mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
added flann matching to find_obj.py
This commit is contained in:
parent
d3d55f3234
commit
b3ae2c181a
@ -1,14 +1,19 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
from common import anorm
|
||||
from functools import partial
|
||||
|
||||
help_message = '''SURF image match
|
||||
|
||||
USAGE: findobj.py [ <image1> <image2> ]
|
||||
'''
|
||||
|
||||
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing
|
||||
|
||||
def match(desc1, desc2, r_threshold = 0.75):
|
||||
flann_params = dict(algorithm = FLANN_INDEX_KDTREE,
|
||||
trees = 4)
|
||||
|
||||
def match_bruteforce(desc1, desc2, r_threshold = 0.75):
|
||||
res = []
|
||||
for i in xrange(len(desc1)):
|
||||
dist = anorm( desc2 - desc1[i] )
|
||||
@ -18,6 +23,14 @@ def match(desc1, desc2, r_threshold = 0.75):
|
||||
res.append((i, n1))
|
||||
return np.array(res)
|
||||
|
||||
def match_flann(desc1, desc2, r_threshold = 0.6):
|
||||
flann = cv2.flann_Index(desc2, flann_params)
|
||||
idx2, dist = flann.knnSearch(desc1, 2, params = {}) # bug: need to provide empty dict
|
||||
mask = dist[:,0] / dist[:,1] < r_threshold
|
||||
idx1 = np.arange(len(desc1))
|
||||
pairs = np.int32( zip(idx1, idx2[:,0]) )
|
||||
return pairs[mask]
|
||||
|
||||
def draw_match(img1, img2, p1, p2, status = None, H = None):
|
||||
h1, w1 = img1.shape[:2]
|
||||
h2, w2 = img2.shape[:2]
|
||||
@ -50,6 +63,7 @@ def draw_match(img1, img2, p1, p2, status = None, H = None):
|
||||
cv2.line(vis, (x2+w1-r, y2+r), (x2+w1+r, y2-r), col, thickness)
|
||||
return vis
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try: fn1, fn2 = sys.argv[1:3]
|
||||
@ -68,12 +82,21 @@ if __name__ == '__main__':
|
||||
desc2.shape = (-1, surf.descriptorSize())
|
||||
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2))
|
||||
|
||||
m = match(desc1, desc2)
|
||||
def match_and_draw(match, r_threshold):
|
||||
m = match(desc1, desc2, r_threshold)
|
||||
matched_p1 = np.array([kp1[i].pt for i, j in m])
|
||||
matched_p2 = np.array([kp2[j].pt for i, j in m])
|
||||
H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 10.0)
|
||||
H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 5.0)
|
||||
print '%d / %d inliers/matched' % (np.sum(status), len(status))
|
||||
|
||||
vis = draw_match(img1, img2, matched_p1, matched_p2, status, H)
|
||||
cv2.imshow('find_obj SURF', vis)
|
||||
return vis
|
||||
|
||||
print 'bruteforce match:',
|
||||
vis_brute = match_and_draw( match_bruteforce, 0.75 )
|
||||
print 'flann match:',
|
||||
vis_flann = match_and_draw( match_flann, 0.6 ) # flann tends to find more distant second
|
||||
# neighbours, so r_threshold is decreased
|
||||
cv2.imshow('find_obj SURF', vis_brute)
|
||||
cv2.imshow('find_obj SURF flann', vis_flann)
|
||||
cv2.waitKey()
|
Loading…
Reference in New Issue
Block a user