A few optimizations to ocl::pyrLK::sparse, make it running on more OCL platforms

This commit is contained in:
yao 2013-01-16 16:50:59 +08:00 committed by Andrey Kamaev
parent 02c9e0a3e0
commit b5bd2cde9e
5 changed files with 1528 additions and 406 deletions

View File

@ -16,6 +16,7 @@
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
// Dachuan Zhao, dachuan@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
@ -260,3 +261,22 @@ __kernel void arithm_mul_D6 (__global double *src1, int src1_step, int src1_offs
}
}
#endif
__kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, float scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < cols && y < rows)
{
int src1_index = mad24(y, src1_step, (x << 2) + src1_offset);
int dst_index = mad24(y, dst_step, (x << 2) + dst_offset);
float data1 = *((__global float *)((__global char *)src1 + src1_index));
float tmp = data1 * scalar;
*((__global float *)((__global char *)dst + dst_index)) = tmp;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,764 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Sen Liu, sen@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define BUFFER 256
void reduce3(float val1, float val2, float val3, __local float *smem1, __local float *smem2, __local float *smem3, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
smem2[tid] = val2 += smem2[tid + 32];
smem3[tid] = val3 += smem3[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = val1 += smem1[tid + 16];
smem2[tid] = val2 += smem2[tid + 16];
smem3[tid] = val3 += smem3[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
volatile __local float *vmem1 = smem1;
volatile __local float *vmem2 = smem2;
volatile __local float *vmem3 = smem3;
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem3[tid] = val3 += vmem3[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem3[tid] = val3 += vmem3[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem3[tid] = val3 += vmem3[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
vmem3[tid] = val3 += vmem3[tid + 1];
}
}
void reduce2(float val1, float val2, __local float *smem1, __local float *smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
smem2[tid] = val2 += smem2[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = val1 += smem1[tid + 16];
smem2[tid] = val2 += smem2[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
volatile __local float *vmem1 = smem1;
volatile __local float *vmem2 = smem2;
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
}
}
void reduce1(float val1, __local float *smem1, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
volatile __local float *vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
volatile __local float *vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
}
}
#define SCALE (1.0f / (1 << 20))
#define THRESHOLD 0.01f
#define DIMENSION 21
float readImage2Df_C1(__global const float *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow)
{
float2 coor = (float2)(x, y);
int i0 = clamp((int)floor(coor.x), 0, cols - 1);
int j0 = clamp((int)floor(coor.y), 0, rows - 1);
int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1);
int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1);
float a = coor.x - floor(coor.x);
float b = coor.y - floor(coor.y);
return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)]
+ a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)]
+ (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)]
+ a * b * image[mad24(j1, elemCntPerRow, i1)];
}
__kernel void lkSparse_C1_D5(__global const float *I, __global const float *J,
__global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err,
const int level, const int rows, const int cols, const int elemCntPerRow,
int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1);
const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0));
float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float I_patch[1][3];
float dIdx_patch[1][3];
float dIdy_patch[1][3];
for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
{
for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
{
float x = (prevPt.x + xBase);
float y = (prevPt.y + yBase);
I_patch[i][j] = readImage2Df_C1(I, x, y, rows, cols, elemCntPerRow);
float dIdx = 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow));
float dIdy = 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
A11 += dIdx * dIdx;
A12 += dIdx * dIdy;
A22 += dIdy * dIdy;
}
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
if (D < 1.192092896e-07f)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[get_group_id(0)];
nextPt = nextPt * 2.0f - c_halfWin;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
float b1 = 0;
float b2 = 0;
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float diff = (readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f;
b1 += diff * dIdx_patch[i][j];
b2 += diff * dIdy_patch[i][j];
}
}
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt += delta;
//if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
// break;
}
float errval = 0.0f;
if (calcErr)
{
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float diff = readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j];
errval += fabs(diff);
}
}
reduce1(errval, smem1, tid);
}
if (tid == 0)
{
nextPt += c_halfWin;
nextPts[get_group_id(0)] = nextPt;
if (calcErr)
{
err[get_group_id(0)] = smem1[0] / (c_winSize_x * c_winSize_y);
}
}
}
float4 readImage2Df_C4(__global const float4 *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow)
{
float2 coor = (float2)(x, y);
int i0 = clamp((int)floor(coor.x), 0, cols - 1);
int j0 = clamp((int)floor(coor.y), 0, rows - 1);
int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1);
int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1);
float a = coor.x - floor(coor.x);
float b = coor.y - floor(coor.y);
return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)]
+ a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)]
+ (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)]
+ a * b * image[mad24(j1, elemCntPerRow, i1)];
}
__kernel void lkSparse_C4_D5(__global const float *I, __global const float *J,
__global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err,
const int level, const int rows, const int cols, const int elemCntPerRow,
int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1);
const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0));
float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float4 I_patch[1][3];
float4 dIdx_patch[1][3];
float4 dIdy_patch[1][3];
__global float4 *ptrI = (__global float4 *)I;
for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
{
for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
{
float x = (prevPt.x + xBase);
float y = (prevPt.y + yBase);
I_patch[i][j] = readImage2Df_C4(ptrI, x, y, rows, cols, elemCntPerRow);
float4 dIdx = 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow));
float4 dIdy = 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
A11 += (dIdx * dIdx).x + (dIdx * dIdx).y + (dIdx * dIdx).z;
A12 += (dIdx * dIdy).x + (dIdx * dIdy).y + (dIdx * dIdy).z;
A22 += (dIdy * dIdy).x + (dIdy * dIdy).y + (dIdy * dIdy).z;
}
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
//pD[get_group_id(0)] = D;
if (D < 1.192092896e-07f)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[get_group_id(0)];
nextPt = nextPt * 2.0f - c_halfWin;
__global float4 *ptrJ = (__global float4 *)J;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
float b1 = 0;
float b2 = 0;
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float4 diff = (readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f;
b1 += (diff * dIdx_patch[i][j]).x + (diff * dIdx_patch[i][j]).y + (diff * dIdx_patch[i][j]).z;
b2 += (diff * dIdy_patch[i][j]).x + (diff * dIdy_patch[i][j]).y + (diff * dIdy_patch[i][j]).z;
}
}
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt += delta;
//if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
// break;
}
float errval = 0.0f;
if (calcErr)
{
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float4 diff = readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j];
errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
}
}
reduce1(errval, smem1, tid);
}
if (tid == 0)
{
nextPt += c_halfWin;
nextPts[get_group_id(0)] = nextPt;
if (calcErr)
{
err[get_group_id(0)] = smem1[0] / (3 * c_winSize_x * c_winSize_y);
}
}
}
int readImage2Di_C1(__global const int *image, float2 coor, int2 size, const int elemCntPerRow)
{
int i = clamp((int)floor(coor.x), 0, size.x - 1);
int j = clamp((int)floor(coor.y), 0, size.y - 1);
return image[mad24(j, elemCntPerRow, i)];
}
__kernel void lkDense_C1_D0(__global const int *I, __global const int *J, __global float *u, int uStep, __global float *v, int vStep, __global const float *prevU, int prevUStep, __global const float *prevV, int prevVStep,
const int rows, const int cols, /*__global float* err, int errStep, int cn,*/
const int elemCntPerRow, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
int c_halfWin_x = (c_winSize_x - 1) / 2;
int c_halfWin_y = (c_winSize_y - 1) / 2;
const int patchWidth = get_local_size(0) + 2 * c_halfWin_x;
const int patchHeight = get_local_size(1) + 2 * c_halfWin_y;
__local int smem[8192];
__local int *I_patch = smem;
__local int *dIdx_patch = I_patch + patchWidth * patchHeight;
__local int *dIdy_patch = dIdx_patch + patchWidth * patchHeight;
const int xBase = get_group_id(0) * get_local_size(0);
const int yBase = get_group_id(1) * get_local_size(1);
int2 size = (int2)(cols, rows);
for (int i = get_local_id(1); i < patchHeight; i += get_local_size(1))
{
for (int j = get_local_id(0); j < patchWidth; j += get_local_size(0))
{
float x = xBase - c_halfWin_x + j + 0.5f;
float y = yBase - c_halfWin_y + i + 0.5f;
I_patch[i * patchWidth + j] = readImage2Di_C1(I, (float2)(x, y), size, elemCntPerRow);
// Sharr Deriv
dIdx_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x + 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) -
(3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x - 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow));
dIdy_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y + 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) -
(3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y - 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow));
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// extract the patch from the first image, compute covariation matrix of derivatives
const int x = get_global_id(0);
const int y = get_global_id(1);
if (x >= cols || y >= rows)
{
return;
}
int A11i = 0;
int A12i = 0;
int A22i = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
A11i += dIdx * dIdx;
A12i += dIdx * dIdy;
A22i += dIdy * dIdy;
}
}
float A11 = A11i;
float A12 = A12i;
float A22 = A22i;
float D = A11 * A22 - A12 * A12;
//if (calcErr && GET_MIN_EIGENVALS)
// (err + y * errStep)[x] = minEig;
if (D < 1.192092896e-07f)
{
//if (calcErr)
// err(y, x) = 3.402823466e+38f;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt;
nextPt.x = x + prevU[y / 2 * prevUStep / 4 + x / 2] * 2.0f;
nextPt.y = y + prevV[y / 2 * prevVStep / 4 + x / 2] * 2.0f;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{
//if (calcErr)
// err(y, x) = 3.402823466e+38f;
return;
}
int b1 = 0;
int b2 = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow);
int diff = (iJ - iI) * 32;
int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
b1 += diff * dIdx;
b2 += diff * dIdy;
}
}
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
{
break;
}
}
u[y * uStep / 4 + x] = nextPt.x - x;
v[y * vStep / 4 + x] = nextPt.y - y;
if (calcErr)
{
int errval = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow);
errval += abs(iJ - iI);
}
}
//err[y * errStep / 4 + x] = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
}
}

View File

@ -48,23 +48,24 @@ using namespace cv::ocl;
#if !defined (HAVE_OPENCL)
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &, const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat *) { }
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &, const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat &) { }
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat *) { }
#else /* !defined (HAVE_OPENCL) */
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyrlk;
extern const char *operator_setTo;
extern const char *operator_convertTo;
extern const char *operator_copyToM;
extern const char *arithm_mul;
extern const char *pyr_down;
}
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyrlk;
extern const char *pyrlk_no_image;
extern const char *operator_setTo;
extern const char *operator_convertTo;
extern const char *operator_copyToM;
extern const char *arithm_mul;
extern const char *pyr_down;
}
}
struct dim3
@ -84,26 +85,26 @@ struct int2
namespace
{
void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
{
winSize.width *= cn;
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
{
winSize.width *= cn;
if (winSize.width > 32 && winSize.width > 2 * winSize.height)
{
block.x = isDeviceArch11 ? 16 : 32;
block.y = 8;
}
else
{
block.x = 16;
block.y = isDeviceArch11 ? 8 : 16;
}
patch.x = (winSize.width + block.x - 1) / block.x;
patch.y = (winSize.height + block.y - 1) / block.y;
block.z = patch.z = 1;
block.x = isDeviceArch11 ? 16 : 32;
block.y = 8;
}
else
{
block.x = 16;
block.y = isDeviceArch11 ? 8 : 16;
}
patch.x = (winSize.width + block.x - 1) / block.x;
patch.y = (winSize.height + block.y - 1) / block.y;
block.z = patch.z = 1;
}
}
inline int divUp(int total, int grain)
@ -530,7 +531,7 @@ void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, const ch
void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
arithmetic_run(src1, dst, "arithm_muls", &pyrlk, (void *)(&scalar));
arithmetic_run(src1, dst, "arithm_muls", &arithm_mul, (void *)(&scalar));
}
void pyrdown_run_cus(const oclMat &src, const oclMat &dst)
@ -581,26 +582,26 @@ void pyrDown_cus(const oclMat &src, oclMat &dst)
//
//void callF(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask)
//{
// Mat srcTemp;
// Mat dstTemp;
// src.download(srcTemp);
// dst.download(dstTemp);
// Mat srcTemp;
// Mat dstTemp;
// src.download(srcTemp);
// dst.download(dstTemp);
//
// int i;
// int j;
// int k;
// for(i = 0; i < srcTemp.rows; i++)
// {
// for(j = 0; j < srcTemp.cols; j++)
// {
// for(k = 0; k < srcTemp.channels(); k++)
// {
// ((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]);
// }
// }
// }
// int i;
// int j;
// int k;
// for(i = 0; i < srcTemp.rows; i++)
// {
// for(j = 0; j < srcTemp.cols; j++)
// {
// for(k = 0; k < srcTemp.channels(); k++)
// {
// ((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]);
// }
// }
// }
//
// dst = dstTemp;
// dst = dstTemp;
//}
//
//static inline bool isAligned(const unsigned char* ptr, size_t size)
@ -622,54 +623,54 @@ void pyrDown_cus(const oclMat &src, oclMat &dst)
// return;
// }
//
// Mat srcTemp;
// Mat dstTemp;
// src.download(srcTemp);
// dst.download(dstTemp);
// Mat srcTemp;
// Mat dstTemp;
// src.download(srcTemp);
// dst.download(dstTemp);
//
// int x_shifted;
// int x_shifted;
//
// int i;
// int j;
// for(i = 0; i < srcTemp.rows; i++)
// {
// const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows;
// int i;
// int j;
// for(i = 0; i < srcTemp.rows; i++)
// {
// const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows;
// double* dstRow = (double*)dstTemp.data + i * dstTemp.rows;;
//
// for(j = 0; j < srcTemp.cols; j++)
// {
// x_shifted = j * 4;
// for(j = 0; j < srcTemp.cols; j++)
// {
// x_shifted = j * 4;
//
// if(x_shifted + 4 - 1 < srcTemp.cols)
// {
// dstRow[x_shifted ] = op(srcRow[x_shifted ]);
// dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]);
// dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]);
// dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]);
// }
// else
// {
// for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x)
// {
// ((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]);
// }
// }
// }
// }
// if(x_shifted + 4 - 1 < srcTemp.cols)
// {
// dstRow[x_shifted ] = op(srcRow[x_shifted ]);
// dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]);
// dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]);
// dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]);
// }
// else
// {
// for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x)
// {
// ((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]);
// }
// }
// }
// }
//}
//
//void multiply(const oclMat& src1, double val, oclMat& dst, double scale = 1.0f);
//void multiply(const oclMat& src1, double val, oclMat& dst, double scale)
//{
// MultiplyScalar op(val, scale);
// //if(src1.channels() == 1 && dst.channels() == 1)
// //{
// // callT(src1, dst, op, 0);
// //}
// //else
// //{
// callF(src1, dst, op, 0);
// //}
// //if(src1.channels() == 1 && dst.channels() == 1)
// //{
// // callT(src1, dst, op, 0);
// //}
// //else
// //{
// callF(src1, dst, op, 0);
// //}
//}
cl_mem bindTexture(const oclMat &mat, int depth, int channels)
@ -735,46 +736,69 @@ void releaseTexture(cl_mem texture)
}
void lkSparse_run(oclMat &I, oclMat &J,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err, bool GET_MIN_EIGENVALS, int ptcount,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
int level, /*dim3 block, */dim3 patch, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
char platform[256] = {0};
cl_platform_id pid;
clGetDeviceInfo(*clCxt->impl->devices, CL_DEVICE_PLATFORM, sizeof(pid), &pid, NULL);
clGetPlatformInfo(pid, CL_PLATFORM_NAME, 256, platform, NULL);
std::string namestr = platform;
bool isImageSupported = true;
if(namestr.find("NVIDIA")!=string::npos || namestr.find("Intel")!=string::npos)
isImageSupported = false;
int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkSparse";
size_t localThreads[3] = { 8, 32, 1 };
size_t globalThreads[3] = { 8 * ptcount, 32, 1};
size_t localThreads[3] = { 8, isImageSupported?8:32, 1 };
size_t globalThreads[3] = { 8 * ptcount, isImageSupported?8:32, 1};
int cn = I.oclchannels();
bool calcErr;
if (err)
char calcErr;
if (level == 0)
{
calcErr = true;
calcErr = 1;
}
else
{
calcErr = false;
calcErr = 0;
}
calcErr = true;
cl_mem ITex = bindTexture(I, I.depth(), cn);
cl_mem JTex = bindTexture(J, J.depth(), cn);
vector<pair<size_t , const void *> > args;
cl_mem ITex;
cl_mem JTex;
if (isImageSupported)
{
ITex = bindTexture(I, I.depth(), cn);
JTex = bindTexture(J, J.depth(), cn);
}
else
{
ITex = (cl_mem)I.data;
JTex = (cl_mem)J.data;
}
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex ));
//cl_mem clmD = clCreateBuffer(clCxt, CL_MEM_READ_WRITE, ptcount * sizeof(float), NULL, NULL);
args.push_back( make_pair( sizeof(cl_mem), (void *)&prevPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&prevPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&nextPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&nextPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&status.data ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&(err->data) ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&err.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&level ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
if (!isImageSupported)
{
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
}
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x ));
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cn ));
@ -782,27 +806,29 @@ void lkSparse_run(oclMat &I, oclMat &J,
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS ));
//args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS ));
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
if (isImageSupported)
{
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
releaseTexture(ITex);
releaseTexture(JTex);
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
//printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
}
}
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err)
{
if (prevImg.clCxt->impl->devName.find("Intel(R) HD Graphics") != string::npos)
{
cout << " Intel HD GPU device unsupported " << endl;
return;
}
if (prevPts.empty())
{
nextPts.release();
status.release();
if (err) err->release();
//if (err) err->release();
return;
}
@ -836,8 +862,15 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
//status.setTo(Scalar::all(1));
setTo(status, Scalar::all(1));
//if (err)
// ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
bool errMat = false;
if (!err)
{
err = new oclMat(1, prevPts.cols, CV_32FC1);
errMat = true;
}
else
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
//ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, err);
// build the image pyramids.
@ -872,17 +905,22 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
for (int level = maxLevel; level >= 0; level--)
{
lkSparse_run(prevPyr_[level], nextPyr_[level],
prevPts, nextPts, status, level == 0 && err ? err : 0, getMinEigenVals, prevPts.cols,
prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols,
level, /*block, */patch, winSize, iters);
}
clFinish(prevImg.clCxt->impl->clCmdQueue);
if(errMat)
delete err;
}
void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
bool isImageSupported = clCxt->impl->devName.find("Intel(R) HD Graphics") == string::npos;
int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkDense";
@ -901,8 +939,19 @@ void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
calcErr = false;
}
cl_mem ITex = bindTexture(I, I.depth(), cn);
cl_mem JTex = bindTexture(J, J.depth(), cn);
cl_mem ITex;
cl_mem JTex;
if (isImageSupported)
{
ITex = bindTexture(I, I.depth(), cn);
JTex = bindTexture(J, J.depth(), cn);
}
else
{
ITex = (cl_mem)I.data;
JTex = (cl_mem)J.data;
}
//int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2};
//const int patchWidth = 16 + 2 * halfWin.x;
@ -926,15 +975,27 @@ void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&(*err).data ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&(*err).step ));
if (!isImageSupported)
{
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
}
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
if (isImageSupported)
{
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
releaseTexture(ITex);
releaseTexture(JTex);
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
//printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
}
}
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err)

View File

@ -118,9 +118,9 @@ TEST_P(Sparse, Mat)
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void *)&status[0]);
d_status.download(status_mat);
//std::vector<float> err(d_err.cols);
//cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
//d_err.download(err_mat);
std::vector<float> err(d_err.cols);
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
d_err.download(err_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
@ -153,9 +153,9 @@ TEST_P(Sparse, Mat)
}
}
double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size() * 2);
double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size());
ASSERT_LE(bad_ratio, 0.05f);
ASSERT_LE(bad_ratio, 0.02f);
}