Added theory to a rst Tutorial in tracking motion (Harris corner)

This commit is contained in:
Ana Huaman 2011-08-22 13:53:12 +00:00
parent fc771363d3
commit b3b036fd35

View File

@ -38,7 +38,7 @@ To mention a few:
.. container:: enumeratevisibleitemswithsquare
* Edges
* Corner (also known as interest points)
* **Corners** (also known as interest points)
* Blobs (also known as regions of interest )
In this tutorial we will study the *corner* features, specifically.
@ -46,6 +46,108 @@ In this tutorial we will study the *corner* features, specifically.
Why is a corner so special?
----------------------------
.. container:: enumeratevisibleitemswithsquare
* Because, since it is the intersection of two edges, it represents a point in which the directions of these two edges *change*. Hence, the gradient of the image (in both directions) have a high variation, which can be used to detect it.
How does it work?
-----------------
.. container:: enumeratevisibleitemswithsquare
* Let's look for corners. Since corners represents a variation in the gradient in the image, we will look for this "variation".
* Consider a grayscale image :math:`I`. We are going to sweep a window :math:`w(x,y)` (with displacements :math:`u` in the x direction and :math:`v` in the right direction) :math:`I` and will calculate the variation of intensity.
.. math::
E(u,v) = \sum _{x,y} w(x,y)[ I(x+u,y+v) - I(x,y)]^{2}
where:
* :math:`w(x,y)` is the window at position :math:`(x,y)`
* :math:`I(x,y)` is the intensity at :math:`(x,y)`
* :math:`I(x+u,y+v)` is the intensity at the moved window :math:`(x+u,y+v)`
* Since we are looking for windows with corners, we are looking for windows with a large variation in intensity. Hence, we have to maximize the equation above, specifically the term:
.. math::
\sum _{x,y}[ I(x+u,y+v) - I(x,y)]^{2}
* Using *Taylor expansion*:
.. math::
E(u,v) \approx \sum _{x,y}[ I(x,y) + u I_{x} + vI_{y} - I(x,y)]^{2}
* Expanding the equation and cancelling properly:
.. math::
E(u,v) \approx \sum _{x,y} u^{2}I_{x}^{2} + 2uvI_{x}I_{y} + v^{2}I_{y}^{2}
* Which can be expressed in a matrix form as:
.. math::
E(u,v) \approx \begin{bmatrix}
u & v
\end{bmatrix}
\left (
\displaystyle \sum_{x,y}
w(x,y)
\begin{bmatrix}
I_x^{2} & I_{x}I_{y} \\
I_xI_{y} & I_{y}^{2}
\end{bmatrix}
\right )
\begin{bmatrix}
u \\
v
\end{bmatrix}
* Let's denote:
.. math::
M = \displaystyle \sum_{x,y}
w(x,y)
\begin{bmatrix}
I_x^{2} & I_{x}I_{y} \\
I_xI_{y} & I_{y}^{2}
\end{bmatrix}
* So, our equation now is:
.. math::
E(u,v) \approx \begin{bmatrix}
u & v
\end{bmatrix}
M
\begin{bmatrix}
u \\
v
\end{bmatrix}
* A score is calculated for each window, to determine if it can possibly contain a corner:
.. math::
R = det(M) - k(trace(M))^{2}
where:
* det(M) = :math:`\lambda_{1}\lambda_{2}`
* trace(M) = :math:`\lambda_{1}+\lambda_{2}`
a window with a score :math:`R` greater than a certain value is considered a "corner"
Code
====