mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 04:12:52 +08:00
Merge pull request #20856 from TolyaTalamanov:at/cfg-batch-size
G-API: Extend ie::Params to specify batch size * Add cfgBatchSize to ie::Params * Fix comments to review
This commit is contained in:
parent
0cf79155d4
commit
b5a9a6793b
@ -44,6 +44,9 @@ public:
|
||||
GAPI_WRAP
|
||||
PyParams& cfgNumRequests(size_t nireq);
|
||||
|
||||
GAPI_WRAP
|
||||
PyParams& cfgBatchSize(const size_t size);
|
||||
|
||||
GBackend backend() const;
|
||||
std::string tag() const;
|
||||
cv::util::any params() const;
|
||||
|
@ -79,6 +79,8 @@ struct ParamDesc {
|
||||
|
||||
// NB: An optional config to setup RemoteContext for IE
|
||||
cv::util::any context_config;
|
||||
|
||||
size_t batch_size;
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
@ -120,7 +122,8 @@ public:
|
||||
, {}
|
||||
, {}
|
||||
, 1u
|
||||
, {}} {
|
||||
, {}
|
||||
, 1u} {
|
||||
};
|
||||
|
||||
/** @overload
|
||||
@ -141,7 +144,8 @@ public:
|
||||
, {}
|
||||
, {}
|
||||
, 1u
|
||||
, {}} {
|
||||
, {}
|
||||
, 1u} {
|
||||
};
|
||||
|
||||
/** @brief Specifies sequence of network input layers names for inference.
|
||||
@ -316,6 +320,19 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @brief Specifies the inference batch size.
|
||||
|
||||
The function is used to specify inference batch size.
|
||||
Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1CNNNetwork.html#a8e9d19270a48aab50cb5b1c43eecb8e9 for additional information
|
||||
|
||||
@param size batch size which will be used.
|
||||
@return reference to this parameter structure.
|
||||
*/
|
||||
Params<Net>& cfgBatchSize(const size_t size) {
|
||||
desc.batch_size = size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return Net::tag(); }
|
||||
@ -350,7 +367,7 @@ public:
|
||||
const std::string &device)
|
||||
: desc{ model, weights, device, {}, {}, {}, 0u, 0u,
|
||||
detail::ParamDesc::Kind::Load, true, {}, {}, {}, 1u,
|
||||
{}},
|
||||
{}, 1u},
|
||||
m_tag(tag) {
|
||||
};
|
||||
|
||||
@ -368,7 +385,7 @@ public:
|
||||
const std::string &device)
|
||||
: desc{ model, {}, device, {}, {}, {}, 0u, 0u,
|
||||
detail::ParamDesc::Kind::Import, true, {}, {}, {}, 1u,
|
||||
{}},
|
||||
{}, 1u},
|
||||
m_tag(tag) {
|
||||
};
|
||||
|
||||
@ -435,6 +452,12 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** @see ie::Params::cfgBatchSize */
|
||||
Params& cfgBatchSize(const size_t size) {
|
||||
desc.batch_size = size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return m_tag; }
|
||||
|
@ -49,3 +49,9 @@ cv::gapi::ie::PyParams& cv::gapi::ie::PyParams::cfgNumRequests(size_t nireq) {
|
||||
m_priv->cfgNumRequests(nireq);
|
||||
return *this;
|
||||
}
|
||||
|
||||
cv::gapi::ie::PyParams&
|
||||
cv::gapi::ie::PyParams::cfgBatchSize(const size_t size) {
|
||||
m_priv->cfgBatchSize(size);
|
||||
return *this;
|
||||
}
|
||||
|
@ -237,6 +237,7 @@ struct IEUnit {
|
||||
|
||||
if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Load) {
|
||||
net = cv::gimpl::ie::wrap::readNetwork(params);
|
||||
net.setBatchSize(params.batch_size);
|
||||
inputs = net.getInputsInfo();
|
||||
outputs = net.getOutputsInfo();
|
||||
} else if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import) {
|
||||
@ -1412,11 +1413,11 @@ std::vector<int> cv::gapi::ie::util::to_ocv(const IE::SizeVector &dims) {
|
||||
return toCV(dims);
|
||||
}
|
||||
|
||||
IE::Blob::Ptr cv::gapi::ie::util::to_ie(cv::Mat &blob) {
|
||||
IE::Blob::Ptr cv::gapi::ie::util::to_ie(const cv::Mat &blob) {
|
||||
return wrapIE(blob, cv::gapi::ie::TraitAs::IMAGE);
|
||||
}
|
||||
|
||||
IE::Blob::Ptr cv::gapi::ie::util::to_ie(cv::Mat &y_plane, cv::Mat &uv_plane) {
|
||||
IE::Blob::Ptr cv::gapi::ie::util::to_ie(const cv::Mat &y_plane, const cv::Mat &uv_plane) {
|
||||
auto y_blob = wrapIE(y_plane, cv::gapi::ie::TraitAs::IMAGE);
|
||||
auto uv_blob = wrapIE(uv_plane, cv::gapi::ie::TraitAs::IMAGE);
|
||||
#if INF_ENGINE_RELEASE >= 2021010000
|
||||
|
@ -27,8 +27,8 @@ namespace util {
|
||||
// test suite only.
|
||||
GAPI_EXPORTS std::vector<int> to_ocv(const InferenceEngine::SizeVector &dims);
|
||||
GAPI_EXPORTS cv::Mat to_ocv(InferenceEngine::Blob::Ptr blob);
|
||||
GAPI_EXPORTS InferenceEngine::Blob::Ptr to_ie(cv::Mat &blob);
|
||||
GAPI_EXPORTS InferenceEngine::Blob::Ptr to_ie(cv::Mat &y_plane, cv::Mat &uv_plane);
|
||||
GAPI_EXPORTS InferenceEngine::Blob::Ptr to_ie(const cv::Mat &blob);
|
||||
GAPI_EXPORTS InferenceEngine::Blob::Ptr to_ie(const cv::Mat &y_plane, const cv::Mat &uv_plane);
|
||||
|
||||
}}}}
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2019-2020 Intel Corporation
|
||||
// Copyright (C) 2019-2021 Intel Corporation
|
||||
|
||||
#include "../test_precomp.hpp"
|
||||
|
||||
@ -2187,6 +2187,58 @@ TEST_F(LimitedSourceInfer, ReleaseFrameAsync)
|
||||
run(max_frames, resources_limit, nireq);
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, InferWithBatch)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
constexpr int batch_size = 4;
|
||||
cv::gapi::ie::detail::ParamDesc params;
|
||||
params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
params.device_id = "CPU";
|
||||
|
||||
cv::Mat in_mat({batch_size, 3, 320, 240}, CV_8U);
|
||||
cv::randu(in_mat, 0, 255);
|
||||
|
||||
cv::Mat gapi_age, gapi_gender;
|
||||
|
||||
// Load & run IE network
|
||||
IE::Blob::Ptr ie_age, ie_gender;
|
||||
{
|
||||
auto plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
auto net = cv::gimpl::ie::wrap::readNetwork(params);
|
||||
setNetParameters(net);
|
||||
net.setBatchSize(batch_size);
|
||||
auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params);
|
||||
auto infer_request = this_network.CreateInferRequest();
|
||||
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
|
||||
infer_request.Infer();
|
||||
ie_age = infer_request.GetBlob("age_conv3");
|
||||
ie_gender = infer_request.GetBlob("prob");
|
||||
}
|
||||
|
||||
// Configure & run G-API
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
|
||||
|
||||
cv::GMat in;
|
||||
cv::GMat age, gender;
|
||||
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<AgeGender> {
|
||||
params.model_path, params.weights_path, params.device_id
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" })
|
||||
.cfgBatchSize(batch_size);
|
||||
|
||||
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
|
||||
cv::compile_args(cv::gapi::networks(pp)));
|
||||
|
||||
// Validate with IE itself (avoid DNN module dependency here)
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
|
||||
}
|
||||
|
||||
} // namespace opencv_test
|
||||
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
Loading…
Reference in New Issue
Block a user