-math -D KERNEL_IDLF -D convolve_simd=" << kernel_name_;
|
||||
options_ << " -cl-mad-enable";
|
||||
if (clOptionSupport("-cl-no-subgroup-ifp"))
|
||||
options_ << " -cl-no-subgroup-ifp ";
|
||||
|
||||
// defs
|
||||
int32_t output_width = output_w_;
|
||||
int32_t output_height = output_h_;
|
||||
int32_t output_block_width = blockM;
|
||||
int32_t output_block_height = blockK;
|
||||
const int32_t last_block_width = (output_width % output_block_width == 0) ?
|
||||
output_block_width : output_width % output_block_width;
|
||||
const int32_t last_block_height = (output_height % output_block_height == 0) ?
|
||||
output_block_height : output_height % output_block_height;
|
||||
int tile_x = alignSize((output_block_width - 1) * stride_w_ + kernel_w_ * dilation_w_, 4);
|
||||
int tile_y = (output_block_height -1) * stride_h_ + kernel_h_ * dilation_h_;
|
||||
int tile_y_stride = (4 * simd_size) / tile_x;
|
||||
int invec_size = divUp(tile_y, tile_y_stride);
|
||||
int tile_x = (output_block_width - 1) * stride_w_ + kernel_w_ * dilation_w_;
|
||||
int tile_y = (output_block_height - 1) * stride_h_ + kernel_h_ * dilation_h_;
|
||||
int invec_size = tile_y;
|
||||
|
||||
addDef("SIMD_SIZE", simd_size);
|
||||
addDef("filter_qualifier", "__global");
|
||||
addDef("OUT_BLOCK_WIDTH", output_block_width);
|
||||
addDef("OUT_BLOCK_HEIGHT", output_block_height);
|
||||
addDef("LAST_BLOCK_WIDTH", last_block_width);
|
||||
addDef("LAST_BLOCK_HEIGHT", last_block_height);
|
||||
addDef("INPUT_DEPTH", channels_ / group_);
|
||||
addDef("TOTAL_INPUT_DEPTH_SIZE", channels_);
|
||||
addDef("TOTAL_OUTPUT_DEPTH", num_output_);
|
||||
addDef("NUM_FILTERS", M_);
|
||||
addDef("TILE_X", tile_x);
|
||||
addDef("TILE_Y", tile_y);
|
||||
addDef("TILE_Y_STRIDE", tile_y_stride);
|
||||
addDef("INVEC_SIZE", invec_size);
|
||||
addDef("ALIGNED_NUM_FILTERS", (int)alignSize(M_, simd_size));
|
||||
addDef("OUT_BLOCK_SIZE", (output_block_width*output_block_height));
|
||||
addDef("APPLY_BIAS", bias_term_);
|
||||
addDef("WEIGHT_PREF", ((kernel_w_ * kernel_h_) == 1) ? 1 : 8);
|
||||
addDef("INPUT_PITCH", (width_ * height_));
|
||||
addDef("OUTPUT_PITCH", (output_w_ * output_h_));
|
||||
addDef("LEFT_FILTERS", ((int)alignSize(M_, simd_size) - M_));
|
||||
addDef("INPUT_WIDTH", width_);
|
||||
addDef("INPUT_HEIGHT", height_);
|
||||
addDef("FILTERS_IN_GROUP", ((int)alignSize(M_, simd_size) / simd_size));
|
||||
|
||||
setFusionDefine(fused_activ_, fused_eltwise_);
|
||||
|
||||
src_ = cv::ocl::dnn::conv_layer_spatial_oclsrc;
|
||||
@ -528,13 +589,6 @@ void OCL4DNNConvSpatial<Dtype>::calculateBenchmark(const UMat &bottom, UMat &ver
|
||||
return;
|
||||
}
|
||||
|
||||
#define dbg
|
||||
#ifdef dbg
|
||||
#define dbgPrint(x) (x)
|
||||
#else
|
||||
#define dbgPrint(x)
|
||||
#endif
|
||||
|
||||
// For large enough input size, we do not need to tune kernels for different
|
||||
// size. The reason is with large input size, there will be enough work items
|
||||
// to feed al the EUs.
|
||||
@ -545,6 +599,7 @@ void OCL4DNNConvSpatial<Dtype>::calculateBenchmark(const UMat &bottom, UMat &ver
|
||||
template<typename Dtype>
|
||||
void OCL4DNNConvSpatial<Dtype>::generateKey()
|
||||
{
|
||||
std::string precision = (use_half_) ? "FP16" : "FP32";
|
||||
std::stringstream keyBuilder;
|
||||
// FIXME: to support fuse?
|
||||
keyBuilder << "k" << kernel_w_ << "x" << kernel_h_ << "_"
|
||||
@ -558,21 +613,12 @@ void OCL4DNNConvSpatial<Dtype>::generateKey()
|
||||
<< "num" << num_ << "_"
|
||||
<< "M" << M_ << "_"
|
||||
<< "activ" << fused_activ_ << "_"
|
||||
<< "eltwise" << fused_eltwise_;
|
||||
<< "eltwise" << fused_eltwise_ << "_"
|
||||
<< precision;
|
||||
|
||||
|
||||
key_ = ocl::Device::getDefault().vendorName() + "_EU" + cv::format("%d", ocl::Device::getDefault().maxComputeUnits()) + "_" + keyBuilder.str();
|
||||
key_sanitized_ = key_;
|
||||
for (size_t i = 0; i < key_sanitized_.size(); i++)
|
||||
{
|
||||
char c = key_sanitized_[i];
|
||||
if (!((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_'))
|
||||
{
|
||||
key_sanitized_[i] = '_';
|
||||
}
|
||||
}
|
||||
// TODO add hash?
|
||||
// key_sanitized_ = key_sanitized_ + cv::format("_%08llx", crc64((uchar*)key_.c_str(), key_.size()));
|
||||
key_sanitized_ = sanitize(key_);
|
||||
short_key_ = keyBuilder.str();
|
||||
}
|
||||
|
||||
@ -587,11 +633,6 @@ std::string OCL4DNNConvSpatial<Dtype>::generateSpecificKey(int32_t type, int32_t
|
||||
<< "_" << blockHeight
|
||||
<< "_" << blockDepth;
|
||||
|
||||
if (!use_half_)
|
||||
keyBuilder << "_float";
|
||||
else
|
||||
keyBuilder << "_half";
|
||||
|
||||
return keyBuilder.str();
|
||||
}
|
||||
|
||||
@ -1135,7 +1176,7 @@ float OCL4DNNConvSpatial<float>::timedConvolve(const UMat &bottom, UMat &top,
|
||||
cv::ocl::Timer timer(queue);
|
||||
timer.start();
|
||||
bool res = true;;
|
||||
dbgPrint(std::cout << "Benchmarking kernel: " << config->kernelName << std::endl);
|
||||
CV_LOG_INFO(NULL, "Benchmarking kernel: " << config->kernelName);
|
||||
tuned_ = true;
|
||||
int loop_cnt = 4;
|
||||
for (int i = 0; i < loop_cnt; i++) {
|
||||
@ -1152,7 +1193,6 @@ float OCL4DNNConvSpatial<float>::timedConvolve(const UMat &bottom, UMat &top,
|
||||
}
|
||||
|
||||
float elapsedTime = timer.durationNS() * 1e-6 / loop_cnt;
|
||||
#ifdef dbg
|
||||
double out_w = output_w_;
|
||||
double out_h = output_h_;
|
||||
double out_z = M_;
|
||||
@ -1160,16 +1200,8 @@ float OCL4DNNConvSpatial<float>::timedConvolve(const UMat &bottom, UMat &top,
|
||||
double k_h = kernel_h_;
|
||||
double k_z = channels_;
|
||||
double totalFlops = ((k_w*k_h*k_z -1)*2)*(out_w*out_h*out_z)*num_;
|
||||
std::cout << "\tEstimated Gflops:" << (totalFlops * 1e-9)
|
||||
<< std::endl;
|
||||
std::cout << "\tEstimated GFLOPS/S: " << ((totalFlops * 1e-9)*(1000.0/elapsedTime))
|
||||
<< std::endl;
|
||||
#if 0
|
||||
std::cout << "Estimated utilization: " <<
|
||||
((((totalFlops/1000)/1000)/1000)*(1000.0/elapsedTime))/880.0
|
||||
<< std::endl;
|
||||
#endif
|
||||
#endif
|
||||
CV_LOG_INFO(NULL, "\tEstimated Gflops:" << (totalFlops * 1e-9));
|
||||
CV_LOG_INFO(NULL, "\tEstimated GFLOPS/S: " << ((totalFlops * 1e-9)*(1000.0/elapsedTime)));
|
||||
return elapsedTime;
|
||||
}
|
||||
|
||||
@ -1225,18 +1257,18 @@ bool OCL4DNNConvSpatial<float>::verifyResult(const UMat &bottom,
|
||||
if (use_half_ && error_factor > 0.1 * fabs(verify_data[offset]) &&
|
||||
error_factor > 0.04 && !(fabs(verify_data[offset]) < 1.e-3 && error_factor < 1.e-4))
|
||||
{
|
||||
dbgPrint(printf("test verification failed @ image %d group %d"
|
||||
"out_ch %d h %d w %d got %G expected %G\n",
|
||||
n, g, out_ch, h, w, data[offset], verify_data[offset]));
|
||||
CV_LOG_ERROR(NULL, "test verification failed @ image " << n << " group " << g
|
||||
<< " out_ch " << out_ch << " h " << h << " w " << w
|
||||
<< " got " << data[offset] << " expected " << verify_data[offset]);
|
||||
verificationFail = 1;
|
||||
goto out;
|
||||
}
|
||||
else if (!use_half_ && error_factor > 0.1 * fabs(verify_data[offset]) &&
|
||||
!(fabs(verify_data[offset]) < 1.e-3 && error_factor < 1.e-4))
|
||||
{
|
||||
dbgPrint(printf("test verification failed @ image %d group %d"
|
||||
"out_ch %d h %d w %d got %G expected %G\n",
|
||||
n, g, out_ch, h, w, data[offset], verify_data[offset]));
|
||||
CV_LOG_ERROR(NULL, "test verification failed @ image " << n << " group " << g
|
||||
<< " out_ch " << out_ch << " h " << h << " w " << w
|
||||
<< " got " << data[offset] << " expected " << verify_data[offset]);
|
||||
verificationFail = 1;
|
||||
goto out;
|
||||
}
|
||||
@ -1517,17 +1549,11 @@ void OCL4DNNConvSpatial<float>::generate_idlf_tuneritems(std::vector< cv::Ptr<tu
|
||||
return;
|
||||
|
||||
int actual_tile_x = kernel_w_ * dilation_w_ + (blockM - 1) * stride_w_ ;
|
||||
int tile_x = alignSize(actual_tile_x, 4);
|
||||
int tile_y = kernel_h_ * dilation_h_ + (blockK - 1) * stride_h_;
|
||||
if (tile_x > (4 * simd_size))
|
||||
int tile_x = alignSize(actual_tile_x, simd_size);
|
||||
if (tile_x > simd_size)
|
||||
return;
|
||||
|
||||
if ((blockM * blockK + divUp(tile_x * tile_y, simd_size)) > block_size_max)
|
||||
return;
|
||||
|
||||
int tile_y_stride = (4 * simd_size) / tile_x;
|
||||
int invec_size = divUp(tile_y, tile_y_stride);
|
||||
if (invec_size > 4)
|
||||
if (blockM * blockK > block_size_max)
|
||||
return;
|
||||
|
||||
tunerItems.push_back(makePtr<tunerParam>(KERNEL_TYPE_INTEL_IDLF, blockM, blockK, simd_size));
|
||||
@ -1570,11 +1596,7 @@ void OCL4DNNConvSpatial<float>::generateTunerItems(std::vector< cv::Ptr<tunerPar
|
||||
for (uint32_t height = height_max; height > 0; height--)
|
||||
{
|
||||
generate_idlf_tuneritems(tunerItems, width, height, simd_size);
|
||||
if (tunerItems.size() >= 8 && height == 2)
|
||||
break;
|
||||
}
|
||||
if (tunerItems.size() >= 12 && width == 2)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1661,35 +1683,31 @@ void OCL4DNNConvSpatial<float>::setupConvolution(const UMat &bottom,
|
||||
if (kernelQueue[x]->tested == false) {
|
||||
bool verified = verifyResult(bottom, top, weight, bias, numImages, kernelQueue[x], verifyTop);
|
||||
if (verified == false) {
|
||||
dbgPrint(std::cout << "Kernel "
|
||||
<< kernelQueue[x]->kernelName
|
||||
<< " failed verification" << std::endl);
|
||||
dbgPrint(std::cout << "kernelQueue[x]->workItem_output[0]: "
|
||||
<< kernelQueue[x]->workItem_output[0] << " "
|
||||
<< "kernelQueue[x]->workItem_output[1]: "
|
||||
<< kernelQueue[x]->workItem_output[1] << " "
|
||||
<< "kernelQueue[x]->workItem_output[2]: "
|
||||
<< kernelQueue[x]->workItem_output[2] << " "
|
||||
<< "kernelQueue[x]->kernelType: "
|
||||
<< kernelQueue[x]->kernelType << " "
|
||||
<< "kernelQueue[x]->global_work_size[0]: "
|
||||
<< kernelQueue[x]->global_work_size[0] << " "
|
||||
<< "kernelQueue[x]->global_work_size[1]: "
|
||||
<< kernelQueue[x]->global_work_size[1] << " "
|
||||
<< "kernelQueue[x]->global_work_size[2]: "
|
||||
<< kernelQueue[x]->global_work_size[2] << " "
|
||||
<< "kernelQueue[x]->local_work_size[0]: "
|
||||
<< kernelQueue[x]->local_work_size[0] << " "
|
||||
<< "kernelQueue[x]->local_work_size[1]: "
|
||||
<< kernelQueue[x]->local_work_size[1] << " "
|
||||
<< "kernelQueue[x]->local_work_size[2]: "
|
||||
<< kernelQueue[x]->local_work_size[2] << " "
|
||||
<< kernelQueue[x]->swizzle_weights << " "
|
||||
<< kernelQueue[x]->use_null_local << std::endl);
|
||||
CV_LOG_ERROR(NULL, "Kernel " << kernelQueue[x]->kernelName << " failed verification");
|
||||
CV_LOG_ERROR(NULL, "kernelQueue[x]->workItem_output[0]: "
|
||||
<< kernelQueue[x]->workItem_output[0] << " "
|
||||
<< "kernelQueue[x]->workItem_output[1]: "
|
||||
<< kernelQueue[x]->workItem_output[1] << " "
|
||||
<< "kernelQueue[x]->workItem_output[2]: "
|
||||
<< kernelQueue[x]->workItem_output[2] << " "
|
||||
<< "kernelQueue[x]->kernelType: "
|
||||
<< kernelQueue[x]->kernelType << " "
|
||||
<< "kernelQueue[x]->global_work_size[0]: "
|
||||
<< kernelQueue[x]->global_work_size[0] << " "
|
||||
<< "kernelQueue[x]->global_work_size[1]: "
|
||||
<< kernelQueue[x]->global_work_size[1] << " "
|
||||
<< "kernelQueue[x]->global_work_size[2]: "
|
||||
<< kernelQueue[x]->global_work_size[2] << " "
|
||||
<< "kernelQueue[x]->local_work_size[0]: "
|
||||
<< kernelQueue[x]->local_work_size[0] << " "
|
||||
<< "kernelQueue[x]->local_work_size[1]: "
|
||||
<< kernelQueue[x]->local_work_size[1] << " "
|
||||
<< "kernelQueue[x]->local_work_size[2]: "
|
||||
<< kernelQueue[x]->local_work_size[2] << " "
|
||||
<< kernelQueue[x]->swizzle_weights << " "
|
||||
<< kernelQueue[x]->use_null_local);
|
||||
} else {
|
||||
dbgPrint(std::cout << "Kernel "
|
||||
<< kernelQueue[x]->kernelName
|
||||
<< " pass verification" << std::endl);
|
||||
CV_LOG_INFO(NULL, "Kernel " << kernelQueue[x]->kernelName << " pass verification");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@ -1718,19 +1736,28 @@ void OCL4DNNConvSpatial<float>::setupConvolution(const UMat &bottom,
|
||||
break;
|
||||
} else {
|
||||
kernelQueue[fastestKernel]->tested = true;
|
||||
dbgPrint(std::cout << "Kernel " <<
|
||||
kernelQueue[fastestKernel]->kernelName <<
|
||||
" failed verification" << std::endl);
|
||||
CV_LOG_ERROR(NULL, "Kernel " << kernelQueue[fastestKernel]->kernelName <<
|
||||
" failed verification");
|
||||
failures++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (verification) {
|
||||
dbgPrint(std::cout << "Kernel <" << kernelQueue[kernel_index_]->kernelName <<
|
||||
"> passed verification" << std::endl);
|
||||
dbgPrint(std::cout << "Convolution Time:" << kernelQueue[kernel_index_]->executionTime << std::endl);
|
||||
CV_LOG_INFO(NULL, "Kernel <" << kernelQueue[kernel_index_]->kernelName <<
|
||||
"> passed verification");
|
||||
CV_LOG_INFO(NULL, "Convolution Time:" << kernelQueue[kernel_index_]->executionTime);
|
||||
double out_w = output_w_;
|
||||
double out_h = output_h_;
|
||||
double out_z = M_;
|
||||
double k_w = kernel_w_;
|
||||
double k_h = kernel_h_;
|
||||
double k_z = channels_;
|
||||
float elapsedTime = kernelQueue[kernel_index_]->executionTime;
|
||||
double totalFlops = ((k_w*k_h*k_z -1)*2)*(out_w*out_h*out_z)*num_;
|
||||
CV_LOG_INFO(NULL, "\tEstimated Gflops:" << (totalFlops * 1e-9));
|
||||
CV_LOG_INFO(NULL, "\tEstimated GFLOPS/S: " << ((totalFlops * 1e-9)*(1000.0/elapsedTime)));
|
||||
} else {
|
||||
dbgPrint(std::cout << "fallback to basic kernel" << std::endl);
|
||||
CV_LOG_INFO(NULL, "fallback to basic kernel");
|
||||
options_.str(""); options_.clear(); // clear contents and state flags
|
||||
createBasicKernel(1, 1, 1);
|
||||
kernel_index_ = kernelQueue.size() - 1;
|
||||
@ -1798,14 +1825,14 @@ void OCL4DNNConvSpatial<Dtype>::prepareKernel(const UMat &bottom, UMat &top,
|
||||
if (loadCachedConfig()) // check in-memory cache
|
||||
return;
|
||||
|
||||
if (loadTunedConfig()) // check external storage
|
||||
if (loadTunedConfig()) // check external storage
|
||||
return;
|
||||
|
||||
UMat benchData(1, numImages * top_dim_, (use_half_) ? CV_16SC1 : CV_32FC1);
|
||||
|
||||
calculateBenchmark(bottom, benchData, (use_half_) ? weights_half : weight, bias, numImages);
|
||||
|
||||
if (force_auto_tuning_)
|
||||
if (run_auto_tuning_ || force_auto_tuning_)
|
||||
{
|
||||
setupConvolution(bottom, top, weight, bias, numImages, benchData);
|
||||
}
|
||||
@ -1820,18 +1847,8 @@ template<typename Dtype>
|
||||
bool OCL4DNNConvSpatial<Dtype>::loadCachedConfig()
|
||||
{
|
||||
cv::AutoLock lock(kernelConfigMutex);
|
||||
if (!defaultConfigLoaded)
|
||||
{
|
||||
const size_t numConfigs = sizeof(default_kernel_config_intel)/sizeof(default_kernel_config_intel[0])/2;
|
||||
for (size_t i = 0; i < numConfigs; i++)
|
||||
{
|
||||
std::pair<std::string, std::string> entry(
|
||||
std::string("Intel(R) Corporation_") + default_kernel_config_intel[2 * i],
|
||||
default_kernel_config_intel[2 * i + 1]);
|
||||
kernelConfigMap.insert(entry);
|
||||
}
|
||||
defaultConfigLoaded = true;
|
||||
}
|
||||
if (!defaultConfigLoaded && !force_auto_tuning_)
|
||||
initializeGlobalBuiltinConfigurations((use_cache_path_ && !cache_path_.empty()) ? (cache_path_ + '/') : std::string());
|
||||
|
||||
kernel_hash_t::iterator it = kernelConfigMap.find(key_);
|
||||
if (it != kernelConfigMap.end())
|
||||
@ -1904,9 +1921,12 @@ bool OCL4DNNConvSpatial<Dtype>::setupKernelByConfig(int x, int y, int z, int typ
|
||||
template<typename Dtype>
|
||||
bool OCL4DNNConvSpatial<Dtype>::loadTunedConfig()
|
||||
{
|
||||
if (force_auto_tuning_)
|
||||
return false; // don't load results from external storage
|
||||
|
||||
if (!use_cache_path_)
|
||||
{
|
||||
if (cache_path_.empty() && !force_auto_tuning_)
|
||||
if (cache_path_.empty())
|
||||
{
|
||||
static int warn_ = 0;
|
||||
if (!warn_)
|
||||
|
@ -206,8 +206,6 @@ __kernel void ConvolveBasic(
|
||||
|
||||
#elif defined KERNEL_IDLF
|
||||
|
||||
#define VLOAD4(_v, _p) do { _v = vload4(0, _p); } while(0)
|
||||
|
||||
// Each work-item computes a OUT_BLOCK_WIDTH * OUT_BLOCK_HEIGHT region of one output map.
|
||||
// Each work-group (which will be mapped to 1 SIMD16/SIMD8 EU thread) will compute 16/8 different feature maps, but each feature map is for the same region of the input image.
|
||||
// NDRange: (output_width+pad)/ OUT_BLOCK_WIDTH, (output_height+pad)/OUT_BLOCK_HEIGHT, NUM_FILTERS/OUT_BLOCK_DEPTH
|
||||
@ -219,190 +217,123 @@ __kernel void
|
||||
convolve_simd(
|
||||
ELTWISE_DATA_ARG
|
||||
FUSED_ARG
|
||||
__global Dtype* inputs_base,
|
||||
filter_qualifier Dtype* weights_base,
|
||||
__global Dtype* inputs,
|
||||
__global Dtype* weights,
|
||||
BIAS_KERNEL_ARG
|
||||
__global Dtype* outputs_base,
|
||||
__global Dtype* outputs,
|
||||
const ushort input_width,
|
||||
const ushort input_height,
|
||||
const ushort output_width,
|
||||
const ushort output_height)
|
||||
{
|
||||
__global Dtype* outputs = outputs_base;
|
||||
__global Dtype* inputs = inputs_base;
|
||||
filter_qualifier Dtype* weights = weights_base;
|
||||
unsigned int oc = get_global_id(0) * OUT_BLOCK_WIDTH; // oc = Output Column
|
||||
unsigned int or = get_global_id(1) * OUT_BLOCK_HEIGHT;// or = Output Row
|
||||
unsigned int fm = get_global_id(2);// fm = Feature Map = od = Output Depth
|
||||
unsigned int or = get_global_id(1) * OUT_BLOCK_HEIGHT; // or = Output Row
|
||||
unsigned int fm = get_global_id(2); // fm = Feature Map = od = Output Depth
|
||||
unsigned int fmg = get_group_id(2);
|
||||
unsigned int lid = get_local_id(2);
|
||||
|
||||
Dtype out[OUT_BLOCK_WIDTH * OUT_BLOCK_HEIGHT];
|
||||
|
||||
int in_addr;
|
||||
Dtype out[OUT_BLOCK_WIDTH * OUT_BLOCK_HEIGHT] = { 0.0f };
|
||||
|
||||
// find weights address of given neuron (lid is index)
|
||||
unsigned int weight_addr = (fmg % (ALIGNED_NUM_FILTERS/SIMD_SIZE)) * INPUT_DEPTH * KERNEL_WIDTH * KERNEL_HEIGHT * SIMD_SIZE + lid;
|
||||
unsigned int weight_addr = (fmg % FILTERS_IN_GROUP) *
|
||||
INPUT_DEPTH * KERNEL_WIDTH * KERNEL_HEIGHT * SIMD_SIZE + lid;
|
||||
|
||||
for(int i=0;i<OUT_BLOCK_SIZE;i++) {
|
||||
out[i]=0.0f;
|
||||
}
|
||||
unsigned int num_in_batch = fm / ALIGNED_NUM_FILTERS;
|
||||
|
||||
unsigned int num_in_batch = ( fm ) / ALIGNED_NUM_FILTERS;
|
||||
unsigned int input_batch_offset = num_in_batch * INPUT_PITCH * TOTAL_INPUT_DEPTH_SIZE;
|
||||
|
||||
unsigned int input_batch_offset = num_in_batch * input_height * input_width * TOTAL_INPUT_DEPTH_SIZE;
|
||||
|
||||
int curr_local_y = ( lid / ( TILE_X / 4 ) );
|
||||
int curr_local_x = ( lid % ( TILE_X / 4 ) ) * 4;
|
||||
int curr_y = or * STRIDE_Y + curr_local_y;
|
||||
int curr_x = oc * STRIDE_X + curr_local_x;
|
||||
int curr_y = or * STRIDE_Y;
|
||||
int curr_x = oc * STRIDE_X + lid;
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
int saved_y = curr_y;
|
||||
#endif
|
||||
in_addr = input_batch_offset
|
||||
+ (curr_y - INPUT_PAD_H) * input_width // y tile offset
|
||||
+ curr_x - INPUT_PAD_W; // x tile offset
|
||||
union {
|
||||
Dtype4 in_vec[INVEC_SIZE];
|
||||
Dtype in_array[INVEC_SIZE * 4];
|
||||
} in_buf;
|
||||
int in_addr = input_batch_offset
|
||||
+ (curr_y - INPUT_PAD_H) * INPUT_WIDTH // y tile offset
|
||||
+ curr_x - INPUT_PAD_W; // x tile offset
|
||||
|
||||
Dtype in_buf[INVEC_SIZE];
|
||||
|
||||
for(int kd = 0; kd < INPUT_DEPTH; kd++)
|
||||
{
|
||||
int in_offset = in_addr;
|
||||
int reg = 0;
|
||||
LOOP(INVEC_SIZE, reg,
|
||||
{
|
||||
if (curr_local_y + reg * TILE_Y_STRIDE < TILE_Y || INVEC_SIZE * TILE_Y_STRIDE <= (TILE_Y + 2) || reg < INVEC_SIZE - 1) {
|
||||
__attribute__((opencl_unroll_hint(INVEC_SIZE)))
|
||||
for (int reg = 0; reg < INVEC_SIZE; reg++)
|
||||
{
|
||||
in_buf[reg] = inputs[in_offset];
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
if (curr_y >= INPUT_PAD_H && curr_y < input_height + INPUT_PAD_H && curr_x + 3 >= INPUT_PAD_W && curr_x < input_width + INPUT_PAD_W) {
|
||||
if (curr_x < INPUT_PAD_W) {
|
||||
in_buf.in_vec[reg].s0 = 0;
|
||||
if (curr_x + 1 >= INPUT_PAD_W && curr_x + 1 < input_width + INPUT_PAD_W)
|
||||
in_buf.in_vec[reg].s1 = *(inputs + in_offset + 1);
|
||||
else
|
||||
in_buf.in_vec[reg].s1 = 0;
|
||||
if (curr_x + 2 >= INPUT_PAD_W && curr_x + 2 < input_width + INPUT_PAD_W)
|
||||
in_buf.in_vec[reg].s2 = *(inputs + in_offset + 2);
|
||||
else
|
||||
in_buf.in_vec[reg].s2 = 0;
|
||||
if (curr_x + 3 < input_width + INPUT_PAD_W)
|
||||
in_buf.in_vec[reg].s3 = *(inputs + in_offset + 3);
|
||||
else
|
||||
in_buf.in_vec[reg].s3 = 0;
|
||||
} else {
|
||||
VLOAD4(in_buf.in_vec[reg], inputs + in_offset);
|
||||
if (curr_x + 1 >= input_width + INPUT_PAD_W)
|
||||
in_buf.in_vec[reg].s1 = 0;
|
||||
if (curr_x + 2 >= input_width + INPUT_PAD_W)
|
||||
in_buf.in_vec[reg].s2 = 0;
|
||||
if (curr_x + 3 >= input_width + INPUT_PAD_W)
|
||||
in_buf.in_vec[reg].s3 = 0;
|
||||
}
|
||||
} else {
|
||||
in_buf.in_vec[reg] = 0;
|
||||
if (!(curr_y >= INPUT_PAD_H && curr_y < INPUT_HEIGHT + INPUT_PAD_H &&
|
||||
curr_x >= INPUT_PAD_W && curr_x < INPUT_WIDTH + INPUT_PAD_W))
|
||||
{
|
||||
in_buf[reg] = 0;
|
||||
}
|
||||
curr_y += TILE_Y_STRIDE;
|
||||
#else
|
||||
VLOAD4(in_buf.in_vec[reg], inputs + in_offset);
|
||||
#endif
|
||||
}
|
||||
in_offset += input_width * TILE_Y_STRIDE;
|
||||
});
|
||||
in_addr += input_height * input_width;
|
||||
curr_y += 1;
|
||||
in_offset += INPUT_WIDTH;
|
||||
}
|
||||
|
||||
in_addr += INPUT_PITCH;
|
||||
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
curr_y = saved_y;
|
||||
#endif
|
||||
|
||||
#if KERNEL_WIDTH * KERNEL_HEIGHT != 1
|
||||
#define WEIGHT_PREF 8
|
||||
#else
|
||||
#define WEIGHT_PREF 1
|
||||
#endif
|
||||
union {
|
||||
Dtype w[WEIGHT_PREF];
|
||||
#if KERNEL_WIDTH * KERNEL_HEIGHT != 1
|
||||
INT_TYPE8 ui8;
|
||||
#endif
|
||||
} weight_buf;
|
||||
Dtype weight_buf[WEIGHT_PREF];
|
||||
int w_idx=0;
|
||||
|
||||
unsigned int orig_weight_addr = weight_addr;
|
||||
#if KERNEL_WIDTH * KERNEL_HEIGHT != 1
|
||||
weight_buf.ui8 = SUB_GROUP_BLOCK_READ8((__global INT_TYPE *)&weights[weight_addr]);
|
||||
weight_addr += SIMD_SIZE * WEIGHT_PREF;
|
||||
#else
|
||||
weight_buf.w[0] = as_Dtype(SUB_GROUP_BLOCK_READ((__global INT_TYPE *)&weights[weight_addr]));
|
||||
weight_addr += SIMD_SIZE * 1;
|
||||
#endif
|
||||
for (int i = 0; i < WEIGHT_PREF; i++)
|
||||
{
|
||||
weight_buf[i] = weights[weight_addr];
|
||||
weight_addr += SIMD_SIZE;
|
||||
}
|
||||
|
||||
#define BLOCK_IN(n) sub_group_broadcast( in_buf.in_array[((n)%4) + ((n) / (TILE_Y_STRIDE * TILE_X)) * 4], (((n) % (TILE_Y_STRIDE * TILE_X))/4))
|
||||
#define BLOCK_IN(n, c) intel_sub_group_shuffle(in_buf[n], (c))
|
||||
|
||||
int kr = 0; // kr = Kernel Row
|
||||
LOOP(KERNEL_HEIGHT, kr,// LOOP is a macro that unrolls the loop.
|
||||
{
|
||||
int kc = 0; // kc = Kernel Column
|
||||
LOOP(KERNEL_WIDTH, kc,
|
||||
{
|
||||
int kc = 0; // kc = Kernel Column
|
||||
LOOP(KERNEL_WIDTH, kc,
|
||||
{
|
||||
for(int br=0; br < OUT_BLOCK_HEIGHT; br++) {
|
||||
for(int bc=0; bc < OUT_BLOCK_WIDTH; bc++) {
|
||||
Dtype input = BLOCK_IN((br * STRIDE_Y + kr * DILATION_Y) * TILE_X + bc * STRIDE_X + kc * DILATION_X);
|
||||
out[br * OUT_BLOCK_WIDTH + bc] = mad(weight_buf.w[w_idx % WEIGHT_PREF], input, out[br * OUT_BLOCK_WIDTH + bc]);
|
||||
}
|
||||
for (int br=0; br < OUT_BLOCK_HEIGHT; br++)
|
||||
{
|
||||
for(int bc=0; bc < OUT_BLOCK_WIDTH; bc++)
|
||||
{
|
||||
Dtype input = BLOCK_IN((br * STRIDE_Y + kr * DILATION_Y), bc * STRIDE_X + kc * DILATION_X);
|
||||
out[br * OUT_BLOCK_WIDTH + bc] = mad(weight_buf[w_idx % WEIGHT_PREF], input, out[br * OUT_BLOCK_WIDTH + bc]);
|
||||
}
|
||||
#if KERNEL_WIDTH * KERNEL_HEIGHT > WEIGHT_PREF
|
||||
// We assume KERNEL_W is equal to KERNEL_H here.
|
||||
if ((w_idx + 1) % WEIGHT_PREF == 0
|
||||
#if KERNEL_WIDTH * KERNEL_HEIGHT % 8 != 0
|
||||
&& ((w_idx + 1) <= (KERNEL_WIDTH * KERNEL_HEIGHT - WEIGHT_PREF))
|
||||
#endif
|
||||
) {
|
||||
weight_buf.ui8 = SUB_GROUP_BLOCK_READ8((__global INT_TYPE *)&weights[weight_addr]);
|
||||
weight_addr += SIMD_SIZE * WEIGHT_PREF; // weights must be stored in just the right SIMD swizzled format for this to work, see host code for details.
|
||||
}
|
||||
#if KERNEL_WIDTH*KERNEL_HEIGHT % 8 == 0
|
||||
// need to do nothing
|
||||
#else
|
||||
else if ((w_idx + 1) % WEIGHT_PREF == 0 && ((w_idx + 1) > (KERNEL_WIDTH * KERNEL_HEIGHT - WEIGHT_PREF)))
|
||||
#if KERNEL_WIDTH * KERNEL_HEIGHT % 8 == 1
|
||||
weight_buf.w[0] = weights[weight_addr];
|
||||
#elif KERNEL_WIDTH * KERNEL_HEIGHT % 8 == 2
|
||||
weight_buf.ui8.s01 = SUB_GROUP_BLOCK_READ2((__global INT_TYPE *)&weights[weight_addr]);
|
||||
#elif KERNEL_WIDTH * KERNEL_HEIGHT % 8 <= 4
|
||||
weight_buf.ui8.s0123 = SUB_GROUP_BLOCK_READ4((__global INT_TYPE *)&weights[weight_addr]);
|
||||
#else
|
||||
weight_buf.ui8 = SUB_GROUP_BLOCK_READ8((__global INT_TYPE *)&weights[weight_addr]);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
++w_idx;
|
||||
});
|
||||
}
|
||||
weight_buf[w_idx % WEIGHT_PREF] = weights[weight_addr];
|
||||
weight_addr += SIMD_SIZE;
|
||||
++w_idx;
|
||||
});
|
||||
weight_addr = orig_weight_addr + KERNEL_WIDTH * KERNEL_HEIGHT * SIMD_SIZE;
|
||||
});
|
||||
weight_addr -= WEIGHT_PREF * SIMD_SIZE;
|
||||
}
|
||||
|
||||
}
|
||||
// dead code to work around possible compiler bug.
|
||||
if (ALIGNED_NUM_FILTERS != NUM_FILTERS && fm > 0xfffffffeul) {
|
||||
outputs[0] = BLOCK_IN(fm % SIMD_SIZE);
|
||||
}
|
||||
fm = fm % ALIGNED_NUM_FILTERS;
|
||||
|
||||
if ((ALIGNED_NUM_FILTERS == NUM_FILTERS || fm < NUM_FILTERS)) {
|
||||
unsigned int out_addr = ( num_in_batch * TOTAL_OUTPUT_DEPTH + fm ) * output_width * output_height;
|
||||
out_addr += or * output_width + oc;
|
||||
// we need this address calculation for biases because we support views and batching
|
||||
#if APPLY_BIAS
|
||||
Dtype bias = biases_base[fm];
|
||||
#else
|
||||
Dtype bias = 0;
|
||||
#if LEFT_FILTERS > 0
|
||||
if (fm < NUM_FILTERS)
|
||||
#endif
|
||||
{
|
||||
unsigned int out_addr = (num_in_batch * TOTAL_OUTPUT_DEPTH + fm) * OUTPUT_PITCH;
|
||||
out_addr += or * output_width + oc;
|
||||
// we need this address calculation for biases because we support views and batching
|
||||
#if APPLY_BIAS
|
||||
Dtype bias = biases_base[fm];
|
||||
#else
|
||||
Dtype bias = 0;
|
||||
#endif
|
||||
for(unsigned int r = 0; r < OUT_BLOCK_HEIGHT; r++) {
|
||||
if (r + or >= output_height) break;
|
||||
for(unsigned int c = 0; c < OUT_BLOCK_WIDTH; c++) {
|
||||
if (c + oc >= output_width) break;
|
||||
// this does a scattered write to SIMD_SIZE different feature maps, so that data within one map is contiguous, thus ready for input to next layer.
|
||||
ACTIVATION_FUNCTION(outputs, out_addr + r * output_width + c, bias + out[r * OUT_BLOCK_WIDTH + c], fm);
|
||||
|
||||
for(unsigned int r = 0; r < OUT_BLOCK_HEIGHT; r++)
|
||||
{
|
||||
if (r + or >= output_height) break;
|
||||
for(unsigned int c = 0; c < OUT_BLOCK_WIDTH; c++)
|
||||
{
|
||||
if (c + oc >= output_width) break;
|
||||
// this does a scattered write to SIMD_SIZE different feature maps,
|
||||
// so that data within one map is contiguous, thus ready for input to next layer.
|
||||
ACTIVATION_FUNCTION(outputs, out_addr + r * output_width + c, bias + out[r * OUT_BLOCK_WIDTH + c], fm);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1137,11 +1137,95 @@ private:
|
||||
int outWidth, outHeight, zoomFactor;
|
||||
};
|
||||
|
||||
TEST(Layer_Test_Interp, Accuracy)
|
||||
TEST(Layer_Test_Interp_custom, Accuracy)
|
||||
{
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
|
||||
testLayerUsingCaffeModels("layer_interp", DNN_TARGET_CPU, false, false);
|
||||
LayerFactory::unregisterLayer("Interp");
|
||||
}
|
||||
|
||||
TEST(Layer_Test_Interp, Accuracy)
|
||||
{
|
||||
testLayerUsingCaffeModels("layer_interp", DNN_TARGET_CPU, false, false);
|
||||
}
|
||||
|
||||
TEST(Layer_Test_PoolingIndices, Accuracy)
|
||||
{
|
||||
Net net;
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("pool", "max");
|
||||
lp.set("kernel_w", 2);
|
||||
lp.set("kernel_h", 2);
|
||||
lp.set("stride_w", 2);
|
||||
lp.set("stride_h", 2);
|
||||
lp.set("pad_w", 0);
|
||||
lp.set("pad_h", 0);
|
||||
lp.name = "testLayer.name"; // This test also checks that OpenCV lets use names with dots.
|
||||
lp.type = "Pooling";
|
||||
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||
|
||||
Mat inp(10, 10, CV_8U);
|
||||
randu(inp, 0, 255);
|
||||
|
||||
Mat maxValues(5, 5, CV_32F, Scalar(-1)), indices(5, 5, CV_32F, Scalar(-1));
|
||||
for (int y = 0; y < 10; ++y)
|
||||
{
|
||||
int dstY = y / 2;
|
||||
for (int x = 0; x < 10; ++x)
|
||||
{
|
||||
int dstX = x / 2;
|
||||
uint8_t val = inp.at<uint8_t>(y, x);
|
||||
if ((float)inp.at<uint8_t>(y, x) > maxValues.at<float>(dstY, dstX))
|
||||
{
|
||||
maxValues.at<float>(dstY, dstX) = val;
|
||||
indices.at<float>(dstY, dstX) = y * 10 + x;
|
||||
}
|
||||
}
|
||||
}
|
||||
net.setInput(blobFromImage(inp));
|
||||
|
||||
std::vector<Mat> outputs;
|
||||
net.forward(outputs, lp.name);
|
||||
normAssert(maxValues, outputs[0].reshape(1, 5));
|
||||
normAssert(indices, outputs[1].reshape(1, 5));
|
||||
}
|
||||
|
||||
typedef testing::TestWithParam<tuple<Vec4i, int> > Layer_Test_ShuffleChannel;
|
||||
TEST_P(Layer_Test_ShuffleChannel, Accuracy)
|
||||
{
|
||||
Vec4i inpShapeVec = get<0>(GetParam());
|
||||
int group = get<1>(GetParam());
|
||||
ASSERT_EQ(inpShapeVec[1] % group, 0);
|
||||
const int groupSize = inpShapeVec[1] / group;
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.set("group", group);
|
||||
lp.type = "ShuffleChannel";
|
||||
lp.name = "testLayer";
|
||||
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||
|
||||
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
|
||||
Mat inp(4, inpShape, CV_32F);
|
||||
randu(inp, 0, 255);
|
||||
|
||||
net.setInput(inp);
|
||||
Mat out = net.forward();
|
||||
|
||||
for (int n = 0; n < inpShapeVec[0]; ++n)
|
||||
{
|
||||
for (int c = 0; c < inpShapeVec[1]; ++c)
|
||||
{
|
||||
Mat outChannel = getPlane(out, n, c);
|
||||
Mat inpChannel = getPlane(inp, n, groupSize * (c % group) + c / group);
|
||||
normAssert(outChannel, inpChannel);
|
||||
}
|
||||
}
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_ShuffleChannel, Combine(
|
||||
/*input shape*/ Values(Vec4i(1, 6, 5, 7), Vec4i(3, 12, 1, 4)),
|
||||
/*group*/ Values(1, 2, 3, 6)
|
||||
));
|
||||
|
||||
}} // namespace
|
||||
|
@ -87,7 +87,7 @@ static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String out
|
||||
if (outLayerName.empty())
|
||||
outLayerName = net.getLayerNames().back();
|
||||
|
||||
net.setInput(inp, "0");
|
||||
net.setInput(inp);
|
||||
std::vector<Mat> outBlobs;
|
||||
net.forward(outBlobs, outLayerName);
|
||||
normAssert(outRef, outBlobs[0]);
|
||||
|
@ -70,6 +70,35 @@
|
||||
#include "PS1080.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static cv::Mutex initOpenNI2Mutex;
|
||||
|
||||
struct OpenNI2Initializer
|
||||
{
|
||||
public:
|
||||
static void init()
|
||||
{
|
||||
cv::AutoLock al(initOpenNI2Mutex);
|
||||
static OpenNI2Initializer initializer;
|
||||
}
|
||||
|
||||
private:
|
||||
OpenNI2Initializer()
|
||||
{
|
||||
// Initialize and configure the context.
|
||||
openni::Status status = openni::OpenNI::initialize();
|
||||
if (status != openni::STATUS_OK)
|
||||
{
|
||||
CV_Error(CV_StsError, std::string("Failed to initialize:") + openni::OpenNI::getExtendedError());
|
||||
}
|
||||
}
|
||||
|
||||
~OpenNI2Initializer()
|
||||
{
|
||||
openni::OpenNI::shutdown();
|
||||
}
|
||||
};
|
||||
|
||||
class CvCapture_OpenNI2 : public CvCapture
|
||||
{
|
||||
public:
|
||||
@ -107,6 +136,8 @@ protected:
|
||||
|
||||
static openni::VideoMode defaultStreamOutputMode(int stream);
|
||||
|
||||
CvCapture_OpenNI2(int index, const char * filename);
|
||||
|
||||
IplImage* retrieveDepthMap();
|
||||
IplImage* retrievePointCloudMap();
|
||||
IplImage* retrieveDisparityMap();
|
||||
@ -116,8 +147,8 @@ protected:
|
||||
IplImage* retrieveGrayImage();
|
||||
IplImage* retrieveIrImage();
|
||||
|
||||
openni::Status toggleStream(int stream, bool toggle);
|
||||
bool readCamerasParams();
|
||||
void toggleStream(int stream, bool toggle);
|
||||
void readCamerasParams();
|
||||
|
||||
double getDepthGeneratorProperty(int propIdx) const;
|
||||
bool setDepthGeneratorProperty(int propIdx, double propVal);
|
||||
@ -131,12 +162,11 @@ protected:
|
||||
// OpenNI context
|
||||
openni::Device device;
|
||||
bool isContextOpened;
|
||||
openni::Recorder recorder;
|
||||
|
||||
// Data generators with its metadata
|
||||
openni::VideoStream streams[CV_MAX_NUM_STREAMS];
|
||||
openni::VideoFrameRef streamFrames[CV_MAX_NUM_STREAMS];
|
||||
cv::Mat streamImages[CV_MAX_NUM_STREAMS];
|
||||
std::vector<openni::VideoStream> streams;
|
||||
std::vector<openni::VideoFrameRef> streamFrames;
|
||||
std::vector<cv::Mat> streamImages;
|
||||
|
||||
int maxBufferSize, maxTimeDuration; // for approx sync
|
||||
bool isCircleBuffer;
|
||||
@ -191,80 +221,103 @@ openni::VideoMode CvCapture_OpenNI2::defaultStreamOutputMode(int stream)
|
||||
return mode;
|
||||
}
|
||||
|
||||
CvCapture_OpenNI2::CvCapture_OpenNI2( int index )
|
||||
|
||||
CvCapture_OpenNI2::CvCapture_OpenNI2(int index) :
|
||||
CvCapture_OpenNI2(index, nullptr)
|
||||
{ }
|
||||
|
||||
CvCapture_OpenNI2::CvCapture_OpenNI2(const char * filename) :
|
||||
CvCapture_OpenNI2(-1, filename)
|
||||
{ }
|
||||
|
||||
CvCapture_OpenNI2::CvCapture_OpenNI2(int index, const char * filename) :
|
||||
device(),
|
||||
isContextOpened(false),
|
||||
streams(CV_MAX_NUM_STREAMS),
|
||||
streamFrames(CV_MAX_NUM_STREAMS),
|
||||
streamImages(CV_MAX_NUM_STREAMS),
|
||||
maxBufferSize(DEFAULT_MAX_BUFFER_SIZE),
|
||||
maxTimeDuration(DEFAULT_MAX_TIME_DURATION),
|
||||
isCircleBuffer(DEFAULT_IS_CIRCLE_BUFFER),
|
||||
baseline(0),
|
||||
depthFocalLength_VGA(0),
|
||||
shadowValue(0),
|
||||
noSampleValue(0),
|
||||
outputMaps(outputMapsTypesCount)
|
||||
{
|
||||
const char* deviceURI = openni::ANY_DEVICE;
|
||||
openni::Status status;
|
||||
int deviceType = DEVICE_DEFAULT;
|
||||
|
||||
noSampleValue = shadowValue = 0;
|
||||
|
||||
isContextOpened = false;
|
||||
maxBufferSize = DEFAULT_MAX_BUFFER_SIZE;
|
||||
isCircleBuffer = DEFAULT_IS_CIRCLE_BUFFER;
|
||||
maxTimeDuration = DEFAULT_MAX_TIME_DURATION;
|
||||
|
||||
if( index >= 10 )
|
||||
{
|
||||
deviceType = index / 10;
|
||||
index %= 10;
|
||||
}
|
||||
|
||||
// Initialize and configure the context.
|
||||
status = openni::OpenNI::initialize();
|
||||
OpenNI2Initializer::init();
|
||||
|
||||
if (status != openni::STATUS_OK)
|
||||
const char* deviceURI = openni::ANY_DEVICE;
|
||||
bool needColor = true;
|
||||
bool needIR = true;
|
||||
if (index >= 0)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("Failed to initialize:", openni::OpenNI::getExtendedError()));
|
||||
return;
|
||||
}
|
||||
|
||||
// find appropriate device URI
|
||||
openni::Array<openni::DeviceInfo> ldevs;
|
||||
if (index > 0)
|
||||
{
|
||||
openni::OpenNI::enumerateDevices(&ldevs);
|
||||
deviceURI = ldevs[index].getUri();
|
||||
int deviceType = DEVICE_DEFAULT;
|
||||
if (index >= 10)
|
||||
{
|
||||
deviceType = index / 10;
|
||||
index %= 10;
|
||||
}
|
||||
// Asus XTION and Occipital Structure Sensor do not have an image generator
|
||||
needColor = (deviceType != DEVICE_ASUS_XTION);
|
||||
|
||||
// find appropriate device URI
|
||||
openni::Array<openni::DeviceInfo> ldevs;
|
||||
if (index > 0)
|
||||
{
|
||||
openni::OpenNI::enumerateDevices(&ldevs);
|
||||
if (index < ldevs.getSize())
|
||||
deviceURI = ldevs[index].getUri();
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsError, "OpenCVKinect2: Device index exceeds the number of available OpenNI devices");
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
deviceURI = filename;
|
||||
}
|
||||
|
||||
openni::Status status;
|
||||
status = device.open(deviceURI);
|
||||
if( status != openni::STATUS_OK )
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("OpenCVKinect: Device open failed see: %s\n", openni::OpenNI::getExtendedError()));
|
||||
openni::OpenNI::shutdown();
|
||||
return;
|
||||
}
|
||||
|
||||
status = toggleStream(CV_DEPTH_STREAM, true);
|
||||
// Asus XTION and Occipital Structure Sensor do not have an image generator
|
||||
if (deviceType != DEVICE_ASUS_XTION)
|
||||
status = openni::Status(status | toggleStream(CV_COLOR_STREAM, true));
|
||||
if (status != openni::STATUS_OK)
|
||||
{
|
||||
openni::OpenNI::shutdown();
|
||||
return;
|
||||
CV_Error(CV_StsError, std::string("OpenCVKinect2: Failed to open device: ") + openni::OpenNI::getExtendedError());
|
||||
}
|
||||
|
||||
if (!readCamerasParams())
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::CvCapture_OpenNI2 : Could not read cameras parameters\n"));
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
outputMaps.resize( outputMapsTypesCount );
|
||||
|
||||
isContextOpened = true;
|
||||
toggleStream(CV_DEPTH_STREAM, true);
|
||||
if (needColor)
|
||||
toggleStream(CV_COLOR_STREAM, true);
|
||||
if (needIR)
|
||||
toggleStream(CV_IR_STREAM, true);
|
||||
|
||||
setProperty(CV_CAP_PROP_OPENNI_REGISTRATION, 1.0);
|
||||
|
||||
// default for Kinect2 camera
|
||||
setProperty(CV_CAP_PROP_OPENNI2_MIRROR, 0.0);
|
||||
|
||||
isContextOpened = true;
|
||||
}
|
||||
|
||||
openni::Status CvCapture_OpenNI2::toggleStream(int stream, bool toggle)
|
||||
CvCapture_OpenNI2::~CvCapture_OpenNI2()
|
||||
{
|
||||
for (size_t i = 0; i < streams.size(); ++i)
|
||||
{
|
||||
streamFrames[i].release();
|
||||
streams[i].stop();
|
||||
streams[i].destroy();
|
||||
}
|
||||
device.close();
|
||||
}
|
||||
|
||||
void CvCapture_OpenNI2::toggleStream(int stream, bool toggle)
|
||||
{
|
||||
openni::Status status;
|
||||
|
||||
// for logging
|
||||
static const char* stream_names[CV_MAX_NUM_STREAMS] = {
|
||||
static const std::string stream_names[CV_MAX_NUM_STREAMS] = {
|
||||
"depth",
|
||||
"color",
|
||||
"IR"
|
||||
@ -280,140 +333,92 @@ openni::Status CvCapture_OpenNI2::toggleStream(int stream, bool toggle)
|
||||
{
|
||||
// already opened
|
||||
if (streams[stream].isValid())
|
||||
return openni::STATUS_OK;
|
||||
return;
|
||||
|
||||
// open stream
|
||||
status = streams[stream].create(device, stream_sensor_types[stream]);
|
||||
if (status == openni::STATUS_OK)
|
||||
{
|
||||
// set video mode
|
||||
status = streams[stream].setVideoMode(defaultStreamOutputMode(stream)); // xn::DepthGenerator supports VGA only! (Jan 2011)
|
||||
if (status != openni::STATUS_OK)
|
||||
// try to set up default stream mode (if available)
|
||||
const openni::Array<openni::VideoMode>& vm = streams[stream].getSensorInfo().getSupportedVideoModes();
|
||||
openni::VideoMode dm = defaultStreamOutputMode(stream);
|
||||
for (int i = 0; i < vm.getSize(); i++)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::CvCapture_OpenNI2 : Couldn't set %s stream output mode: %s\n",
|
||||
stream_names[stream],
|
||||
openni::OpenNI::getExtendedError()));
|
||||
streams[stream].destroy();
|
||||
return status;
|
||||
if (vm[i].getPixelFormat() == dm.getPixelFormat() &&
|
||||
vm[i].getResolutionX() == dm.getResolutionX() &&
|
||||
vm[i].getResolutionY() == dm.getResolutionY() &&
|
||||
vm[i].getFps() == dm.getFps())
|
||||
{
|
||||
status = streams[stream].setVideoMode(defaultStreamOutputMode(stream));
|
||||
if (status != openni::STATUS_OK)
|
||||
{
|
||||
streams[stream].destroy();
|
||||
CV_Error(CV_StsError, std::string("OpenCVKinect2 : Couldn't set ") +
|
||||
stream_names[stream] + std::string(" stream output mode: ") +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// start stream
|
||||
status = streams[stream].start();
|
||||
if (status != openni::STATUS_OK)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::CvCapture_OpenNI2 : Couldn't start %s stream: %s\n",
|
||||
stream_names[stream],
|
||||
openni::OpenNI::getExtendedError()));
|
||||
streams[stream].destroy();
|
||||
return status;
|
||||
CV_Error(CV_StsError, std::string("CvCapture_OpenNI2::CvCapture_OpenNI2 : Couldn't start ") +
|
||||
stream_names[stream] + std::string(" stream: ") +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::CvCapture_OpenNI2 : Couldn't find %s stream:: %s\n",
|
||||
stream_names[stream],
|
||||
openni::OpenNI::getExtendedError()));
|
||||
return status;
|
||||
CV_Error(CV_StsError, std::string("CvCapture_OpenNI2::CvCapture_OpenNI2 : Couldn't find ") +
|
||||
stream_names[stream] + " stream: " +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
}
|
||||
}
|
||||
else if (streams[stream].isValid()) // want to close stream
|
||||
{
|
||||
streams[stream].stop();
|
||||
streams[stream].destroy();
|
||||
}
|
||||
//FIX for libfreenect2
|
||||
//which stops the whole device when stopping only one stream
|
||||
|
||||
return openni::STATUS_OK;
|
||||
//streams[stream].stop();
|
||||
//streams[stream].destroy();
|
||||
}
|
||||
}
|
||||
|
||||
CvCapture_OpenNI2::CvCapture_OpenNI2(const char * filename)
|
||||
{
|
||||
openni::Status status;
|
||||
|
||||
isContextOpened = false;
|
||||
maxBufferSize = DEFAULT_MAX_BUFFER_SIZE;
|
||||
isCircleBuffer = DEFAULT_IS_CIRCLE_BUFFER;
|
||||
maxTimeDuration = DEFAULT_MAX_TIME_DURATION;
|
||||
|
||||
// Initialize and configure the context.
|
||||
status = openni::OpenNI::initialize();
|
||||
|
||||
if (status != openni::STATUS_OK)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("Failed to initialize:", openni::OpenNI::getExtendedError()));
|
||||
return;
|
||||
}
|
||||
|
||||
// Open file
|
||||
status = device.open(filename);
|
||||
if( status != openni::STATUS_OK )
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::CvCapture_OpenNI2 : Failed to open input file (%s): %s\n", filename, openni::OpenNI::getExtendedError()));
|
||||
return;
|
||||
}
|
||||
|
||||
status = openni::Status(toggleStream(CV_DEPTH_STREAM, true) | toggleStream(CV_COLOR_STREAM, true));
|
||||
if (status != openni::STATUS_OK)
|
||||
{
|
||||
openni::OpenNI::shutdown();
|
||||
return;
|
||||
}
|
||||
|
||||
if( !readCamerasParams() )
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::CvCapture_OpenNI2 : Could not read cameras parameters\n"));
|
||||
return;
|
||||
}
|
||||
|
||||
outputMaps.resize( outputMapsTypesCount );
|
||||
|
||||
isContextOpened = true;
|
||||
}
|
||||
|
||||
CvCapture_OpenNI2::~CvCapture_OpenNI2()
|
||||
{
|
||||
for (int i = 0; i < CV_MAX_NUM_STREAMS; ++i)
|
||||
{
|
||||
streamFrames[i].release();
|
||||
streams[i].stop();
|
||||
streams[i].destroy();
|
||||
}
|
||||
device.close();
|
||||
openni::OpenNI::shutdown();
|
||||
}
|
||||
|
||||
bool CvCapture_OpenNI2::readCamerasParams()
|
||||
void CvCapture_OpenNI2::readCamerasParams()
|
||||
{
|
||||
double pixelSize = 0;
|
||||
if (streams[CV_DEPTH_STREAM].getProperty<double>(XN_STREAM_PROPERTY_ZERO_PLANE_PIXEL_SIZE, &pixelSize) != openni::STATUS_OK)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::readCamerasParams : Could not read pixel size!\n"));
|
||||
return false;
|
||||
CV_Error(CV_StsError, "CvCapture_OpenNI2::readCamerasParams : Could not read pixel size!" +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
}
|
||||
|
||||
// pixel size @ VGA = pixel size @ SXGA x 2
|
||||
pixelSize *= 2.0; // in mm
|
||||
|
||||
// focal length of IR camera in pixels for VGA resolution
|
||||
int zeroPlanDistance; // in mm
|
||||
if (streams[CV_DEPTH_STREAM].getProperty(XN_STREAM_PROPERTY_ZERO_PLANE_DISTANCE, &zeroPlanDistance) != openni::STATUS_OK)
|
||||
unsigned long long zeroPlaneDistance; // in mm
|
||||
if (streams[CV_DEPTH_STREAM].getProperty(XN_STREAM_PROPERTY_ZERO_PLANE_DISTANCE, &zeroPlaneDistance) != openni::STATUS_OK)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::readCamerasParams : Could not read virtual plane distance!\n"));
|
||||
return false;
|
||||
CV_Error(CV_StsError, "CvCapture_OpenNI2::readCamerasParams : Could not read virtual plane distance!" +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
}
|
||||
|
||||
if (streams[CV_DEPTH_STREAM].getProperty<double>(XN_STREAM_PROPERTY_EMITTER_DCMOS_DISTANCE, &baseline) != openni::STATUS_OK)
|
||||
{
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::readCamerasParams : Could not read base line!\n"));
|
||||
return false;
|
||||
CV_Error(CV_StsError, "CvCapture_OpenNI2::readCamerasParams : Could not read base line!" +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
}
|
||||
|
||||
// baseline from cm -> mm
|
||||
baseline *= 10;
|
||||
|
||||
// focal length from mm -> pixels (valid for 640x480)
|
||||
depthFocalLength_VGA = (int)((double)zeroPlanDistance / (double)pixelSize);
|
||||
|
||||
return true;
|
||||
depthFocalLength_VGA = (int)((double)zeroPlaneDistance / (double)pixelSize);
|
||||
}
|
||||
|
||||
double CvCapture_OpenNI2::getProperty( int propIdx ) const
|
||||
@ -500,7 +505,7 @@ double CvCapture_OpenNI2::getCommonProperty( int propIdx ) const
|
||||
break;
|
||||
}
|
||||
default :
|
||||
CV_Error( CV_StsBadArg, cv::format("Such parameter (propIdx=%d) isn't supported for getting.\n", propIdx) );
|
||||
CV_Error( CV_StsBadArg, cv::format("Such parameter (propIdx=%d) isn't supported for getting.", propIdx) );
|
||||
}
|
||||
|
||||
return propValue;
|
||||
@ -525,14 +530,20 @@ bool CvCapture_OpenNI2::setCommonProperty( int propIdx, double propValue )
|
||||
// There is a set of properties that correspond to depth generator by default
|
||||
// (is they are pass without particular generator flag).
|
||||
case CV_CAP_PROP_OPENNI_REGISTRATION:
|
||||
isSet = setDepthGeneratorProperty( propIdx, propValue );
|
||||
isSet = setDepthGeneratorProperty(propIdx, propValue);
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI2_SYNC:
|
||||
isSet = device.setDepthColorSyncEnabled(propValue > 0.0) == openni::STATUS_OK;
|
||||
break;
|
||||
|
||||
case CV_CAP_PROP_FRAME_WIDTH:
|
||||
case CV_CAP_PROP_FRAME_HEIGHT:
|
||||
case CV_CAP_PROP_AUTOFOCUS:
|
||||
isSet = false;
|
||||
break;
|
||||
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, cv::format("Such parameter (propIdx=%d) isn't supported for setting.\n", propIdx) );
|
||||
CV_Error(CV_StsBadArg, cv::format("Such parameter (propIdx=%d) isn't supported for setting.", propIdx));
|
||||
}
|
||||
|
||||
return isSet;
|
||||
@ -565,9 +576,13 @@ double CvCapture_OpenNI2::getDepthGeneratorProperty( int propIdx ) const
|
||||
propValue = streams[CV_DEPTH_STREAM].getMaxPixelValue();
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI_BASELINE :
|
||||
if(baseline <= 0)
|
||||
const_cast<CvCapture_OpenNI2*>(this)->readCamerasParams();
|
||||
propValue = baseline;
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI_FOCAL_LENGTH :
|
||||
if(depthFocalLength_VGA <= 0)
|
||||
const_cast<CvCapture_OpenNI2*>(this)->readCamerasParams();
|
||||
propValue = (double)depthFocalLength_VGA;
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI_REGISTRATION :
|
||||
@ -580,7 +595,7 @@ double CvCapture_OpenNI2::getDepthGeneratorProperty( int propIdx ) const
|
||||
propValue = streamFrames[CV_DEPTH_STREAM].getFrameIndex();
|
||||
break;
|
||||
default :
|
||||
CV_Error( CV_StsBadArg, cv::format("Depth generator does not support such parameter (propIdx=%d) for getting.\n", propIdx) );
|
||||
CV_Error( CV_StsBadArg, cv::format("Depth generator does not support such parameter (propIdx=%d) for getting.", propIdx) );
|
||||
}
|
||||
|
||||
return propValue;
|
||||
@ -594,7 +609,10 @@ bool CvCapture_OpenNI2::setDepthGeneratorProperty( int propIdx, double propValue
|
||||
{
|
||||
case CV_CAP_PROP_OPENNI_GENERATOR_PRESENT:
|
||||
if (isContextOpened)
|
||||
isSet = toggleStream(CV_DEPTH_STREAM, propValue > 0.0) == openni::STATUS_OK;
|
||||
{
|
||||
toggleStream(CV_DEPTH_STREAM, propValue > 0.0);
|
||||
isSet = true;
|
||||
}
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI_REGISTRATION:
|
||||
{
|
||||
@ -612,12 +630,13 @@ bool CvCapture_OpenNI2::setDepthGeneratorProperty( int propIdx, double propValue
|
||||
{
|
||||
openni::Status status = device.setImageRegistrationMode(mode);
|
||||
if( status != openni::STATUS_OK )
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::setDepthGeneratorProperty : %s\n", openni::OpenNI::getExtendedError()));
|
||||
CV_Error(CV_StsError, std::string("CvCapture_OpenNI2::setDepthGeneratorProperty: ") +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
else
|
||||
isSet = true;
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::setDepthGeneratorProperty : Unsupported viewpoint.\n"));
|
||||
CV_Error(CV_StsError, "CvCapture_OpenNI2::setDepthGeneratorProperty: Unsupported viewpoint.");
|
||||
}
|
||||
else
|
||||
isSet = true;
|
||||
@ -627,14 +646,15 @@ bool CvCapture_OpenNI2::setDepthGeneratorProperty( int propIdx, double propValue
|
||||
{
|
||||
openni::Status status = device.setImageRegistrationMode(openni::IMAGE_REGISTRATION_OFF);
|
||||
if( status != openni::STATUS_OK )
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::setDepthGeneratorProperty : %s\n", openni::OpenNI::getExtendedError()));
|
||||
CV_Error(CV_StsError, std::string("CvCapture_OpenNI2::setDepthGeneratorProperty: ") +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
else
|
||||
isSet = true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, cv::format("Depth generator does not support such parameter (propIdx=%d) for setting.\n", propIdx) );
|
||||
CV_Error( CV_StsBadArg, cv::format("Depth generator does not support such parameter (propIdx=%d) for setting.", propIdx) );
|
||||
}
|
||||
|
||||
return isSet;
|
||||
@ -668,7 +688,7 @@ double CvCapture_OpenNI2::getImageGeneratorProperty( int propIdx ) const
|
||||
propValue = (double)streamFrames[CV_COLOR_STREAM].getFrameIndex();
|
||||
break;
|
||||
default :
|
||||
CV_Error( CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for getting.\n", propIdx) );
|
||||
CV_Error( CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for getting.", propIdx) );
|
||||
}
|
||||
|
||||
return propValue;
|
||||
@ -682,7 +702,10 @@ bool CvCapture_OpenNI2::setImageGeneratorProperty(int propIdx, double propValue)
|
||||
{
|
||||
case CV_CAP_PROP_OPENNI_GENERATOR_PRESENT:
|
||||
if (isContextOpened)
|
||||
isSet = toggleStream(CV_COLOR_STREAM, propValue > 0.0) == openni::STATUS_OK;
|
||||
{
|
||||
toggleStream(CV_COLOR_STREAM, propValue > 0.0);
|
||||
isSet = true;
|
||||
}
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI_OUTPUT_MODE :
|
||||
{
|
||||
@ -713,18 +736,19 @@ bool CvCapture_OpenNI2::setImageGeneratorProperty(int propIdx, double propValue)
|
||||
mode.setFps(60);
|
||||
break;
|
||||
default :
|
||||
CV_Error( CV_StsBadArg, "Unsupported image generator output mode.\n");
|
||||
CV_Error( CV_StsBadArg, "Unsupported image generator output mode.");
|
||||
}
|
||||
|
||||
openni::Status status = streams[CV_COLOR_STREAM].setVideoMode( mode );
|
||||
if( status != openni::STATUS_OK )
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::setImageGeneratorProperty : %s\n", openni::OpenNI::getExtendedError()));
|
||||
CV_Error(CV_StsError, std::string("CvCapture_OpenNI2::setImageGeneratorProperty: ") +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
else
|
||||
isSet = true;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for setting.\n", propIdx) );
|
||||
CV_Error( CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for setting.", propIdx) );
|
||||
}
|
||||
|
||||
return isSet;
|
||||
@ -758,7 +782,7 @@ double CvCapture_OpenNI2::getIrGeneratorProperty(int propIdx) const
|
||||
propValue = (double)streamFrames[CV_IR_STREAM].getFrameIndex();
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for getting.\n", propIdx));
|
||||
CV_Error(CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for getting.", propIdx));
|
||||
}
|
||||
|
||||
return propValue;
|
||||
@ -772,7 +796,10 @@ bool CvCapture_OpenNI2::setIrGeneratorProperty(int propIdx, double propValue)
|
||||
{
|
||||
case CV_CAP_PROP_OPENNI_GENERATOR_PRESENT:
|
||||
if (isContextOpened)
|
||||
isSet = toggleStream(CV_IR_STREAM, propValue > 0.0) == openni::STATUS_OK;
|
||||
{
|
||||
toggleStream(CV_IR_STREAM, propValue > 0.0);
|
||||
isSet = true;
|
||||
}
|
||||
break;
|
||||
case CV_CAP_PROP_OPENNI_OUTPUT_MODE:
|
||||
{
|
||||
@ -803,18 +830,19 @@ bool CvCapture_OpenNI2::setIrGeneratorProperty(int propIdx, double propValue)
|
||||
mode.setFps(60);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unsupported image generator output mode.\n");
|
||||
CV_Error(CV_StsBadArg, "Unsupported image generator output mode.");
|
||||
}
|
||||
|
||||
openni::Status status = streams[CV_IR_STREAM].setVideoMode(mode);
|
||||
if (status != openni::STATUS_OK)
|
||||
CV_Error(CV_StsError, cv::format("CvCapture_OpenNI2::setImageGeneratorProperty : %s\n", openni::OpenNI::getExtendedError()));
|
||||
CV_Error(CV_StsError, std::string("CvCapture_OpenNI2::setImageGeneratorProperty: ") +
|
||||
std::string(openni::OpenNI::getExtendedError()));
|
||||
else
|
||||
isSet = true;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for setting.\n", propIdx));
|
||||
CV_Error(CV_StsBadArg, cv::format("Image generator does not support such parameter (propIdx=%d) for setting.", propIdx));
|
||||
}
|
||||
|
||||
return isSet;
|
||||
@ -931,10 +959,12 @@ IplImage* CvCapture_OpenNI2::retrieveDisparityMap()
|
||||
if (!streamFrames[CV_DEPTH_STREAM].isValid())
|
||||
return 0;
|
||||
|
||||
readCamerasParams();
|
||||
|
||||
cv::Mat disp32;
|
||||
computeDisparity_32F(streamFrames[CV_DEPTH_STREAM], disp32, baseline, depthFocalLength_VGA, noSampleValue, shadowValue);
|
||||
|
||||
disp32.convertTo( outputMaps[CV_CAP_OPENNI_DISPARITY_MAP].mat, CV_8UC1 );
|
||||
disp32.convertTo(outputMaps[CV_CAP_OPENNI_DISPARITY_MAP].mat, CV_8UC1);
|
||||
|
||||
return outputMaps[CV_CAP_OPENNI_DISPARITY_MAP].getIplImagePtr();
|
||||
}
|
||||
@ -944,6 +974,8 @@ IplImage* CvCapture_OpenNI2::retrieveDisparityMap_32F()
|
||||
if (!streamFrames[CV_DEPTH_STREAM].isValid())
|
||||
return 0;
|
||||
|
||||
readCamerasParams();
|
||||
|
||||
computeDisparity_32F(streamFrames[CV_DEPTH_STREAM], outputMaps[CV_CAP_OPENNI_DISPARITY_MAP_32F].mat, baseline, depthFocalLength_VGA, noSampleValue, shadowValue);
|
||||
|
||||
return outputMaps[CV_CAP_OPENNI_DISPARITY_MAP_32F].getIplImagePtr();
|
||||
@ -966,7 +998,7 @@ inline void getBGRImageFromMetaData( const openni::VideoFrameRef& imageMetaData,
|
||||
{
|
||||
cv::Mat bufferImage;
|
||||
if( imageMetaData.getVideoMode().getPixelFormat() != openni::PIXEL_FORMAT_RGB888 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Unsupported format of grabbed image\n" );
|
||||
CV_Error( CV_StsUnsupportedFormat, "Unsupported format of grabbed image." );
|
||||
|
||||
bgrImage.create(imageMetaData.getHeight(), imageMetaData.getWidth(), CV_8UC3);
|
||||
bufferImage.create(imageMetaData.getHeight(), imageMetaData.getWidth(), CV_8UC3);
|
||||
@ -989,7 +1021,7 @@ inline void getGrayImageFromMetaData(const openni::VideoFrameRef& imageMetaData,
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsUnsupportedFormat, "Unsupported format of grabbed image\n");
|
||||
CV_Error(CV_StsUnsupportedFormat, "Unsupported format of grabbed image.");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -20,7 +20,7 @@ int main(int, char**)
|
||||
//--- INITIALIZE VIDEOCAPTURE
|
||||
VideoCapture cap;
|
||||
// open the default camera using default API
|
||||
cap.open(0);
|
||||
// cap.open(0);
|
||||
// OR advance usage: select any API backend
|
||||
int deviceID = 0; // 0 = open default camera
|
||||
int apiID = cv::CAP_ANY; // 0 = autodetect default API
|
||||
|
@ -9,7 +9,7 @@ truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
|
||||
street sign
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
@ -23,11 +23,11 @@ elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
|
||||
hat
|
||||
backpack
|
||||
umbrella
|
||||
|
||||
|
||||
shoe
|
||||
eye glasses
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
@ -42,7 +42,7 @@ skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
|
||||
plate
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
@ -63,12 +63,12 @@ chair
|
||||
couch
|
||||
potted plant
|
||||
bed
|
||||
|
||||
mirror
|
||||
dining table
|
||||
|
||||
|
||||
window
|
||||
desk
|
||||
toilet
|
||||
|
||||
door
|
||||
tv
|
||||
laptop
|
||||
mouse
|
||||
@ -80,7 +80,7 @@ oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
|
||||
blender
|
||||
book
|
||||
clock
|
||||
vase
|
||||
|
80
samples/data/dnn/object_detection_classes_yolov3.txt
Normal file
80
samples/data/dnn/object_detection_classes_yolov3.txt
Normal file
@ -0,0 +1,80 @@
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorcycle
|
||||
airplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
backpack
|
||||
umbrella
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
couch
|
||||
potted plant
|
||||
bed
|
||||
dining table
|
||||
toilet
|
||||
tv
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
@ -14,6 +14,8 @@
|
||||
#include <iomanip>
|
||||
#include <stdexcept>
|
||||
|
||||
#define CL_USE_DEPRECATED_OPENCL_1_1_APIS
|
||||
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
|
||||
#define CL_USE_DEPRECATED_OPENCL_2_0_APIS // eliminate build warning
|
||||
|
||||
#ifdef __APPLE__
|
||||
|
Loading…
Reference in New Issue
Block a user