modified FernClassifier::train(); remove old RTreeClassifier and added new implementation CalonderClassifier; removed old find_obj_calonder and added new one

This commit is contained in:
Maria Dimashova 2010-07-26 08:58:46 +00:00
parent 1135bc2495
commit b5a71db742
5 changed files with 959 additions and 1612 deletions

View File

@ -179,6 +179,17 @@ CVAPI(CvSeq*) cvGetStarKeypoints( const CvArr* img, CvMemStorage* storage,
namespace cv
{
struct CV_EXPORTS DefaultRngAuto
{
const static uint64 def_state = (uint64)-1;
const uint64 old_state;
DefaultRngAuto() : old_state(theRNG().state) { theRNG().state = def_state; }
~DefaultRngAuto() { theRNG().state = old_state; }
DefaultRngAuto& operator=(const DefaultRngAuto&);
};
// CvAffinePose: defines a parameterized affine transformation of an image patch.
// An image patch is rotated on angle phi (in degrees), then scaled lambda1 times
@ -396,9 +407,6 @@ CV_EXPORTS void FAST( const Mat& image, vector<KeyPoint>& keypoints, int thresho
/*!
The Patch Generator class
*/
class CV_EXPORTS PatchGenerator
{
@ -459,9 +467,9 @@ class CV_EXPORTS FernClassifier
public:
FernClassifier();
FernClassifier(const FileNode& node);
FernClassifier(const vector<Point2f>& points,
const vector<Ptr<Mat> >& refimgs,
const vector<int>& labels=vector<int>(),
FernClassifier(const vector<vector<Point2f> >& points,
const vector<Mat>& refimgs,
const vector<vector<int> >& labels=vector<vector<int> >(),
int _nclasses=0, int _patchSize=PATCH_SIZE,
int _signatureSize=DEFAULT_SIGNATURE_SIZE,
int _nstructs=DEFAULT_STRUCTS,
@ -481,9 +489,9 @@ public:
int _nviews=DEFAULT_VIEWS,
int _compressionMethod=COMPRESSION_NONE,
const PatchGenerator& patchGenerator=PatchGenerator());
virtual void train(const vector<Point2f>& points,
const vector<Ptr<Mat> >& refimgs,
const vector<int>& labels=vector<int>(),
virtual void train(const vector<vector<Point2f> >& points,
const vector<Mat>& refimgs,
const vector<vector<int> >& labels=vector<vector<int> >(),
int _nclasses=0, int _patchSize=PATCH_SIZE,
int _signatureSize=DEFAULT_SIGNATURE_SIZE,
int _nstructs=DEFAULT_STRUCTS,
@ -594,270 +602,127 @@ protected:
FernClassifier fernClassifier;
};
/****************************************************************************************\
* Calonder Descriptor *
* Calonder Classifier *
\****************************************************************************************/
struct CV_EXPORTS DefaultRngAuto
{
const static uint64 def_state = (uint64)-1;
const uint64 old_state;
DefaultRngAuto() : old_state(theRNG().state) { theRNG().state = def_state; }
~DefaultRngAuto() { theRNG().state = old_state; }
DefaultRngAuto& operator=(const DefaultRngAuto&);
};
/*
A pseudo-random number generator usable with std::random_shuffle.
*/
typedef cv::RNG CalonderRng;
typedef unsigned int int_type;
//----------------------------
//randomized_tree.h
//class RTTester;
//namespace features {
static const size_t DEFAULT_REDUCED_NUM_DIM = 176;
static const float LOWER_QUANT_PERC = .03f;
static const float UPPER_QUANT_PERC = .92f;
static const int PATCH_SIZE = 32;
static const int DEFAULT_DEPTH = 9;
static const int DEFAULT_VIEWS = 5000;
struct RTreeNode;
struct BaseKeypoint
{
int x;
int y;
IplImage* image;
BaseKeypoint()
: x(0), y(0), image(NULL)
{}
BaseKeypoint(int x, int y, IplImage* image)
: x(x), y(y), image(image)
{}
};
class CSMatrixGenerator {
public:
typedef enum { PDT_GAUSS=1, PDT_BERNOULLI, PDT_DBFRIENDLY } PHI_DISTR_TYPE;
~CSMatrixGenerator();
static float* getCSMatrix(int m, int n, PHI_DISTR_TYPE dt); // do NOT free returned pointer
private:
static float *cs_phi_; // matrix for compressive sensing
static int cs_phi_m_, cs_phi_n_;
};
template< typename T >
struct AlignedMemBlock
{
AlignedMemBlock() : raw(NULL), data(NULL) { };
// Alloc's an `a` bytes-aligned block good to hold `sz` elements of class T
AlignedMemBlock(const int n, const int a)
{
alloc(n, a);
}
~AlignedMemBlock()
{
free(raw);
}
void alloc(const int n, const int a)
{
uchar* raw = (uchar*)malloc(n*sizeof(T) + a);
int delta = (a - uint64(raw)%a)%a; // # bytes required for padding s.t. we get `a`-aligned
data = reinterpret_cast<T*>(raw + delta);
}
// Methods to access the aligned data. NEVER EVER FREE A RETURNED POINTER!
inline T* p() { return data; }
inline T* operator()() { return data; }
private:
T *raw; // raw block, probably not aligned
T *data; // exposed data, aligned, DO NOT FREE
};
typedef AlignedMemBlock<float> FloatSignature;
typedef AlignedMemBlock<uchar> Signature;
class CV_EXPORTS RandomizedTree
class CV_EXPORTS CalonderClassifier
{
public:
friend class RTreeClassifier;
//friend class ::RTTester;
CalonderClassifier();
CalonderClassifier( const vector<vector<Point2f> >& points, const vector<Mat>& refimgs,
const vector<vector<int> >& labels=vector<vector<int> >(), int _numClasses=0,
int _pathSize=DEFAULT_PATCH_SIZE,
int _numTrees=DEFAULT_NUM_TREES,
int _treeDepth=DEFAULT_TREE_DEPTH,
int _numViews=DEFAULT_NUM_VIEWS,
int _compressedDim=DEFAULT_COMPRESSED_DIM,
int _compressType=DEFAULT_COMPRESS_TYPE,
int _numQuantBits=DEFAULT_NUM_QUANT_BITS,
const PatchGenerator& patchGenerator=PatchGenerator() );
RandomizedTree();
~RandomizedTree();
virtual ~CalonderClassifier();
virtual void clear();
void train(std::vector<BaseKeypoint> const& base_set, cv::RNG &rng,
int depth, int views, size_t reduced_num_dim, int num_quant_bits);
void train( const vector<vector<Point2f> >& points, const vector<Mat>& refimgs,
const vector<vector<int> >& labels=vector<vector<int> >(), int _nclasses=0,
int _pathSize=DEFAULT_PATCH_SIZE,
int _numTrees=DEFAULT_NUM_TREES,
int _treeDepth=DEFAULT_TREE_DEPTH,
int _numViews=DEFAULT_NUM_VIEWS,
int _compressedDim=DEFAULT_COMPRESSED_DIM,
int _compressType=DEFAULT_COMPRESS_TYPE,
int _numQuantBits=DEFAULT_NUM_QUANT_BITS,
const PatchGenerator& patchGenerator=PatchGenerator() );
void train(std::vector<BaseKeypoint> const& base_set, cv::RNG &rng,
PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim,
int num_quant_bits);
virtual void operator()(const Mat& img, Point2f pt, vector<float>& signature, float thresh=0.f) const;
virtual void operator()(const Mat& patch, vector<float>& signature, float thresh=-1.f) const;
#define QUANTIZATION_AVAILABLE 1
#if QUANTIZATION_AVAILABLE
void quantizePosteriors( int _numQuantBits, bool isClearFloatPosteriors=false );
void clearFloatPosteriors();
virtual void operator()(const Mat& img, Point2f pt, vector<uchar>& signature, uchar thresh=-1.f) const;
virtual void operator()(const Mat& patch, vector<uchar>& signature, uchar thresh=-1.f) const;
#endif
// following two funcs are EXPERIMENTAL (do not use unless you know exactly what you do)
static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0);
static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst);
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
// patch_data must be a 32x32 array (no row padding)
float* getPosterior(uchar* patch_data);
const float* getPosterior(uchar* patch_data) const;
uchar* getPosterior2(uchar* patch_data);
bool empty() const;
void read(const char* file_name, int num_quant_bits);
void read(std::istream &is, int num_quant_bits);
void write(const char* file_name) const;
void write(std::ostream &os) const;
void setVerbose( bool _verbose );
inline int classes() { return classes_; }
inline int depth() { return depth_; }
int getPatchSize() const;
int getNumTrees() const;
int getTreeDepth() const;
int getNumViews() const;
int getSignatureSize() const;
int getCompressType() const;
int getNumQuantBits() const;
int getOrigNumClasses() const;
inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); }
// debug
void savePosteriors(std::string url, bool append=false);
void savePosteriors2(std::string url, bool append=false);
private:
int classes_;
int depth_;
int num_leaves_;
std::vector<RTreeNode> nodes_;
//float **posteriors_; // 16-bytes aligned posteriors
//uchar **posteriors2_; // 16-bytes aligned posteriors
FloatSignature *posteriors_;
Signature *posteriors2_;
std::vector<int> leaf_counts_;
void createNodes(int num_nodes, cv::RNG &rng);
void allocPosteriorsAligned(int num_leaves, int num_classes);
void freePosteriors(int which); // which: 1=posteriors_, 2=posteriors2_, 3=both
void init(int classes, int depth, cv::RNG &rng);
void addExample(int class_id, uchar* patch_data);
void finalize(size_t reduced_num_dim, int num_quant_bits);
int getIndex(uchar* patch_data) const;
inline float* getPosteriorByIndex(int index);
inline uchar* getPosteriorByIndex2(int index);
inline const float* getPosteriorByIndex(int index) const;
//void makeRandomMeasMatrix(float *cs_phi, PHI_DISTR_TYPE dt, size_t reduced_num_dim);
void convertPosteriorsToChar();
void makePosteriors2(int num_quant_bits);
void compressLeaves(size_t reduced_num_dim);
void estimateQuantPercForPosteriors(float perc[2]);
enum
{
COMPRESS_NONE = -1,
COMPRESS_DISTR_GAUSS = 0,
COMPRESS_DISTR_BERNOULLI = 1,
COMPRESS_DISTR_DBFRIENDLY = 2,
};
struct RTreeNode
static float GET_LOWER_QUANT_PERC() { return .03f; }
static float GET_UPPER_QUANT_PERC() { return .92f; }
enum
{
short offset1, offset2;
MAX_NUM_QUANT_BITS = 8,
DEFAULT_PATCH_SIZE = 32,
DEFAULT_NUM_TREES = 48,
DEFAULT_TREE_DEPTH = 9,
DEFAULT_NUM_VIEWS = 500,
DEFAULT_COMPRESSED_DIM = 176,
DEFAULT_COMPRESS_TYPE = COMPRESS_DISTR_BERNOULLI,
DEFAULT_NUM_QUANT_BITS = -1,
};
private:
void prepare( int _patchSize, int _signatureSize, int _numTrees, int _treeDepth, int _numViews );
RTreeNode() {}
int getLeafIdx( int treeIdx, const Mat& patch ) const;
void finalize( int _compressedDim, int _compressType, int _numQuantBits,
const vector<int>& leafSampleCounters);
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
: offset1(y1*PATCH_SIZE + x1),
offset2(y2*PATCH_SIZE + x2)
void compressLeaves( int _compressedDim, int _compressType );
bool verbose;
int patchSize;
int signatureSize;
int numTrees;
int treeDepth;
int numViews;
int origNumClasses;
int compressType;
int numQuantBits;
int numLeavesPerTree;
int numNodesPerTree;
struct Node
{
uchar x1, y1, x2, y2;
Node() : x1(0), y1(0), x2(0), y2(0) {}
Node( uchar _x1, uchar _y1, uchar _x2, uchar _y2 ) : x1(_x1), y1(_y1), x2(_x2), y2(_y2)
{}
//! Left child on 0, right child on 1
inline bool operator() (uchar* patch_data) const
{
return patch_data[offset1] > patch_data[offset2];
}
int operator() (const Mat_<uchar>& patch) const
{ return patch(y1,x1) > patch(y2, x2) ? 1 : 0; }
};
//} // namespace features
//----------------------------
//rtree_classifier.h
//class RTTester;
//namespace features {
class CV_EXPORTS RTreeClassifier
{
public:
//friend class ::RTTester;
static const int DEFAULT_TREES = 80;
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
//static const int SIG_LEN = 176;
RTreeClassifier();
//modified
void train(std::vector<BaseKeypoint> const& base_set,
cv::RNG &rng,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
void train(std::vector<BaseKeypoint> const& base_set,
cv::RNG &rng,
PatchGenerator &make_patch,
int num_trees = DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
// sig must point to a memory block of at least classes()*sizeof(float|uchar) bytes
void getSignature(IplImage *patch, uchar *sig);
void getSignature(IplImage *patch, float *sig);
void getSparseSignature(IplImage *patch, float *sig, float thresh);
// TODO: deprecated in favor of getSignature overload, remove
void getFloatSignature(IplImage *patch, float *sig) { getSignature(patch, sig); }
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176);
static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176);
inline int classes() const { return classes_; }
inline int original_num_classes() { return original_num_classes_; }
void setQuantization(int num_quant_bits);
void discardFloatPosteriors();
void read(const char* file_name);
void read(std::istream &is);
void write(const char* file_name) const;
void write(std::ostream &os) const;
// experimental and debug
void saveAllFloatPosteriors(std::string file_url);
void saveAllBytePosteriors(std::string file_url);
void setFloatPosteriorsFromTextfile_176(std::string url);
float countZeroElements();
std::vector<RandomizedTree> trees_;
private:
int classes_;
int num_quant_bits_;
uchar **posteriors_;
ushort *ptemp_;
int original_num_classes_;
bool keep_floats_;
vector<Node> nodes;
vector<float> posteriors;
#if QUANTIZATION_AVAILABLE
vector<uchar> quantizedPosteriors;
#endif
};
/****************************************************************************************\
* One-Way Descriptor *
\****************************************************************************************/
@ -1004,7 +869,7 @@ protected:
CvAffinePose* m_affine_poses; // an array of poses
CvMat** m_transforms; // an array of affine transforms corresponding to poses
std::string m_feature_name; // the name of the feature associated with the descriptor
string m_feature_name; // the name of the feature associated with the descriptor
CvPoint m_center; // the coordinates of the feature (the center of the input image ROI)
int m_pca_dim_high; // the number of descriptor pca components to use for generating affine poses
@ -1275,7 +1140,8 @@ public:
*
* image The image.
* keypoints The detected keypoints.
* mask Mask specifying where to look for keypoints (optional). Must be a char matrix with non-zero values in the region of interest.
* mask Mask specifying where to look for keypoints (optional). Must be a char
* matrix with non-zero values in the region of interest.
*/
void detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
{
@ -1473,6 +1339,48 @@ protected:
SURF surf;
};
#if 0
template<typename T>
class CalonderDescriptorExtractor : public DescriptorExtractor
{
public:
CalonderDescriptorExtractor( const string& classifierFile );
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
virtual void read( const FileNode &fn );
virtual void write( FileStorage &fs ) const;
protected:
RTreeClassifier classifier_;
static const int BORDER_SIZE = 16;
};
template<typename T>
CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const std::string& classifier_file)
{
classifier_.read( classifier_file.c_str() );
}
template<typename T>
void CalonderDescriptorExtractor<T>::compute( const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints,
cv::Mat& descriptors) const
{
// Cannot compute descriptors for keypoints on the image border.
removeBorderKeypoints(keypoints, image.size(), BORDER_SIZE);
/// @todo Check 16-byte aligned
descriptors.create(keypoints.size(), classifier_.classes(), cv::DataType<T>::type);
IplImage ipl = (IplImage)image;
for (size_t i = 0; i < keypoints.size(); ++i) {
cv::Point2f keypt = keypoints[i].pt;
cv::WImageView1_b patch = features::extractPatch(&ipl, keypt);
classifier_.getSignature(patch.Ipl(), descriptors.ptr<T>(i));
}
}
#endif
CV_EXPORTS Ptr<DescriptorExtractor> createDescriptorExtractor( const string& descriptorExtractorType );
/****************************************************************************************\
@ -1591,8 +1499,7 @@ public:
* mask Mask specifying permissible matches.
* matches Indices of the closest matches from the training set
*/
void match( const Mat& query, const Mat& mask,
vector<int>& matches ) const;
void match( const Mat& query, const Mat& mask, vector<int>& matches ) const;
/*
* Find the best match for each descriptor from a query set
@ -1613,8 +1520,7 @@ public:
* mask Mask specifying permissible matches.
* matches DMatches of the closest matches from the training set
*/
void match( const Mat& query, const Mat& mask,
vector<DMatch>& matches ) const;
void match( const Mat& query, const Mat& mask, vector<DMatch>& matches ) const;
/*
* Find many matches for each descriptor from a query set
@ -2049,6 +1955,7 @@ protected:
/*
* CalonderDescriptorMatch
*/
#if 0
class CV_EXPORTS CalonderDescriptorMatch : public GenericDescriptorMatch
{
public:
@ -2113,6 +2020,7 @@ protected:
Ptr<RTreeClassifier> classifier;
Params params;
};
#endif
/*
* FernDescriptorMatch
@ -2178,6 +2086,7 @@ protected:
};
CV_EXPORTS Ptr<GenericDescriptorMatch> createGenericDescriptorMatch( const string& genericDescritptorMatchType, const string &paramsFilename = string () );
/****************************************************************************************\
* VectorDescriptorMatch *
\****************************************************************************************/
@ -2199,63 +2108,27 @@ public:
void index();
// Calculates descriptors for a set of keypoints from a single image
virtual void add( const Mat& image, vector<KeyPoint>& keypoints )
{
Mat descriptors;
extractor->compute( image, keypoints, descriptors );
matcher->add( descriptors );
collection.add( Mat(), keypoints );
};
virtual void add( const Mat& image, vector<KeyPoint>& keypoints );
// Matches a set of keypoints with the training set
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<int>& keypointIndices )
{
Mat descriptors;
extractor->compute( image, points, descriptors );
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<int>& keypointIndices );
matcher->match( descriptors, keypointIndices );
};
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matches );
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matches )
{
Mat descriptors;
extractor->compute( image, points, descriptors );
virtual void match( const Mat& image, vector<KeyPoint>& points,
vector<vector<DMatch> >& matches, float threshold );
matcher->match( descriptors, matches );
}
virtual void clear();
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
virtual void match( const Mat& image, vector<KeyPoint>& points, vector<vector<DMatch> >& matches, float threshold )
{
Mat descriptors;
extractor->compute( image, points, descriptors );
matcher->match( descriptors, matches, threshold );
}
virtual void clear()
{
GenericDescriptorMatch::clear();
matcher->clear();
}
virtual void read (const FileNode& fn)
{
GenericDescriptorMatch::read(fn);
extractor->read (fn);
}
virtual void write (FileStorage& fs) const
{
GenericDescriptorMatch::write(fs);
extractor->write (fs);
}
protected:
Ptr<DescriptorExtractor> extractor;
Ptr<DescriptorMatcher> matcher;
//vector<int> classIds;
};
struct CV_EXPORTS DrawMatchesFlags
{
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),

File diff suppressed because it is too large Load Diff

View File

@ -228,6 +228,10 @@ void SurfDescriptorExtractor::write( FileStorage &fs ) const
fs << "extended" << surf.extended;
}
/****************************************************************************************\
* Factory functions for descriptor extractor and matcher creating *
\****************************************************************************************/
Ptr<DescriptorExtractor> createDescriptorExtractor( const string& descriptorExtractorType )
{
DescriptorExtractor* de = 0;
@ -270,7 +274,9 @@ Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherT
return dm;
}
/****************************************************************************************\
* BruteForceMatcher L2 specialization *
\****************************************************************************************/
template<>
void BruteForceMatcher<L2<float> >::matchImpl( const Mat& descriptors_1, const Mat& descriptors_2,
const Mat& /*mask*/, vector<int>& matches ) const
@ -317,7 +323,6 @@ void BruteForceMatcher<L2<float> >::matchImpl( const Mat& descriptors_1, const M
#endif
}
/****************************************************************************************\
* GenericDescriptorMatch *
\****************************************************************************************/
@ -394,6 +399,9 @@ void GenericDescriptorMatch::clear()
collection.clear();
}
/*
* Factory function for GenericDescriptorMatch creating
*/
Ptr<GenericDescriptorMatch> createGenericDescriptorMatch( const string& genericDescritptorMatchType, const string &paramsFilename )
{
GenericDescriptorMatch *descriptorMatch = 0;
@ -409,7 +417,7 @@ Ptr<GenericDescriptorMatch> createGenericDescriptorMatch( const string& genericD
}
else if( ! genericDescritptorMatchType.compare ("CALONDER") )
{
descriptorMatch = new CalonderDescriptorMatch ();
//descriptorMatch = new CalonderDescriptorMatch ();
}
if( !paramsFilename.empty() && descriptorMatch != 0 )
@ -626,6 +634,7 @@ void OneWayDescriptorMatch::clear ()
/****************************************************************************************\
* CalonderDescriptorMatch *
\****************************************************************************************/
#if 0
CalonderDescriptorMatch::Params::Params( const RNG& _rng, const PatchGenerator& _patchGen,
int _numTrees, int _depth, int _views,
size_t _reducedNumDim,
@ -774,6 +783,7 @@ void CalonderDescriptorMatch::write( FileStorage& fs ) const
fs << "numQuantBits" << params.numQuantBits;
fs << "printStatus" << params.printStatus;
}
#endif
/****************************************************************************************\
* FernDescriptorMatch *
@ -827,22 +837,13 @@ void FernDescriptorMatch::trainFernClassifier()
{
assert( params.filename.empty() );
vector<Point2f> points;
vector<Ptr<Mat> > refimgs;
vector<int> labels;
for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ )
{
for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ )
{
refimgs.push_back(new Mat (collection.images[imageIdx]));
points.push_back(collection.points[imageIdx][pointIdx].pt);
labels.push_back((int)pointIdx);
}
}
vector<vector<Point2f> > points;
for( size_t imgIdx = 0; imgIdx < collection.images.size(); imgIdx++ )
KeyPoint::convert( collection.points[imgIdx], points[imgIdx] );
classifier = new FernClassifier( points, refimgs, labels, params.nclasses, params.patchSize,
params.signatureSize, params.nstructs, params.structSize, params.nviews,
params.compressionMethod, params.patchGenerator );
classifier = new FernClassifier( points, collection.images, vector<vector<int> >(), 0, // each points is a class
params.patchSize, params.signatureSize, params.nstructs, params.structSize,
params.nviews, params.compressionMethod, params.patchGenerator );
}
}
@ -966,4 +967,59 @@ void FernDescriptorMatch::clear ()
classifier.release();
}
/****************************************************************************************\
* VectorDescriptorMatch *
\****************************************************************************************/
void VectorDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
{
Mat descriptors;
extractor->compute( image, keypoints, descriptors );
matcher->add( descriptors );
collection.add( Mat(), keypoints );
};
void VectorDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<int>& keypointIndices )
{
Mat descriptors;
extractor->compute( image, points, descriptors );
matcher->match( descriptors, keypointIndices );
};
void VectorDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matches )
{
Mat descriptors;
extractor->compute( image, points, descriptors );
matcher->match( descriptors, matches );
}
void VectorDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points,
vector<vector<DMatch> >& matches, float threshold )
{
Mat descriptors;
extractor->compute( image, points, descriptors );
matcher->match( descriptors, matches, threshold );
}
void VectorDescriptorMatch::clear()
{
GenericDescriptorMatch::clear();
matcher->clear();
}
void VectorDescriptorMatch::read( const FileNode& fn )
{
GenericDescriptorMatch::read(fn);
extractor->read (fn);
}
void VectorDescriptorMatch::write (FileStorage& fs) const
{
GenericDescriptorMatch::write(fs);
extractor->write (fs);
}
}

View File

@ -692,9 +692,9 @@ Size FernClassifier::getPatchSize() const
}
FernClassifier::FernClassifier(const vector<Point2f>& points,
const vector<Ptr<Mat> >& refimgs,
const vector<int>& labels,
FernClassifier::FernClassifier(const vector<vector<Point2f> >& points,
const vector<Mat>& refimgs,
const vector<vector<int> >& labels,
int _nclasses, int _patchSize,
int _signatureSize, int _nstructs,
int _structSize, int _nviews, int _compressionMethod,
@ -829,43 +829,58 @@ void FernClassifier::prepare(int _nclasses, int _patchSize, int _signatureSize,
}
}
static int calcNumPoints( const vector<vector<Point2f> >& points )
{
int count = 0;
for( size_t i = 0; i < points.size(); i++ )
count += points[i].size();
return count;
}
void FernClassifier::train(const vector<Point2f>& points,
const vector<Ptr<Mat> >& refimgs,
const vector<int>& labels,
void FernClassifier::train(const vector<vector<Point2f> >& points,
const vector<Mat>& refimgs,
const vector<vector<int> >& labels,
int _nclasses, int _patchSize,
int _signatureSize, int _nstructs,
int _structSize, int _nviews, int _compressionMethod,
const PatchGenerator& patchGenerator)
{
_nclasses = _nclasses > 0 ? _nclasses : (int)points.size();
CV_Assert( points.size() == refimgs.size() );
int numPoints = calcNumPoints( points );
_nclasses = (!labels.empty() && _nclasses>0) ? _nclasses : numPoints;
CV_Assert( labels.empty() || labels.size() == points.size() );
prepare(_nclasses, _patchSize, _signatureSize, _nstructs,
_structSize, _nviews, _compressionMethod);
// pass all the views of all the samples through the generated trees and accumulate
// the statistics (posterior probabilities) in leaves.
Mat patch;
int i, j, nsamples = (int)points.size();
RNG& rng = theRNG();
for( i = 0; i < nsamples; i++ )
int globalPointIdx = 0;
for( size_t imgIdx = 0; imgIdx < points.size(); imgIdx++ )
{
Point2f pt = points[i];
const Mat& src = *refimgs[i];
int classId = labels.empty() ? i : labels[i];
if( verbose && (i+1)*progressBarSize/nsamples != i*progressBarSize/nsamples )
const Point2f* imgPoints = &points[imgIdx][0];
const int* imgLabels = labels.empty() ? 0 : &labels[imgIdx][0];
for( size_t pointIdx = 0; pointIdx < points[imgIdx].size(); pointIdx++, globalPointIdx++ )
{
Point2f pt = imgPoints[pointIdx];
const Mat& src = refimgs[imgIdx];
int classId = imgLabels==0 ? globalPointIdx : imgLabels[pointIdx];
if( verbose && (globalPointIdx+1)*progressBarSize/numPoints != globalPointIdx*progressBarSize/numPoints )
putchar('.');
CV_Assert( 0 <= classId && classId < nclasses );
classCounters[classId] += _nviews;
for( j = 0; j < _nviews; j++ )
for( int v = 0; v < _nviews; v++ )
{
patchGenerator(src, pt, patch, patchSize, rng);
for( int f = 0; f < nstructs; f++ )
posteriors[getLeaf(f, patch)*nclasses + classId]++;
}
}
}
if( verbose )
putchar('\n');

View File

@ -1,309 +1,154 @@
//Calonder descriptor sample
#include <stdio.h>
#if 0
#include <cxcore.h>
#include <cv.h>
#include <cvaux.h>
#include <highgui.h>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <iostream>
#include <fstream>
using namespace std;
using namespace cv;
// Number of training points (set to -1 to use all points)
const int n_points = -1;
//Draw the border of projection of train image calculed by averaging detected correspondences
const bool draw_border = true;
void cvmSet6(CvMat* m, int row, int col, float val1, float val2, float val3, float val4, float val5, float val6)
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng )
{
cvmSet(m, row, col, val1);
cvmSet(m, row, col + 1, val2);
cvmSet(m, row, col + 2, val3);
cvmSet(m, row, col + 3, val4);
cvmSet(m, row, col + 4, val5);
cvmSet(m, row, col + 5, val6);
H.create(3, 3, CV_32FC1);
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f);
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f);
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f);
warpPerspective( src, dst, H, src.size() );
}
void FindAffineTransform(const vector<CvPoint>& p1, const vector<CvPoint>& p2, CvMat* affine)
int main( int argc, char **argv )
{
int eq_num = 2*(int)p1.size();
CvMat* A = cvCreateMat(eq_num, 6, CV_32FC1);
CvMat* B = cvCreateMat(eq_num, 1, CV_32FC1);
CvMat* X = cvCreateMat(6, 1, CV_32FC1);
for(int i = 0; i < (int)p1.size(); i++)
if( argc != 4 && argc != 3 )
{
cvmSet6(A, 2*i, 0, p1[i].x, p1[i].y, 1, 0, 0, 0);
cvmSet6(A, 2*i + 1, 0, 0, 0, 0, p1[i].x, p1[i].y, 1);
cvmSet(B, 2*i, 0, p2[i].x);
cvmSet(B, 2*i + 1, 0, p2[i].y);
cout << "Format:" << endl <<
" classifier(xml to write) test_image file_with_train_images_filenames(txt)" <<
" or" << endl <<
" classifier(xml to read) test_image" << endl;
return -1;
}
cvSolve(A, B, X, CV_SVD);
CalonderClassifier classifier;
if( argc == 4 ) // Train
{
// Read train images and test image
ifstream fst( argv[3], ifstream::in );
vector<Mat> trainImgs;
while( !fst.eof() )
{
string str;
getline( fst, str );
if (str.empty()) break;
Mat img = imread( str, CV_LOAD_IMAGE_GRAYSCALE );
if( !img.empty() )
trainImgs.push_back( img );
}
if( trainImgs.empty() )
{
cout << "All train images can not be read." << endl;
return -1;
}
cout << trainImgs.size() << " train images were read." << endl;
cvmSet(affine, 0, 0, cvmGet(X, 0, 0));
cvmSet(affine, 0, 1, cvmGet(X, 1, 0));
cvmSet(affine, 0, 2, cvmGet(X, 2, 0));
cvmSet(affine, 1, 0, cvmGet(X, 3, 0));
cvmSet(affine, 1, 1, cvmGet(X, 4, 0));
cvmSet(affine, 1, 2, cvmGet(X, 5, 0));
cvReleaseMat(&A);
cvReleaseMat(&B);
cvReleaseMat(&X);
// Extract keypoints from train images
SurfFeatureDetector detector;
vector<vector<Point2f> > trainPoints( trainImgs.size() );
for( size_t i = 0; i < trainImgs.size(); i++ )
{
vector<KeyPoint> kps;
detector.detect( trainImgs[i], kps );
KeyPoint::convert( kps, trainPoints[i] );
}
void MapVectorAffine(const vector<CvPoint>& p1, vector<CvPoint>& p2, CvMat* transform)
{
float a = cvmGet(transform, 0, 0);
float b = cvmGet(transform, 0, 1);
float c = cvmGet(transform, 0, 2);
float d = cvmGet(transform, 1, 0);
float e = cvmGet(transform, 1, 1);
float f = cvmGet(transform, 1, 2);
// Train Calonder classifier on extracted points
classifier.setVerbose( true);
classifier.train( trainPoints, trainImgs );
for(int i = 0; i < (int)p1.size(); i++)
{
float x = a*p1[i].x + b*p1[i].y + c;
float y = d*p1[i].x + e*p1[i].y + f;
p2.push_back(cvPoint(x, y));
}
}
float CalcAffineReprojectionError(const vector<CvPoint>& p1, const vector<CvPoint>& p2, CvMat* transform)
{
vector<CvPoint> mapped_p1;
MapVectorAffine(p1, mapped_p1, transform);
float error = 0;
for(int i = 0; i < (int)p2.size(); i++)
{
error += ((p2[i].x - mapped_p1[i].x)*(p2[i].x - mapped_p1[i].x)+(p2[i].y - mapped_p1[i].y)*(p2[i].y - mapped_p1[i].y));
}
error /= p2.size();
return error;
}
#endif
int main( int, char** )
{
printf("calonder_sample is under construction\n");
return 0;
#if 0
IplImage* test_image;
IplImage* train_image;
if (argc < 3)
{
test_image = cvLoadImage("box_in_scene.png",0);
train_image = cvLoadImage("box.png ",0);
if (!test_image || !train_image)
{
printf("Usage: calonder_sample <train_image> <test_image>");
return 0;
}
// Write Calonder classifier
FileStorage fs( argv[1], FileStorage::WRITE );
classifier.write( fs );
}
else
{
test_image = cvLoadImage(argv[2],0);
train_image = cvLoadImage(argv[1],0);
// Read Calonder classifier
FileStorage fs( argv[1], FileStorage::READ );
classifier.read( fs.root() );
}
if (!train_image)
if( classifier.empty() )
{
printf("Unable to load train image\n");
return 0;
cout << "Calonder classifier is empty" << endl;
return -1;
}
if (!test_image)
// Test Calonder classifier on test image and warped one
Mat testImg1 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ), testImg2, H12;
if( testImg1.empty() )
{
printf("Unable to load test image\n");
return 0;
cout << "Test image can not be read." << endl;
return -1;
}
warpPerspectiveRand( testImg1, testImg2, H12, theRNG() );
// Exstract keypoints from test images
SurfFeatureDetector detector;
vector<KeyPoint> testKeypoints1; detector.detect( testImg1, testKeypoints1 );
vector<KeyPoint> testKeypoints2; detector.detect( testImg2, testKeypoints2 );
vector<Point2f> testPoints1; KeyPoint::convert( testKeypoints1, testPoints1 );
vector<Point2f> testPoints2; KeyPoint::convert( testKeypoints2, testPoints2 );
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
CvSURFParams params = cvSURFParams(500, 1);
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors, storage, params );
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors, storage, params );
cv::RTreeClassifier detector;
int patch_width = cv::PATCH_SIZE;
int patch_height = cv::PATCH_SIZE;
vector<cv::BaseKeypoint> base_set;
int i=0;
CvSURFPoint* point;
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
// Calculate Calonder descriptors
int signatureSize = classifier.getSignatureSize();
vector<float> r1(testPoints1.size()*signatureSize), r2(testPoints2.size()*signatureSize);
vector<float>::iterator rit = r1.begin();
for( size_t i = 0; i < testPoints1.size(); i++ )
{
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
base_set.push_back(cv::BaseKeypoint(point->pt.x,point->pt.y,train_image));
vector<float> s;
classifier( testImg1, testPoints1[i], s );
copy( s.begin(), s.end(), rit );
rit += s.size();
}
//Detector training
cv::RNG rng( cvGetTickCount() );
cv::PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,-CV_PI/3,CV_PI/3);
printf("RTree Classifier training...\n");
detector.train(base_set,rng,gen,24,cv::DEFAULT_DEPTH,2000,(int)base_set.size(),detector.DEFAULT_NUM_QUANT_BITS);
printf("Done\n");
float* signature = new float[detector.original_num_classes()];
float* best_corr;
int* best_corr_idx;
if (imageKeypoints->total > 0)
rit = r2.begin();
for( size_t i = 0; i < testPoints2.size(); i++ )
{
best_corr = new float[imageKeypoints->total];
best_corr_idx = new int[imageKeypoints->total];
vector<float> s;
classifier( testImg2, testPoints2[i], s );
copy( s.begin(), s.end(), rit );
rit += s.size();
}
for(i=0; i < imageKeypoints->total; i++)
Mat descriptors1(testPoints1.size(), classifier.getSignatureSize(), CV_32FC1, &r1[0] ),
descriptors2(testPoints2.size(), classifier.getSignatureSize(), CV_32FC1, &r2[0] );
// Match descriptors
BruteForceMatcher<L1<float> > matcher;
matcher.add( descriptors2 );
vector<int> matches;
matcher.match( descriptors1, matches );
// Draw results
// Prepare inlier mask
vector<char> matchesMask( matches.size(), 0 );
Mat points1t; perspectiveTransform(Mat(testPoints1), points1t, H12);
vector<int>::const_iterator mit = matches.begin();
for( size_t mi = 0; mi < matches.size(); mi++ )
{
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
int part_idx = -1;
float prob = 0.0f;
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,(int)(point->pt.y) - patch_height/2, patch_width, patch_height);
cvSetImageROI(test_image, roi);
roi = cvGetImageROI(test_image);
if(roi.width != patch_width || roi.height != patch_height)
{
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
if( norm(testPoints2[matches[mi]] - points1t.at<Point2f>(mi,0)) < 4 ) // inlier
matchesMask[mi] = 1;
}
else
{
cvSetImageROI(test_image, roi);
IplImage* roi_image = cvCreateImage(cvSize(roi.width, roi.height), test_image->depth, test_image->nChannels);
cvCopy(test_image,roi_image);
detector.getSignature(roi_image, signature);
for (int j = 0; j< detector.original_num_classes();j++)
{
if (prob < signature[j])
{
part_idx = j;
prob = signature[j];
}
}
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
if (roi_image)
cvReleaseImage(&roi_image);
}
cvResetImageROI(test_image);
}
float min_prob = 0.0f;
vector<CvPoint> object;
vector<CvPoint> features;
for (int j=0;j<objectKeypoints->total;j++)
{
float prob = 0.0f;
int idx = -1;
for (i = 0; i<imageKeypoints->total;i++)
{
if ((best_corr_idx[i]!=j)||(best_corr[i] < min_prob))
continue;
if (best_corr[i] > prob)
{
prob = best_corr[i];
idx = i;
}
}
if (idx >=0)
{
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,j);
object.push_back(cvPoint((int)point->pt.x,(int)point->pt.y));
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,idx);
features.push_back(cvPoint((int)point->pt.x,(int)point->pt.y));
}
}
if ((int)object.size() > 3)
{
CvMat* affine = cvCreateMat(2, 3, CV_32FC1);
FindAffineTransform(object,features,affine);
vector<CvPoint> corners;
vector<CvPoint> mapped_corners;
corners.push_back(cvPoint(0,0));
corners.push_back(cvPoint(0,train_image->height));
corners.push_back(cvPoint(train_image->width,0));
corners.push_back(cvPoint(train_image->width,train_image->height));
MapVectorAffine(corners,mapped_corners,affine);
//Drawing the result
IplImage* result = cvCreateImage(cvSize(test_image->width > train_image->width ? test_image->width : train_image->width,
train_image->height + test_image->height),
test_image->depth, test_image->nChannels);
cvSetImageROI(result,cvRect(0,0,train_image->width, train_image->height));
cvCopy(train_image,result);
cvResetImageROI(result);
cvSetImageROI(result,cvRect(0,train_image->height,test_image->width, test_image->height));
cvCopy(test_image,result);
cvResetImageROI(result);
for (int i=0;i<(int)features.size();i++)
{
cvLine(result,object[i],cvPoint(features[i].x,features[i].y+train_image->height),cvScalar(255));
}
if (draw_border)
{
cvLine(result,cvPoint(mapped_corners[0].x, mapped_corners[0].y+train_image->height),
cvPoint(mapped_corners[1].x, mapped_corners[1].y+train_image->height),cvScalar(150),3);
cvLine(result,cvPoint(mapped_corners[0].x, mapped_corners[0].y+train_image->height),
cvPoint(mapped_corners[2].x, mapped_corners[2].y+train_image->height),cvScalar(150),3);
cvLine(result,cvPoint(mapped_corners[1].x, mapped_corners[1].y+train_image->height),
cvPoint(mapped_corners[3].x, mapped_corners[3].y+train_image->height),cvScalar(150),3);
cvLine(result,cvPoint(mapped_corners[2].x, mapped_corners[2].y+train_image->height),
cvPoint(mapped_corners[3].x, mapped_corners[3].y+train_image->height),cvScalar(150),3);
}
cvSaveImage("Result.jpg",result);
cvNamedWindow("Result",0);
cvShowImage("Result",result);
cvWaitKey();
cvReleaseMat(&affine);
cvReleaseImage(&result);
}
else
{
printf("Unable to find correspondence\n");
}
if (signature)
delete[] signature;
if (best_corr)
delete[] best_corr;
cvReleaseMemStorage(&storage);
cvReleaseImage(&train_image);
cvReleaseImage(&test_image);
return 0;
#endif
// Draw
Mat drawImg;
drawMatches( testImg1, testKeypoints1, testImg2, testKeypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask );
string winName = "Matches";
namedWindow( winName, WINDOW_AUTOSIZE );
imshow( winName, drawImg );
waitKey();
}