mirror of
https://github.com/opencv/opencv.git
synced 2025-01-21 08:37:57 +08:00
Merge pull request #7133 from sovrasov:interactive_calibration_update
This commit is contained in:
commit
b632f95f8d
@ -5,15 +5,6 @@ if(NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
find_package(LAPACK)
|
||||
if(LAPACK_FOUND)
|
||||
find_file(LAPACK_HEADER "lapacke.h")
|
||||
if(LAPACK_HEADER)
|
||||
add_definitions(-DUSE_LAPACK)
|
||||
link_libraries(${LAPACK_LIBRARIES})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
project(interactive-calibration)
|
||||
set(the_target opencv_interactive-calibration)
|
||||
|
||||
|
@ -23,7 +23,7 @@ namespace calib
|
||||
static const std::string consoleHelp = "Hot keys:\nesc - exit application\n"
|
||||
"s - save current data to .xml file\n"
|
||||
"r - delete last frame\n"
|
||||
"u - enable/disable applying undistortion"
|
||||
"u - enable/disable applying undistortion\n"
|
||||
"d - delete all frames\n"
|
||||
"v - switch visualization";
|
||||
|
||||
|
@ -1,824 +0,0 @@
|
||||
#include <opencv2/calib3d.hpp>
|
||||
#include "linalg.hpp"
|
||||
#include "cvCalibrationFork.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector<uchar>& cols,
|
||||
const std::vector<uchar>& rows);
|
||||
static const char* cvDistCoeffErr = "Distortion coefficients must be 1x4, 4x1, 1x5, 5x1, 1x8, 8x1, 1x12, 12x1, 1x14 or 14x1 floating-point vector";
|
||||
|
||||
static void cvEvaluateJtJ2(CvMat* _JtJ,
|
||||
const CvMat* camera_matrix,
|
||||
const CvMat* distortion_coeffs,
|
||||
const CvMat* object_points,
|
||||
const CvMat* param,
|
||||
const CvMat* npoints,
|
||||
int flags, int NINTRINSIC, double aspectRatio)
|
||||
{
|
||||
int i, pos, ni, total = 0, npstep = 0, maxPoints = 0;
|
||||
|
||||
npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type);
|
||||
int nimages = npoints->rows*npoints->cols;
|
||||
for( i = 0; i < nimages; i++ )
|
||||
{
|
||||
ni = npoints->data.i[i*npstep];
|
||||
if( ni < 4 )
|
||||
{
|
||||
CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i));
|
||||
}
|
||||
maxPoints = MAX( maxPoints, ni );
|
||||
total += ni;
|
||||
}
|
||||
|
||||
Mat _Ji( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0));
|
||||
Mat _Je( maxPoints*2, 6, CV_64FC1 );
|
||||
Mat _err( maxPoints*2, 1, CV_64FC1 );
|
||||
Mat _m( 1, total, CV_64FC2 );
|
||||
const Mat matM = cvarrToMat(object_points);
|
||||
|
||||
cvZero(_JtJ);
|
||||
for(i = 0, pos = 0; i < nimages; i++, pos += ni )
|
||||
{
|
||||
CvMat _ri, _ti;
|
||||
ni = npoints->data.i[i*npstep];
|
||||
|
||||
cvGetRows( param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
|
||||
cvGetRows( param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
|
||||
|
||||
CvMat _Mi(matM.colRange(pos, pos + ni));
|
||||
CvMat _mi(_m.colRange(pos, pos + ni));
|
||||
|
||||
_Je.resize(ni*2); _Ji.resize(ni*2); _err.resize(ni*2);
|
||||
CvMat _dpdr(_Je.colRange(0, 3));
|
||||
CvMat _dpdt(_Je.colRange(3, 6));
|
||||
CvMat _dpdf(_Ji.colRange(0, 2));
|
||||
CvMat _dpdc(_Ji.colRange(2, 4));
|
||||
CvMat _dpdk(_Ji.colRange(4, NINTRINSIC));
|
||||
CvMat _mp(_err.reshape(2, 1));
|
||||
|
||||
cvProjectPoints2( &_Mi, &_ri, &_ti, camera_matrix, distortion_coeffs, &_mp, &_dpdr, &_dpdt,
|
||||
(flags & CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf,
|
||||
(flags & CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk,
|
||||
(flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0);
|
||||
cvSub( &_mp, &_mi, &_mp );
|
||||
Mat JtJ(cvarrToMat(_JtJ));
|
||||
// see HZ: (A6.14) for details on the structure of the Jacobian
|
||||
JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += _Ji.t() * _Ji;
|
||||
JtJ(Rect(NINTRINSIC + i * 6, NINTRINSIC + i * 6, 6, 6)) = _Je.t() * _Je;
|
||||
JtJ(Rect(NINTRINSIC + i * 6, 0, 6, NINTRINSIC)) = _Ji.t() * _Je;
|
||||
}
|
||||
}
|
||||
|
||||
double cvfork::cvCalibrateCamera2( const CvMat* objectPoints,
|
||||
const CvMat* imagePoints, const CvMat* npoints,
|
||||
CvSize imageSize, CvMat* cameraMatrix, CvMat* distCoeffs,
|
||||
CvMat* rvecs, CvMat* tvecs, CvMat* stdDevs, CvMat* perViewErrors, int flags, CvTermCriteria termCrit )
|
||||
{
|
||||
{
|
||||
const int NINTRINSIC = CV_CALIB_NINTRINSIC;
|
||||
double reprojErr = 0;
|
||||
|
||||
Matx33d A;
|
||||
double k[14] = {0};
|
||||
CvMat matA = cvMat(3, 3, CV_64F, A.val), _k;
|
||||
int i, nimages, maxPoints = 0, ni = 0, pos, total = 0, nparams, npstep, cn;
|
||||
double aspectRatio = 0.;
|
||||
|
||||
// 0. check the parameters & allocate buffers
|
||||
if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(imagePoints) ||
|
||||
!CV_IS_MAT(npoints) || !CV_IS_MAT(cameraMatrix) || !CV_IS_MAT(distCoeffs) )
|
||||
CV_Error( CV_StsBadArg, "One of required vector arguments is not a valid matrix" );
|
||||
|
||||
if( imageSize.width <= 0 || imageSize.height <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "image width and height must be positive" );
|
||||
|
||||
if( CV_MAT_TYPE(npoints->type) != CV_32SC1 ||
|
||||
(npoints->rows != 1 && npoints->cols != 1) )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"the array of point counters must be 1-dimensional integer vector" );
|
||||
if(flags & CV_CALIB_TILTED_MODEL)
|
||||
{
|
||||
//when the tilted sensor model is used the distortion coefficients matrix must have 14 parameters
|
||||
if (distCoeffs->cols*distCoeffs->rows != 14)
|
||||
CV_Error( CV_StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" );
|
||||
}
|
||||
else
|
||||
{
|
||||
//when the thin prism model is used the distortion coefficients matrix must have 12 parameters
|
||||
if(flags & CV_CALIB_THIN_PRISM_MODEL)
|
||||
if (distCoeffs->cols*distCoeffs->rows != 12)
|
||||
CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" );
|
||||
}
|
||||
|
||||
nimages = npoints->rows*npoints->cols;
|
||||
npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type);
|
||||
|
||||
if( rvecs )
|
||||
{
|
||||
cn = CV_MAT_CN(rvecs->type);
|
||||
if( !CV_IS_MAT(rvecs) ||
|
||||
(CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) ||
|
||||
((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) &&
|
||||
(rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
if( tvecs )
|
||||
{
|
||||
cn = CV_MAT_CN(tvecs->type);
|
||||
if( !CV_IS_MAT(tvecs) ||
|
||||
(CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) ||
|
||||
((tvecs->rows != nimages || tvecs->cols*cn != 3) &&
|
||||
(tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
if( stdDevs )
|
||||
{
|
||||
cn = CV_MAT_CN(stdDevs->type);
|
||||
if( !CV_IS_MAT(stdDevs) ||
|
||||
(CV_MAT_DEPTH(stdDevs->type) != CV_32F && CV_MAT_DEPTH(stdDevs->type) != CV_64F) ||
|
||||
((stdDevs->rows != (nimages*6 + NINTRINSIC) || stdDevs->cols*cn != 1) &&
|
||||
(stdDevs->rows != 1 || stdDevs->cols != (nimages*6 + NINTRINSIC) || cn != 1)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of standard deviations vectors must be 1-channel "
|
||||
"1x(n*6 + NINTRINSIC) or (n*6 + NINTRINSIC)x1 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
if( (CV_MAT_TYPE(cameraMatrix->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(cameraMatrix->type) != CV_64FC1) ||
|
||||
cameraMatrix->rows != 3 || cameraMatrix->cols != 3 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
"Intrinsic parameters must be 3x3 floating-point matrix" );
|
||||
|
||||
if( (CV_MAT_TYPE(distCoeffs->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(distCoeffs->type) != CV_64FC1) ||
|
||||
(distCoeffs->cols != 1 && distCoeffs->rows != 1) ||
|
||||
(distCoeffs->cols*distCoeffs->rows != 4 &&
|
||||
distCoeffs->cols*distCoeffs->rows != 5 &&
|
||||
distCoeffs->cols*distCoeffs->rows != 8 &&
|
||||
distCoeffs->cols*distCoeffs->rows != 12 &&
|
||||
distCoeffs->cols*distCoeffs->rows != 14) )
|
||||
CV_Error( CV_StsBadArg, cvDistCoeffErr );
|
||||
|
||||
for( i = 0; i < nimages; i++ )
|
||||
{
|
||||
ni = npoints->data.i[i*npstep];
|
||||
if( ni < 4 )
|
||||
{
|
||||
CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i));
|
||||
}
|
||||
maxPoints = MAX( maxPoints, ni );
|
||||
total += ni;
|
||||
}
|
||||
|
||||
Mat matM( 1, total, CV_64FC3 );
|
||||
Mat _m( 1, total, CV_64FC2 );
|
||||
|
||||
if(CV_MAT_CN(objectPoints->type) == 3) {
|
||||
cvarrToMat(objectPoints).convertTo(matM, CV_64F);
|
||||
} else {
|
||||
convertPointsHomogeneous(cvarrToMat(objectPoints), matM);
|
||||
}
|
||||
|
||||
if(CV_MAT_CN(imagePoints->type) == 2) {
|
||||
cvarrToMat(imagePoints).convertTo(_m, CV_64F);
|
||||
} else {
|
||||
convertPointsHomogeneous(cvarrToMat(imagePoints), _m);
|
||||
}
|
||||
|
||||
nparams = NINTRINSIC + nimages*6;
|
||||
Mat _Ji( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0));
|
||||
Mat _Je( maxPoints*2, 6, CV_64FC1 );
|
||||
Mat _err( maxPoints*2, 1, CV_64FC1 );
|
||||
|
||||
_k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k);
|
||||
if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 8 )
|
||||
{
|
||||
if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 5 )
|
||||
flags |= CALIB_FIX_K3;
|
||||
flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6;
|
||||
}
|
||||
const double minValidAspectRatio = 0.01;
|
||||
const double maxValidAspectRatio = 100.0;
|
||||
|
||||
// 1. initialize intrinsic parameters & LM solver
|
||||
if( flags & CALIB_USE_INTRINSIC_GUESS )
|
||||
{
|
||||
cvConvert( cameraMatrix, &matA );
|
||||
if( A(0, 0) <= 0 || A(1, 1) <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" );
|
||||
if( A(0, 2) < 0 || A(0, 2) >= imageSize.width ||
|
||||
A(1, 2) < 0 || A(1, 2) >= imageSize.height )
|
||||
CV_Error( CV_StsOutOfRange, "Principal point must be within the image" );
|
||||
if( fabs(A(0, 1)) > 1e-5 )
|
||||
CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" );
|
||||
if( fabs(A(1, 0)) > 1e-5 || fabs(A(2, 0)) > 1e-5 ||
|
||||
fabs(A(2, 1)) > 1e-5 || fabs(A(2,2)-1) > 1e-5 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
"The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" );
|
||||
A(0, 1) = A(1, 0) = A(2, 0) = A(2, 1) = 0.;
|
||||
A(2, 2) = 1.;
|
||||
|
||||
if( flags & CALIB_FIX_ASPECT_RATIO )
|
||||
{
|
||||
aspectRatio = A(0, 0)/A(1, 1);
|
||||
|
||||
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
|
||||
}
|
||||
cvConvert( distCoeffs, &_k );
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar mean, sdv;
|
||||
meanStdDev(matM, mean, sdv);
|
||||
if( fabs(mean[2]) > 1e-5 || fabs(sdv[2]) > 1e-5 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
"For non-planar calibration rigs the initial intrinsic matrix must be specified" );
|
||||
for( i = 0; i < total; i++ )
|
||||
matM.at<Point3d>(i).z = 0.;
|
||||
|
||||
if( flags & CALIB_FIX_ASPECT_RATIO )
|
||||
{
|
||||
aspectRatio = cvmGet(cameraMatrix,0,0);
|
||||
aspectRatio /= cvmGet(cameraMatrix,1,1);
|
||||
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
|
||||
}
|
||||
CvMat _matM(matM), m(_m);
|
||||
cvInitIntrinsicParams2D( &_matM, &m, npoints, imageSize, &matA, aspectRatio );
|
||||
}
|
||||
|
||||
//CvLevMarq solver( nparams, 0, termCrit );
|
||||
cvfork::CvLevMarqFork solver( nparams, 0, termCrit );
|
||||
Mat allErrors(1, total, CV_64FC2);
|
||||
|
||||
if(flags & CALIB_USE_LU) {
|
||||
solver.solveMethod = DECOMP_LU;
|
||||
}
|
||||
else if(flags & CALIB_USE_QR)
|
||||
solver.solveMethod = DECOMP_QR;
|
||||
|
||||
{
|
||||
double* param = solver.param->data.db;
|
||||
uchar* mask = solver.mask->data.ptr;
|
||||
|
||||
param[0] = A(0, 0); param[1] = A(1, 1); param[2] = A(0, 2); param[3] = A(1, 2);
|
||||
std::copy(k, k + 14, param + 4);
|
||||
|
||||
if( flags & CV_CALIB_FIX_FOCAL_LENGTH )
|
||||
mask[0] = mask[1] = 0;
|
||||
if( flags & CV_CALIB_FIX_PRINCIPAL_POINT )
|
||||
mask[2] = mask[3] = 0;
|
||||
if( flags & CV_CALIB_ZERO_TANGENT_DIST )
|
||||
{
|
||||
param[6] = param[7] = 0;
|
||||
mask[6] = mask[7] = 0;
|
||||
}
|
||||
if( !(flags & CALIB_RATIONAL_MODEL) )
|
||||
flags |= CALIB_FIX_K4 + CALIB_FIX_K5 + CALIB_FIX_K6;
|
||||
if( !(flags & CV_CALIB_THIN_PRISM_MODEL))
|
||||
flags |= CALIB_FIX_S1_S2_S3_S4;
|
||||
if( !(flags & CV_CALIB_TILTED_MODEL))
|
||||
flags |= CALIB_FIX_TAUX_TAUY;
|
||||
|
||||
mask[ 4] = !(flags & CALIB_FIX_K1);
|
||||
mask[ 5] = !(flags & CALIB_FIX_K2);
|
||||
mask[ 8] = !(flags & CALIB_FIX_K3);
|
||||
mask[ 9] = !(flags & CALIB_FIX_K4);
|
||||
mask[10] = !(flags & CALIB_FIX_K5);
|
||||
mask[11] = !(flags & CALIB_FIX_K6);
|
||||
|
||||
if(flags & CALIB_FIX_S1_S2_S3_S4)
|
||||
{
|
||||
mask[12] = 0;
|
||||
mask[13] = 0;
|
||||
mask[14] = 0;
|
||||
mask[15] = 0;
|
||||
}
|
||||
if(flags & CALIB_FIX_TAUX_TAUY)
|
||||
{
|
||||
mask[16] = 0;
|
||||
mask[17] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// 2. initialize extrinsic parameters
|
||||
for( i = 0, pos = 0; i < nimages; i++, pos += ni )
|
||||
{
|
||||
CvMat _ri, _ti;
|
||||
ni = npoints->data.i[i*npstep];
|
||||
|
||||
cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
|
||||
cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
|
||||
|
||||
CvMat _Mi(matM.colRange(pos, pos + ni));
|
||||
CvMat _mi(_m.colRange(pos, pos + ni));
|
||||
|
||||
cvFindExtrinsicCameraParams2( &_Mi, &_mi, &matA, &_k, &_ri, &_ti );
|
||||
}
|
||||
|
||||
// 3. run the optimization
|
||||
for(;;)
|
||||
{
|
||||
const CvMat* _param = 0;
|
||||
CvMat *_JtJ = 0, *_JtErr = 0;
|
||||
double* _errNorm = 0;
|
||||
bool proceed = solver.updateAlt( _param, _JtJ, _JtErr, _errNorm );
|
||||
double *param = solver.param->data.db, *pparam = solver.prevParam->data.db;
|
||||
|
||||
if( flags & CALIB_FIX_ASPECT_RATIO )
|
||||
{
|
||||
param[0] = param[1]*aspectRatio;
|
||||
pparam[0] = pparam[1]*aspectRatio;
|
||||
}
|
||||
|
||||
A(0, 0) = param[0]; A(1, 1) = param[1]; A(0, 2) = param[2]; A(1, 2) = param[3];
|
||||
std::copy(param + 4, param + 4 + 14, k);
|
||||
|
||||
if( !proceed ) {
|
||||
//do errors estimation
|
||||
if(stdDevs) {
|
||||
Ptr<CvMat> JtJ(cvCreateMat(nparams, nparams, CV_64F));
|
||||
CvMat cvMatM(matM);
|
||||
cvEvaluateJtJ2(JtJ, &matA, &_k, &cvMatM, solver.param, npoints, flags, NINTRINSIC, aspectRatio);
|
||||
|
||||
Mat mask = cvarrToMat(solver.mask);
|
||||
int nparams_nz = countNonZero(mask);
|
||||
Mat JtJinv, JtJN;
|
||||
JtJN.create(nparams_nz, nparams_nz, CV_64F);
|
||||
subMatrix(cvarrToMat(JtJ), JtJN, mask, mask);
|
||||
completeSymm(JtJN, false);
|
||||
#ifndef USE_LAPACK
|
||||
cv::invert(JtJN, JtJinv, DECOMP_SVD);
|
||||
#else
|
||||
cvfork::invert(JtJN, JtJinv, DECOMP_SVD);
|
||||
#endif
|
||||
double sigma2 = norm(allErrors, NORM_L2SQR) / (total - nparams_nz);
|
||||
Mat stdDevsM = cvarrToMat(stdDevs);
|
||||
int j = 0;
|
||||
for (int s = 0; s < nparams; s++)
|
||||
if(mask.data[s]) {
|
||||
stdDevsM.at<double>(s) = std::sqrt(JtJinv.at<double>(j,j)*sigma2);
|
||||
j++;
|
||||
}
|
||||
else
|
||||
stdDevsM.at<double>(s) = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
reprojErr = 0;
|
||||
|
||||
for( i = 0, pos = 0; i < nimages; i++, pos += ni )
|
||||
{
|
||||
CvMat _ri, _ti;
|
||||
ni = npoints->data.i[i*npstep];
|
||||
|
||||
cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
|
||||
cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
|
||||
|
||||
CvMat _Mi(matM.colRange(pos, pos + ni));
|
||||
CvMat _mi(_m.colRange(pos, pos + ni));
|
||||
CvMat _me(allErrors.colRange(pos, pos + ni));
|
||||
|
||||
_Je.resize(ni*2); _Ji.resize(ni*2); _err.resize(ni*2);
|
||||
CvMat _dpdr(_Je.colRange(0, 3));
|
||||
CvMat _dpdt(_Je.colRange(3, 6));
|
||||
CvMat _dpdf(_Ji.colRange(0, 2));
|
||||
CvMat _dpdc(_Ji.colRange(2, 4));
|
||||
CvMat _dpdk(_Ji.colRange(4, NINTRINSIC));
|
||||
CvMat _mp(_err.reshape(2, 1));
|
||||
|
||||
if( solver.state == CvLevMarq::CALC_J )
|
||||
{
|
||||
cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp, &_dpdr, &_dpdt,
|
||||
(flags & CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf,
|
||||
(flags & CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk,
|
||||
(flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0);
|
||||
}
|
||||
else
|
||||
cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp );
|
||||
|
||||
cvSub( &_mp, &_mi, &_mp );
|
||||
|
||||
if( solver.state == CvLevMarq::CALC_J )
|
||||
{
|
||||
Mat JtJ(cvarrToMat(_JtJ)), JtErr(cvarrToMat(_JtErr));
|
||||
|
||||
// see HZ: (A6.14) for details on the structure of the Jacobian
|
||||
JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += _Ji.t() * _Ji;
|
||||
JtJ(Rect(NINTRINSIC + i * 6, NINTRINSIC + i * 6, 6, 6)) = _Je.t() * _Je;
|
||||
JtJ(Rect(NINTRINSIC + i * 6, 0, 6, NINTRINSIC)) = _Ji.t() * _Je;
|
||||
|
||||
JtErr.rowRange(0, NINTRINSIC) += _Ji.t() * _err;
|
||||
JtErr.rowRange(NINTRINSIC + i * 6, NINTRINSIC + (i + 1) * 6) = _Je.t() * _err;
|
||||
|
||||
}
|
||||
if (stdDevs || perViewErrors)
|
||||
cvCopy(&_mp, &_me);
|
||||
reprojErr += norm(_err, NORM_L2SQR);
|
||||
}
|
||||
|
||||
if( _errNorm )
|
||||
*_errNorm = reprojErr;
|
||||
}
|
||||
|
||||
// 4. store the results
|
||||
cvConvert( &matA, cameraMatrix );
|
||||
cvConvert( &_k, distCoeffs );
|
||||
|
||||
for( i = 0, pos = 0; i < nimages; i++)
|
||||
{
|
||||
CvMat src, dst;
|
||||
if( perViewErrors )
|
||||
{
|
||||
ni = npoints->data.i[i*npstep];
|
||||
perViewErrors->data.db[i] = std::sqrt(cv::norm(allErrors.colRange(pos, pos + ni), NORM_L2SQR) / ni);
|
||||
pos+=ni;
|
||||
}
|
||||
|
||||
if( rvecs )
|
||||
{
|
||||
src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 );
|
||||
if( rvecs->rows == nimages && rvecs->cols*CV_MAT_CN(rvecs->type) == 9 )
|
||||
{
|
||||
dst = cvMat( 3, 3, CV_MAT_DEPTH(rvecs->type),
|
||||
rvecs->data.ptr + rvecs->step*i );
|
||||
cvRodrigues2( &src, &matA );
|
||||
cvConvert( &matA, &dst );
|
||||
}
|
||||
else
|
||||
{
|
||||
dst = cvMat( 3, 1, CV_MAT_DEPTH(rvecs->type), rvecs->rows == 1 ?
|
||||
rvecs->data.ptr + i*CV_ELEM_SIZE(rvecs->type) :
|
||||
rvecs->data.ptr + rvecs->step*i );
|
||||
cvConvert( &src, &dst );
|
||||
}
|
||||
}
|
||||
if( tvecs )
|
||||
{
|
||||
src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 + 3 );
|
||||
dst = cvMat( 3, 1, CV_MAT_DEPTH(tvecs->type), tvecs->rows == 1 ?
|
||||
tvecs->data.ptr + i*CV_ELEM_SIZE(tvecs->type) :
|
||||
tvecs->data.ptr + tvecs->step*i );
|
||||
cvConvert( &src, &dst );
|
||||
}
|
||||
}
|
||||
|
||||
return std::sqrt(reprojErr/total);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static Mat prepareCameraMatrix(Mat& cameraMatrix0, int rtype)
|
||||
{
|
||||
Mat cameraMatrix = Mat::eye(3, 3, rtype);
|
||||
if( cameraMatrix0.size() == cameraMatrix.size() )
|
||||
cameraMatrix0.convertTo(cameraMatrix, rtype);
|
||||
return cameraMatrix;
|
||||
}
|
||||
|
||||
static Mat prepareDistCoeffs(Mat& distCoeffs0, int rtype)
|
||||
{
|
||||
Mat distCoeffs = Mat::zeros(distCoeffs0.cols == 1 ? Size(1, 14) : Size(14, 1), rtype);
|
||||
if( distCoeffs0.size() == Size(1, 4) ||
|
||||
distCoeffs0.size() == Size(1, 5) ||
|
||||
distCoeffs0.size() == Size(1, 8) ||
|
||||
distCoeffs0.size() == Size(1, 12) ||
|
||||
distCoeffs0.size() == Size(1, 14) ||
|
||||
distCoeffs0.size() == Size(4, 1) ||
|
||||
distCoeffs0.size() == Size(5, 1) ||
|
||||
distCoeffs0.size() == Size(8, 1) ||
|
||||
distCoeffs0.size() == Size(12, 1) ||
|
||||
distCoeffs0.size() == Size(14, 1) )
|
||||
{
|
||||
Mat dstCoeffs(distCoeffs, Rect(0, 0, distCoeffs0.cols, distCoeffs0.rows));
|
||||
distCoeffs0.convertTo(dstCoeffs, rtype);
|
||||
}
|
||||
return distCoeffs;
|
||||
}
|
||||
|
||||
static void collectCalibrationData( InputArrayOfArrays objectPoints,
|
||||
InputArrayOfArrays imagePoints1,
|
||||
InputArrayOfArrays imagePoints2,
|
||||
Mat& objPtMat, Mat& imgPtMat1, Mat* imgPtMat2,
|
||||
Mat& npoints )
|
||||
{
|
||||
int nimages = (int)objectPoints.total();
|
||||
int i, j = 0, ni = 0, total = 0;
|
||||
CV_Assert(nimages > 0 && nimages == (int)imagePoints1.total() &&
|
||||
(!imgPtMat2 || nimages == (int)imagePoints2.total()));
|
||||
|
||||
for( i = 0; i < nimages; i++ )
|
||||
{
|
||||
ni = objectPoints.getMat(i).checkVector(3, CV_32F);
|
||||
if( ni <= 0 )
|
||||
CV_Error(CV_StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f");
|
||||
int ni1 = imagePoints1.getMat(i).checkVector(2, CV_32F);
|
||||
if( ni1 <= 0 )
|
||||
CV_Error(CV_StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f");
|
||||
CV_Assert( ni == ni1 );
|
||||
|
||||
total += ni;
|
||||
}
|
||||
|
||||
npoints.create(1, (int)nimages, CV_32S);
|
||||
objPtMat.create(1, (int)total, CV_32FC3);
|
||||
imgPtMat1.create(1, (int)total, CV_32FC2);
|
||||
Point2f* imgPtData2 = 0;
|
||||
|
||||
if( imgPtMat2 )
|
||||
{
|
||||
imgPtMat2->create(1, (int)total, CV_32FC2);
|
||||
imgPtData2 = imgPtMat2->ptr<Point2f>();
|
||||
}
|
||||
|
||||
Point3f* objPtData = objPtMat.ptr<Point3f>();
|
||||
Point2f* imgPtData1 = imgPtMat1.ptr<Point2f>();
|
||||
|
||||
for( i = 0; i < nimages; i++, j += ni )
|
||||
{
|
||||
Mat objpt = objectPoints.getMat(i);
|
||||
Mat imgpt1 = imagePoints1.getMat(i);
|
||||
ni = objpt.checkVector(3, CV_32F);
|
||||
npoints.at<int>(i) = ni;
|
||||
memcpy( objPtData + j, objpt.ptr(), ni*sizeof(objPtData[0]) );
|
||||
memcpy( imgPtData1 + j, imgpt1.ptr(), ni*sizeof(imgPtData1[0]) );
|
||||
|
||||
if( imgPtData2 )
|
||||
{
|
||||
Mat imgpt2 = imagePoints2.getMat(i);
|
||||
int ni2 = imgpt2.checkVector(2, CV_32F);
|
||||
CV_Assert( ni == ni2 );
|
||||
memcpy( imgPtData2 + j, imgpt2.ptr(), ni*sizeof(imgPtData2[0]) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double cvfork::calibrateCamera(InputArrayOfArrays _objectPoints,
|
||||
InputArrayOfArrays _imagePoints,
|
||||
Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
|
||||
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray _stdDeviations, OutputArray _perViewErrors, int flags, TermCriteria criteria )
|
||||
{
|
||||
int rtype = CV_64F;
|
||||
Mat cameraMatrix = _cameraMatrix.getMat();
|
||||
cameraMatrix = prepareCameraMatrix(cameraMatrix, rtype);
|
||||
Mat distCoeffs = _distCoeffs.getMat();
|
||||
distCoeffs = prepareDistCoeffs(distCoeffs, rtype);
|
||||
if( !(flags & CALIB_RATIONAL_MODEL) &&
|
||||
(!(flags & CALIB_THIN_PRISM_MODEL)) &&
|
||||
(!(flags & CALIB_TILTED_MODEL)))
|
||||
distCoeffs = distCoeffs.rows == 1 ? distCoeffs.colRange(0, 5) : distCoeffs.rowRange(0, 5);
|
||||
|
||||
int nimages = int(_objectPoints.total());
|
||||
CV_Assert( nimages > 0 );
|
||||
Mat objPt, imgPt, npoints, rvecM, tvecM, stdDeviationsM, errorsM;
|
||||
|
||||
bool rvecs_needed = _rvecs.needed(), tvecs_needed = _tvecs.needed(),
|
||||
stddev_needed = _stdDeviations.needed(), errors_needed = _perViewErrors.needed();
|
||||
|
||||
bool rvecs_mat_vec = _rvecs.isMatVector();
|
||||
bool tvecs_mat_vec = _tvecs.isMatVector();
|
||||
|
||||
if( rvecs_needed ) {
|
||||
_rvecs.create(nimages, 1, CV_64FC3);
|
||||
|
||||
if(rvecs_mat_vec)
|
||||
rvecM.create(nimages, 3, CV_64F);
|
||||
else
|
||||
rvecM = _rvecs.getMat();
|
||||
}
|
||||
|
||||
if( tvecs_needed ) {
|
||||
_tvecs.create(nimages, 1, CV_64FC3);
|
||||
|
||||
if(tvecs_mat_vec)
|
||||
tvecM.create(nimages, 3, CV_64F);
|
||||
else
|
||||
tvecM = _tvecs.getMat();
|
||||
}
|
||||
|
||||
if( stddev_needed ) {
|
||||
_stdDeviations.create(nimages*6 + CV_CALIB_NINTRINSIC, 1, CV_64F);
|
||||
stdDeviationsM = _stdDeviations.getMat();
|
||||
}
|
||||
|
||||
if( errors_needed) {
|
||||
_perViewErrors.create(nimages, 1, CV_64F);
|
||||
errorsM = _perViewErrors.getMat();
|
||||
}
|
||||
|
||||
collectCalibrationData( _objectPoints, _imagePoints, noArray(),
|
||||
objPt, imgPt, 0, npoints );
|
||||
CvMat c_objPt = objPt, c_imgPt = imgPt, c_npoints = npoints;
|
||||
CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
|
||||
CvMat c_rvecM = rvecM, c_tvecM = tvecM, c_stdDev = stdDeviationsM, c_errors = errorsM;
|
||||
|
||||
double reprojErr = cvfork::cvCalibrateCamera2(&c_objPt, &c_imgPt, &c_npoints, imageSize,
|
||||
&c_cameraMatrix, &c_distCoeffs,
|
||||
rvecs_needed ? &c_rvecM : NULL,
|
||||
tvecs_needed ? &c_tvecM : NULL,
|
||||
stddev_needed ? &c_stdDev : NULL,
|
||||
errors_needed ? &c_errors : NULL, flags, criteria );
|
||||
|
||||
// overly complicated and inefficient rvec/ tvec handling to support vector<Mat>
|
||||
for(int i = 0; i < nimages; i++ )
|
||||
{
|
||||
if( rvecs_needed && rvecs_mat_vec)
|
||||
{
|
||||
_rvecs.create(3, 1, CV_64F, i, true);
|
||||
Mat rv = _rvecs.getMat(i);
|
||||
memcpy(rv.ptr(), rvecM.ptr(i), 3*sizeof(double));
|
||||
}
|
||||
if( tvecs_needed && tvecs_mat_vec)
|
||||
{
|
||||
_tvecs.create(3, 1, CV_64F, i, true);
|
||||
Mat tv = _tvecs.getMat(i);
|
||||
memcpy(tv.ptr(), tvecM.ptr(i), 3*sizeof(double));
|
||||
}
|
||||
}
|
||||
|
||||
cameraMatrix.copyTo(_cameraMatrix);
|
||||
distCoeffs.copyTo(_distCoeffs);
|
||||
|
||||
return reprojErr;
|
||||
}
|
||||
|
||||
double cvfork::calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
|
||||
Ptr<aruco::CharucoBoard> &_board, Size imageSize,
|
||||
InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
|
||||
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray _stdDeviations, OutputArray _perViewErrors,
|
||||
int flags, TermCriteria criteria) {
|
||||
|
||||
CV_Assert(_charucoIds.total() > 0 && (_charucoIds.total() == _charucoCorners.total()));
|
||||
|
||||
// Join object points of charuco corners in a single vector for calibrateCamera() function
|
||||
std::vector< std::vector< Point3f > > allObjPoints;
|
||||
allObjPoints.resize(_charucoIds.total());
|
||||
for(unsigned int i = 0; i < _charucoIds.total(); i++) {
|
||||
unsigned int nCorners = (unsigned int)_charucoIds.getMat(i).total();
|
||||
CV_Assert(nCorners > 0 && nCorners == _charucoCorners.getMat(i).total()); //actually nCorners must be > 3 for calibration
|
||||
allObjPoints[i].reserve(nCorners);
|
||||
|
||||
for(unsigned int j = 0; j < nCorners; j++) {
|
||||
int pointId = _charucoIds.getMat(i).ptr< int >(0)[j];
|
||||
CV_Assert(pointId >= 0 && pointId < (int)_board->chessboardCorners.size());
|
||||
allObjPoints[i].push_back(_board->chessboardCorners[pointId]);
|
||||
}
|
||||
}
|
||||
|
||||
return cvfork::calibrateCamera(allObjPoints, _charucoCorners, imageSize, _cameraMatrix, _distCoeffs,
|
||||
_rvecs, _tvecs, _stdDeviations, _perViewErrors, flags, criteria);
|
||||
}
|
||||
|
||||
|
||||
static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector<uchar>& cols,
|
||||
const std::vector<uchar>& rows) {
|
||||
int nonzeros_cols = cv::countNonZero(cols);
|
||||
cv::Mat tmp(src.rows, nonzeros_cols, CV_64FC1);
|
||||
|
||||
for (int i = 0, j = 0; i < (int)cols.size(); i++)
|
||||
{
|
||||
if (cols[i])
|
||||
{
|
||||
src.col(i).copyTo(tmp.col(j++));
|
||||
}
|
||||
}
|
||||
|
||||
int nonzeros_rows = cv::countNonZero(rows);
|
||||
dst.create(nonzeros_rows, nonzeros_cols, CV_64FC1);
|
||||
for (int i = 0, j = 0; i < (int)rows.size(); i++)
|
||||
{
|
||||
if (rows[i])
|
||||
{
|
||||
tmp.row(i).copyTo(dst.row(j++));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cvfork::CvLevMarqFork::step()
|
||||
{
|
||||
using namespace cv;
|
||||
const double LOG10 = log(10.);
|
||||
double lambda = exp(lambdaLg10*LOG10);
|
||||
int nparams = param->rows;
|
||||
|
||||
Mat _JtJ = cvarrToMat(JtJ);
|
||||
Mat _mask = cvarrToMat(mask);
|
||||
|
||||
int nparams_nz = countNonZero(_mask);
|
||||
if(!JtJN || JtJN->rows != nparams_nz) {
|
||||
// prevent re-allocation in every step
|
||||
JtJN.reset(cvCreateMat( nparams_nz, nparams_nz, CV_64F ));
|
||||
JtJV.reset(cvCreateMat( nparams_nz, 1, CV_64F ));
|
||||
JtJW.reset(cvCreateMat( nparams_nz, 1, CV_64F ));
|
||||
}
|
||||
|
||||
Mat _JtJN = cvarrToMat(JtJN);
|
||||
Mat _JtErr = cvarrToMat(JtJV);
|
||||
Mat_<double> nonzero_param = cvarrToMat(JtJW);
|
||||
|
||||
subMatrix(cvarrToMat(JtErr), _JtErr, std::vector<uchar>(1, 1), _mask);
|
||||
subMatrix(_JtJ, _JtJN, _mask, _mask);
|
||||
|
||||
if( !err )
|
||||
completeSymm( _JtJN, completeSymmFlag );
|
||||
#if 1
|
||||
_JtJN.diag() *= 1. + lambda;
|
||||
#else
|
||||
_JtJN.diag() += lambda;
|
||||
#endif
|
||||
#ifndef USE_LAPACK
|
||||
cv::solve(_JtJN, _JtErr, nonzero_param, solveMethod);
|
||||
#else
|
||||
cvfork::solve(_JtJN, _JtErr, nonzero_param, solveMethod);
|
||||
#endif
|
||||
|
||||
int j = 0;
|
||||
for( int i = 0; i < nparams; i++ )
|
||||
param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? nonzero_param(j++) : 0);
|
||||
}
|
||||
|
||||
cvfork::CvLevMarqFork::CvLevMarqFork(int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag)
|
||||
{
|
||||
init(nparams, nerrs, criteria0, _completeSymmFlag);
|
||||
}
|
||||
|
||||
cvfork::CvLevMarqFork::~CvLevMarqFork()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
bool cvfork::CvLevMarqFork::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm )
|
||||
{
|
||||
CV_Assert( !err );
|
||||
if( state == DONE )
|
||||
{
|
||||
_param = param;
|
||||
return false;
|
||||
}
|
||||
|
||||
if( state == STARTED )
|
||||
{
|
||||
_param = param;
|
||||
cvZero( JtJ );
|
||||
cvZero( JtErr );
|
||||
errNorm = 0;
|
||||
_JtJ = JtJ;
|
||||
_JtErr = JtErr;
|
||||
_errNorm = &errNorm;
|
||||
state = CALC_J;
|
||||
return true;
|
||||
}
|
||||
|
||||
if( state == CALC_J )
|
||||
{
|
||||
cvCopy( param, prevParam );
|
||||
step();
|
||||
_param = param;
|
||||
prevErrNorm = errNorm;
|
||||
errNorm = 0;
|
||||
_errNorm = &errNorm;
|
||||
state = CHECK_ERR;
|
||||
return true;
|
||||
}
|
||||
|
||||
assert( state == CHECK_ERR );
|
||||
if( errNorm > prevErrNorm )
|
||||
{
|
||||
if( ++lambdaLg10 <= 16 )
|
||||
{
|
||||
step();
|
||||
_param = param;
|
||||
errNorm = 0;
|
||||
_errNorm = &errNorm;
|
||||
state = CHECK_ERR;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
lambdaLg10 = MAX(lambdaLg10-1, -16);
|
||||
if( ++iters >= criteria.max_iter ||
|
||||
cvNorm(param, prevParam, CV_RELATIVE_L2) < criteria.epsilon )
|
||||
{
|
||||
//printf("iters %i\n", iters);
|
||||
_param = param;
|
||||
state = DONE;
|
||||
return false;
|
||||
}
|
||||
|
||||
prevErrNorm = errNorm;
|
||||
cvZero( JtJ );
|
||||
cvZero( JtErr );
|
||||
_param = param;
|
||||
_JtJ = JtJ;
|
||||
_JtErr = JtErr;
|
||||
state = CALC_J;
|
||||
return true;
|
||||
}
|
@ -1,56 +0,0 @@
|
||||
#ifndef CV_CALIBRATION_FORK_HPP
|
||||
#define CV_CALIBRATION_FORK_HPP
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/aruco/charuco.hpp>
|
||||
#include <opencv2/calib3d.hpp>
|
||||
#include <opencv2/calib3d/calib3d_c.h>
|
||||
|
||||
namespace cvfork
|
||||
{
|
||||
using namespace cv;
|
||||
|
||||
#define CV_CALIB_NINTRINSIC 18
|
||||
#define CALIB_USE_QR (1 << 18)
|
||||
|
||||
double calibrateCamera(InputArrayOfArrays objectPoints,
|
||||
InputArrayOfArrays imagePoints, Size imageSize,
|
||||
InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
|
||||
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, OutputArray stdDeviations,
|
||||
OutputArray perViewErrors, int flags = 0, TermCriteria criteria = TermCriteria(
|
||||
TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
|
||||
|
||||
double cvCalibrateCamera2( const CvMat* object_points,
|
||||
const CvMat* image_points,
|
||||
const CvMat* point_counts,
|
||||
CvSize image_size,
|
||||
CvMat* camera_matrix,
|
||||
CvMat* distortion_coeffs,
|
||||
CvMat* rotation_vectors CV_DEFAULT(NULL),
|
||||
CvMat* translation_vectors CV_DEFAULT(NULL),
|
||||
CvMat* stdDeviations_vector CV_DEFAULT(NULL),
|
||||
CvMat* perViewErrors_vector CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(0),
|
||||
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
|
||||
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
|
||||
|
||||
double calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
|
||||
Ptr<aruco::CharucoBoard> &_board, Size imageSize,
|
||||
InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
|
||||
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray _stdDeviations, OutputArray _perViewErrors,
|
||||
int flags = 0, TermCriteria criteria = TermCriteria(
|
||||
TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
|
||||
|
||||
class CvLevMarqFork : public CvLevMarq
|
||||
{
|
||||
public:
|
||||
CvLevMarqFork( int nparams, int nerrs, CvTermCriteria criteria=
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
|
||||
bool completeSymmFlag=false );
|
||||
bool updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm );
|
||||
void step();
|
||||
~CvLevMarqFork();
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
@ -1,491 +0,0 @@
|
||||
#include "linalg.hpp"
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
|
||||
typedef int integer;
|
||||
#include <lapacke.h>
|
||||
|
||||
#include <cassert>
|
||||
using namespace cv;
|
||||
|
||||
bool cvfork::solve(InputArray _src, const InputArray _src2arg, OutputArray _dst, int method )
|
||||
{
|
||||
bool result = true;
|
||||
Mat src = _src.getMat(), _src2 = _src2arg.getMat();
|
||||
int type = src.type();
|
||||
bool is_normal = (method & DECOMP_NORMAL) != 0;
|
||||
|
||||
CV_Assert( type == _src2.type() && (type == CV_32F || type == CV_64F) );
|
||||
|
||||
method &= ~DECOMP_NORMAL;
|
||||
CV_Assert( (method != DECOMP_LU && method != DECOMP_CHOLESKY) ||
|
||||
is_normal || src.rows == src.cols );
|
||||
|
||||
double rcond=-1, s1=0, work1=0, *work=0, *s=0;
|
||||
float frcond=-1, fs1=0, fwork1=0, *fwork=0, *fs=0;
|
||||
integer m = src.rows, m_ = m, n = src.cols, mn = std::max(m,n),
|
||||
nm = std::min(m, n), nb = _src2.cols, lwork=-1, liwork=0, iwork1=0,
|
||||
lda = m, ldx = mn, info=0, rank=0, *iwork=0;
|
||||
int elem_size = CV_ELEM_SIZE(type);
|
||||
bool copy_rhs=false;
|
||||
int buf_size=0;
|
||||
AutoBuffer<uchar> buffer;
|
||||
uchar* ptr;
|
||||
char N[] = {'N', '\0'}, L[] = {'L', '\0'};
|
||||
|
||||
Mat src2 = _src2;
|
||||
_dst.create( src.cols, src2.cols, src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
if( m <= n )
|
||||
is_normal = false;
|
||||
else if( is_normal )
|
||||
m_ = n;
|
||||
|
||||
buf_size += (is_normal ? n*n : m*n)*elem_size;
|
||||
|
||||
if( m_ != n || nb > 1 || !dst.isContinuous() )
|
||||
{
|
||||
copy_rhs = true;
|
||||
if( is_normal )
|
||||
buf_size += n*nb*elem_size;
|
||||
else
|
||||
buf_size += mn*nb*elem_size;
|
||||
}
|
||||
|
||||
if( method == DECOMP_SVD || method == DECOMP_EIG )
|
||||
{
|
||||
integer nlvl = cvRound(std::log(std::max(std::min(m_,n)/25., 1.))/CV_LOG2) + 1;
|
||||
liwork = std::min(m_,n)*(3*std::max(nlvl,(integer)0) + 11);
|
||||
|
||||
if( type == CV_32F )
|
||||
sgelsd_(&m_, &n, &nb, (float*)src.data, &lda, (float*)dst.data, &ldx,
|
||||
&fs1, &frcond, &rank, &fwork1, &lwork, &iwork1, &info);
|
||||
else
|
||||
dgelsd_(&m_, &n, &nb, (double*)src.data, &lda, (double*)dst.data, &ldx,
|
||||
&s1, &rcond, &rank, &work1, &lwork, &iwork1, &info );
|
||||
buf_size += nm*elem_size + (liwork + 1)*sizeof(integer);
|
||||
}
|
||||
else if( method == DECOMP_QR )
|
||||
{
|
||||
if( type == CV_32F )
|
||||
sgels_(N, &m_, &n, &nb, (float*)src.data, &lda,
|
||||
(float*)dst.data, &ldx, &fwork1, &lwork, &info );
|
||||
else
|
||||
dgels_(N, &m_, &n, &nb, (double*)src.data, &lda,
|
||||
(double*)dst.data, &ldx, &work1, &lwork, &info );
|
||||
}
|
||||
else if( method == DECOMP_LU )
|
||||
{
|
||||
buf_size += (n+1)*sizeof(integer);
|
||||
}
|
||||
else if( method == DECOMP_CHOLESKY )
|
||||
;
|
||||
else
|
||||
CV_Error( Error::StsBadArg, "Unknown method" );
|
||||
assert(info == 0);
|
||||
|
||||
lwork = cvRound(type == CV_32F ? (double)fwork1 : work1);
|
||||
buf_size += lwork*elem_size;
|
||||
buffer.allocate(buf_size);
|
||||
ptr = (uchar*)buffer;
|
||||
|
||||
Mat at(n, m_, type, ptr);
|
||||
ptr += n*m_*elem_size;
|
||||
|
||||
if( method == DECOMP_CHOLESKY || method == DECOMP_EIG )
|
||||
src.copyTo(at);
|
||||
else if( !is_normal )
|
||||
transpose(src, at);
|
||||
else
|
||||
mulTransposed(src, at, true);
|
||||
|
||||
Mat xt;
|
||||
if( !is_normal )
|
||||
{
|
||||
if( copy_rhs )
|
||||
{
|
||||
Mat temp(nb, mn, type, ptr);
|
||||
ptr += nb*mn*elem_size;
|
||||
Mat bt = temp.colRange(0, m);
|
||||
xt = temp.colRange(0, n);
|
||||
transpose(src2, bt);
|
||||
}
|
||||
else
|
||||
{
|
||||
src2.copyTo(dst);
|
||||
xt = Mat(1, n, type, dst.data);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( copy_rhs )
|
||||
{
|
||||
xt = Mat(nb, n, type, ptr);
|
||||
ptr += nb*n*elem_size;
|
||||
}
|
||||
else
|
||||
xt = Mat(1, n, type, dst.data);
|
||||
// (a'*b)' = b'*a
|
||||
gemm( src2, src, 1, Mat(), 0, xt, GEMM_1_T );
|
||||
}
|
||||
|
||||
lda = (int)(at.step ? at.step/elem_size : at.cols);
|
||||
ldx = (int)(xt.step ? xt.step/elem_size : (!is_normal && copy_rhs ? mn : n));
|
||||
|
||||
if( method == DECOMP_SVD || method == DECOMP_EIG )
|
||||
{
|
||||
if( type == CV_32F )
|
||||
{
|
||||
fs = (float*)ptr;
|
||||
ptr += nm*elem_size;
|
||||
fwork = (float*)ptr;
|
||||
ptr += lwork*elem_size;
|
||||
iwork = (integer*)alignPtr(ptr, sizeof(integer));
|
||||
|
||||
sgelsd_(&m_, &n, &nb, (float*)at.data, &lda, (float*)xt.data, &ldx,
|
||||
fs, &frcond, &rank, fwork, &lwork, iwork, &info);
|
||||
}
|
||||
else
|
||||
{
|
||||
s = (double*)ptr;
|
||||
ptr += nm*elem_size;
|
||||
work = (double*)ptr;
|
||||
ptr += lwork*elem_size;
|
||||
iwork = (integer*)alignPtr(ptr, sizeof(integer));
|
||||
|
||||
dgelsd_(&m_, &n, &nb, (double*)at.data, &lda, (double*)xt.data, &ldx,
|
||||
s, &rcond, &rank, work, &lwork, iwork, &info);
|
||||
}
|
||||
}
|
||||
else if( method == DECOMP_QR )
|
||||
{
|
||||
if( type == CV_32F )
|
||||
{
|
||||
fwork = (float*)ptr;
|
||||
sgels_(N, &m_, &n, &nb, (float*)at.data, &lda,
|
||||
(float*)xt.data, &ldx, fwork, &lwork, &info);
|
||||
}
|
||||
else
|
||||
{
|
||||
work = (double*)ptr;
|
||||
dgels_(N, &m_, &n, &nb, (double*)at.data, &lda,
|
||||
(double*)xt.data, &ldx, work, &lwork, &info);
|
||||
}
|
||||
}
|
||||
else if( method == DECOMP_CHOLESKY || (method == DECOMP_LU && is_normal) )
|
||||
{
|
||||
if( type == CV_32F )
|
||||
{
|
||||
spotrf_(L, &n, (float*)at.data, &lda, &info);
|
||||
if(info==0)
|
||||
spotrs_(L, &n, &nb, (float*)at.data, &lda, (float*)xt.data, &ldx, &info);
|
||||
}
|
||||
else
|
||||
{
|
||||
dpotrf_(L, &n, (double*)at.data, &lda, &info);
|
||||
if(info==0)
|
||||
dpotrs_(L, &n, &nb, (double*)at.data, &lda, (double*)xt.data, &ldx, &info);
|
||||
}
|
||||
}
|
||||
else if( method == DECOMP_LU )
|
||||
{
|
||||
iwork = (integer*)alignPtr(ptr, sizeof(integer));
|
||||
if( type == CV_32F )
|
||||
sgesv_(&n, &nb, (float*)at.data, &lda, iwork, (float*)xt.data, &ldx, &info );
|
||||
else
|
||||
dgesv_(&n, &nb, (double*)at.data, &lda, iwork, (double*)xt.data, &ldx, &info );
|
||||
}
|
||||
else
|
||||
assert(0);
|
||||
result = info == 0;
|
||||
|
||||
if( !result )
|
||||
dst = Scalar(0);
|
||||
else if( xt.data != dst.data )
|
||||
transpose( xt, dst );
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void _SVDcompute( const InputArray _aarr, OutputArray _w,
|
||||
OutputArray _u, OutputArray _vt, int flags = 0)
|
||||
{
|
||||
Mat a = _aarr.getMat(), u, vt;
|
||||
integer m = a.rows, n = a.cols, mn = std::max(m, n), nm = std::min(m, n);
|
||||
int type = a.type(), elem_size = (int)a.elemSize();
|
||||
bool compute_uv = _u.needed() || _vt.needed();
|
||||
|
||||
if( flags & SVD::NO_UV )
|
||||
{
|
||||
_u.release();
|
||||
_vt.release();
|
||||
compute_uv = false;
|
||||
}
|
||||
|
||||
if( compute_uv )
|
||||
{
|
||||
_u.create( (int)m, (int)((flags & SVD::FULL_UV) ? m : nm), type );
|
||||
_vt.create( (int)((flags & SVD::FULL_UV) ? n : nm), n, type );
|
||||
u = _u.getMat();
|
||||
vt = _vt.getMat();
|
||||
}
|
||||
|
||||
_w.create(nm, 1, type, -1, true);
|
||||
|
||||
Mat _a = a, w = _w.getMat();
|
||||
CV_Assert( w.isContinuous() );
|
||||
int work_ofs=0, iwork_ofs=0, buf_size = 0;
|
||||
bool temp_a = false;
|
||||
double u1=0, v1=0, work1=0;
|
||||
float uf1=0, vf1=0, workf1=0;
|
||||
integer lda, ldu, ldv, lwork=-1, iwork1=0, info=0;
|
||||
char mode[] = {compute_uv ? 'S' : 'N', '\0'};
|
||||
|
||||
if( m != n && compute_uv && (flags & SVD::FULL_UV) )
|
||||
mode[0] = 'A';
|
||||
|
||||
if( !(flags & SVD::MODIFY_A) )
|
||||
{
|
||||
if( mode[0] == 'N' || mode[0] == 'A' )
|
||||
temp_a = true;
|
||||
else if( compute_uv && (a.size() == vt.size() || a.size() == u.size()) && mode[0] == 'S' )
|
||||
mode[0] = 'O';
|
||||
}
|
||||
|
||||
lda = a.cols;
|
||||
ldv = ldu = mn;
|
||||
|
||||
if( type == CV_32F )
|
||||
{
|
||||
sgesdd_(mode, &n, &m, (float*)a.data, &lda, (float*)w.data,
|
||||
&vf1, &ldv, &uf1, &ldu, &workf1, &lwork, &iwork1, &info );
|
||||
lwork = cvRound(workf1);
|
||||
}
|
||||
else
|
||||
{
|
||||
dgesdd_(mode, &n, &m, (double*)a.data, &lda, (double*)w.data,
|
||||
&v1, &ldv, &u1, &ldu, &work1, &lwork, &iwork1, &info );
|
||||
lwork = cvRound(work1);
|
||||
}
|
||||
|
||||
assert(info == 0);
|
||||
if( temp_a )
|
||||
{
|
||||
buf_size += n*m*elem_size;
|
||||
}
|
||||
work_ofs = buf_size;
|
||||
buf_size += lwork*elem_size;
|
||||
buf_size = alignSize(buf_size, sizeof(integer));
|
||||
iwork_ofs = buf_size;
|
||||
buf_size += 8*nm*sizeof(integer);
|
||||
|
||||
AutoBuffer<uchar> buf(buf_size);
|
||||
uchar* buffer = (uchar*)buf;
|
||||
|
||||
if( temp_a )
|
||||
{
|
||||
_a = Mat(a.rows, a.cols, type, buffer );
|
||||
a.copyTo(_a);
|
||||
}
|
||||
|
||||
if( !(flags & SVD::MODIFY_A) && !temp_a )
|
||||
{
|
||||
if( compute_uv && a.size() == vt.size() )
|
||||
{
|
||||
a.copyTo(vt);
|
||||
_a = vt;
|
||||
}
|
||||
else if( compute_uv && a.size() == u.size() )
|
||||
{
|
||||
a.copyTo(u);
|
||||
_a = u;
|
||||
}
|
||||
}
|
||||
|
||||
if( compute_uv )
|
||||
{
|
||||
ldv = (int)(vt.step ? vt.step/elem_size : vt.cols);
|
||||
ldu = (int)(u.step ? u.step/elem_size : u.cols);
|
||||
}
|
||||
|
||||
lda = (int)(_a.step ? _a.step/elem_size : _a.cols);
|
||||
if( type == CV_32F )
|
||||
{
|
||||
sgesdd_(mode, &n, &m, _a.ptr<float>(), &lda, w.ptr<float>(),
|
||||
vt.data ? vt.ptr<float>() : (float*)&v1, &ldv,
|
||||
u.data ? u.ptr<float>() : (float*)&u1, &ldu,
|
||||
(float*)(buffer + work_ofs), &lwork,
|
||||
(integer*)(buffer + iwork_ofs), &info );
|
||||
}
|
||||
else
|
||||
{
|
||||
dgesdd_(mode, &n, &m, _a.ptr<double>(), &lda, w.ptr<double>(),
|
||||
vt.data ? vt.ptr<double>() : &v1, &ldv,
|
||||
u.data ? u.ptr<double>() : &u1, &ldu,
|
||||
(double*)(buffer + work_ofs), &lwork,
|
||||
(integer*)(buffer + iwork_ofs), &info );
|
||||
}
|
||||
CV_Assert(info >= 0);
|
||||
if(info != 0)
|
||||
{
|
||||
if( u.data )
|
||||
u = Scalar(0.);
|
||||
if( vt.data )
|
||||
vt = Scalar(0.);
|
||||
w = Scalar(0.);
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////////////
|
||||
template<typename T1, typename T2, typename T3> static void
|
||||
MatrAXPY( int m, int n, const T1* x, int dx,
|
||||
const T2* a, int inca, T3* y, int dy )
|
||||
{
|
||||
int i, j;
|
||||
for( i = 0; i < m; i++, x += dx, y += dy )
|
||||
{
|
||||
T2 s = a[i*inca];
|
||||
for( j = 0; j <= n - 4; j += 4 )
|
||||
{
|
||||
T3 t0 = (T3)(y[j] + s*x[j]);
|
||||
T3 t1 = (T3)(y[j+1] + s*x[j+1]);
|
||||
y[j] = t0;
|
||||
y[j+1] = t1;
|
||||
t0 = (T3)(y[j+2] + s*x[j+2]);
|
||||
t1 = (T3)(y[j+3] + s*x[j+3]);
|
||||
y[j+2] = t0;
|
||||
y[j+3] = t1;
|
||||
}
|
||||
|
||||
for( ; j < n; j++ )
|
||||
y[j] = (T3)(y[j] + s*x[j]);
|
||||
}
|
||||
}
|
||||
template<typename T> static void
|
||||
SVBkSb( int m, int n, const T* w, int incw,
|
||||
const T* u, int ldu, int uT,
|
||||
const T* v, int ldv, int vT,
|
||||
const T* b, int ldb, int nb,
|
||||
T* x, int ldx, double* buffer, T eps )
|
||||
{
|
||||
double threshold = 0;
|
||||
int udelta0 = uT ? ldu : 1, udelta1 = uT ? 1 : ldu;
|
||||
int vdelta0 = vT ? ldv : 1, vdelta1 = vT ? 1 : ldv;
|
||||
int i, j, nm = std::min(m, n);
|
||||
|
||||
if( !b )
|
||||
nb = m;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
for( j = 0; j < nb; j++ )
|
||||
x[i*ldx + j] = 0;
|
||||
|
||||
for( i = 0; i < nm; i++ )
|
||||
threshold += w[i*incw];
|
||||
threshold *= eps;
|
||||
|
||||
// v * inv(w) * uT * b
|
||||
for( i = 0; i < nm; i++, u += udelta0, v += vdelta0 )
|
||||
{
|
||||
double wi = w[i*incw];
|
||||
if( wi <= threshold )
|
||||
continue;
|
||||
wi = 1/wi;
|
||||
|
||||
if( nb == 1 )
|
||||
{
|
||||
double s = 0;
|
||||
if( b )
|
||||
for( j = 0; j < m; j++ )
|
||||
s += u[j*udelta1]*b[j*ldb];
|
||||
else
|
||||
s = u[0];
|
||||
s *= wi;
|
||||
|
||||
for( j = 0; j < n; j++ )
|
||||
x[j*ldx] = (T)(x[j*ldx] + s*v[j*vdelta1]);
|
||||
}
|
||||
else
|
||||
{
|
||||
if( b )
|
||||
{
|
||||
for( j = 0; j < nb; j++ )
|
||||
buffer[j] = 0;
|
||||
MatrAXPY( m, nb, b, ldb, u, udelta1, buffer, 0 );
|
||||
for( j = 0; j < nb; j++ )
|
||||
buffer[j] *= wi;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < nb; j++ )
|
||||
buffer[j] = u[j*udelta1]*wi;
|
||||
}
|
||||
MatrAXPY( n, nb, buffer, 0, v, vdelta1, x, ldx );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void _backSubst( const InputArray _w, const InputArray _u, const InputArray _vt,
|
||||
const InputArray _rhs, OutputArray _dst )
|
||||
{
|
||||
Mat w = _w.getMat(), u = _u.getMat(), vt = _vt.getMat(), rhs = _rhs.getMat();
|
||||
int type = w.type(), esz = (int)w.elemSize();
|
||||
int m = u.rows, n = vt.cols, nb = rhs.data ? rhs.cols : m;
|
||||
AutoBuffer<double> buffer(nb);
|
||||
CV_Assert( u.data && vt.data && w.data );
|
||||
|
||||
CV_Assert( rhs.data == 0 || (rhs.type() == type && rhs.rows == m) );
|
||||
|
||||
_dst.create( n, nb, type );
|
||||
Mat dst = _dst.getMat();
|
||||
if( type == CV_32F )
|
||||
SVBkSb(m, n, (float*)w.data, 1, (float*)u.data, (int)(u.step/esz), false,
|
||||
(float*)vt.data, (int)(vt.step/esz), true, (float*)rhs.data, (int)(rhs.step/esz),
|
||||
nb, (float*)dst.data, (int)(dst.step/esz), buffer, 10*FLT_EPSILON );
|
||||
else if( type == CV_64F )
|
||||
SVBkSb(m, n, (double*)w.data, 1, (double*)u.data, (int)(u.step/esz), false,
|
||||
(double*)vt.data, (int)(vt.step/esz), true, (double*)rhs.data, (int)(rhs.step/esz),
|
||||
nb, (double*)dst.data, (int)(dst.step/esz), buffer, 2*DBL_EPSILON );
|
||||
else
|
||||
CV_Error( Error::StsUnsupportedFormat, "" );
|
||||
}
|
||||
///////////////////////////////////////////
|
||||
|
||||
#define Sf( y, x ) ((float*)(srcdata + y*srcstep))[x]
|
||||
#define Sd( y, x ) ((double*)(srcdata + y*srcstep))[x]
|
||||
#define Df( y, x ) ((float*)(dstdata + y*dststep))[x]
|
||||
#define Dd( y, x ) ((double*)(dstdata + y*dststep))[x]
|
||||
|
||||
double cvfork::invert( InputArray _src, OutputArray _dst, int method )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
int type = src.type();
|
||||
|
||||
CV_Assert(type == CV_32F || type == CV_64F);
|
||||
|
||||
size_t esz = CV_ELEM_SIZE(type);
|
||||
int m = src.rows, n = src.cols;
|
||||
|
||||
if( method == DECOMP_SVD )
|
||||
{
|
||||
int nm = std::min(m, n);
|
||||
|
||||
AutoBuffer<uchar> _buf((m*nm + nm + nm*n)*esz + sizeof(double));
|
||||
uchar* buf = alignPtr((uchar*)_buf, (int)esz);
|
||||
Mat u(m, nm, type, buf);
|
||||
Mat w(nm, 1, type, u.ptr() + m*nm*esz);
|
||||
Mat vt(nm, n, type, w.ptr() + nm*esz);
|
||||
|
||||
_SVDcompute(src, w, u, vt);
|
||||
_backSubst(w, u, vt, Mat(), _dst);
|
||||
|
||||
return type == CV_32F ?
|
||||
(w.ptr<float>()[0] >= FLT_EPSILON ?
|
||||
w.ptr<float>()[n-1]/w.ptr<float>()[0] : 0) :
|
||||
(w.ptr<double>()[0] >= DBL_EPSILON ?
|
||||
w.ptr<double>()[n-1]/w.ptr<double>()[0] : 0);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif //USE_LAPACK
|
@ -1,13 +0,0 @@
|
||||
#ifndef LINALG_HPP
|
||||
#define LINALG_HPP
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
|
||||
namespace cvfork {
|
||||
|
||||
double invert( cv::InputArray _src, cv::OutputArray _dst, int method );
|
||||
bool solve(cv::InputArray _src, cv::InputArray _src2arg, cv::OutputArray _dst, int method );
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -12,7 +12,6 @@
|
||||
#include "calibCommon.hpp"
|
||||
#include "calibPipeline.hpp"
|
||||
#include "frameProcessor.hpp"
|
||||
#include "cvCalibrationFork.hpp"
|
||||
#include "calibController.hpp"
|
||||
#include "parametersController.hpp"
|
||||
#include "rotationConverters.hpp"
|
||||
@ -106,7 +105,7 @@ int main(int argc, char** argv)
|
||||
if(!parser.has("v")) globalData->imageSize = capParams.cameraResolution;
|
||||
|
||||
int calibrationFlags = 0;
|
||||
if(intParams.fastSolving) calibrationFlags |= CALIB_USE_QR;
|
||||
if(intParams.fastSolving) calibrationFlags |= cv::CALIB_USE_QR;
|
||||
cv::Ptr<calibController> controller(new calibController(globalData, calibrationFlags,
|
||||
parser.get<bool>("ft"), capParams.minFramesNum));
|
||||
cv::Ptr<calibDataController> dataController(new calibDataController(globalData, capParams.maxFramesNum,
|
||||
@ -131,11 +130,16 @@ int main(int argc, char** argv)
|
||||
cv::namedWindow(mainWindowName);
|
||||
cv::moveWindow(mainWindowName, 10, 10);
|
||||
#ifdef HAVE_QT
|
||||
cv::createButton("Delete last frame", deleteButton, &dataController, cv::QT_PUSH_BUTTON);
|
||||
cv::createButton("Delete all frames", deleteAllButton, &dataController, cv::QT_PUSH_BUTTON);
|
||||
cv::createButton("Undistort", undistortButton, &showProcessor, cv::QT_CHECKBOX, false);
|
||||
cv::createButton("Save current parameters", saveCurrentParamsButton, &dataController, cv::QT_PUSH_BUTTON);
|
||||
cv::createButton("Switch visualisation mode", switchVisualizationModeButton, &showProcessor, cv::QT_PUSH_BUTTON);
|
||||
cv::createButton("Delete last frame", deleteButton, &dataController,
|
||||
cv::QT_PUSH_BUTTON | cv::QT_NEW_BUTTONBAR);
|
||||
cv::createButton("Delete all frames", deleteAllButton, &dataController,
|
||||
cv::QT_PUSH_BUTTON | cv::QT_NEW_BUTTONBAR);
|
||||
cv::createButton("Undistort", undistortButton, &showProcessor,
|
||||
cv::QT_CHECKBOX | cv::QT_NEW_BUTTONBAR, false);
|
||||
cv::createButton("Save current parameters", saveCurrentParamsButton, &dataController,
|
||||
cv::QT_PUSH_BUTTON | cv::QT_NEW_BUTTONBAR);
|
||||
cv::createButton("Switch visualisation mode", switchVisualizationModeButton, &showProcessor,
|
||||
cv::QT_PUSH_BUTTON | cv::QT_NEW_BUTTONBAR);
|
||||
#endif //HAVE_QT
|
||||
try {
|
||||
bool pipelineFinished = false;
|
||||
@ -156,10 +160,10 @@ int main(int argc, char** argv)
|
||||
|
||||
if(capParams.board != chAruco) {
|
||||
globalData->totalAvgErr =
|
||||
cvfork::calibrateCamera(globalData->objectPoints, globalData->imagePoints,
|
||||
cv::calibrateCamera(globalData->objectPoints, globalData->imagePoints,
|
||||
globalData->imageSize, globalData->cameraMatrix,
|
||||
globalData->distCoeffs, cv::noArray(), cv::noArray(),
|
||||
globalData->stdDeviations, globalData->perViewErrors,
|
||||
globalData->stdDeviations, cv::noArray(), globalData->perViewErrors,
|
||||
calibrationFlags, solverTermCrit);
|
||||
}
|
||||
else {
|
||||
@ -169,10 +173,10 @@ int main(int argc, char** argv)
|
||||
cv::aruco::CharucoBoard::create(capParams.boardSize.width, capParams.boardSize.height,
|
||||
capParams.charucoSquareLenght, capParams.charucoMarkerSize, dictionary);
|
||||
globalData->totalAvgErr =
|
||||
cvfork::calibrateCameraCharuco(globalData->allCharucoCorners, globalData->allCharucoIds,
|
||||
cv::aruco::calibrateCameraCharuco(globalData->allCharucoCorners, globalData->allCharucoIds,
|
||||
charucoboard, globalData->imageSize,
|
||||
globalData->cameraMatrix, globalData->distCoeffs,
|
||||
cv::noArray(), cv::noArray(), globalData->stdDeviations,
|
||||
cv::noArray(), cv::noArray(), globalData->stdDeviations, cv::noArray(),
|
||||
globalData->perViewErrors, calibrationFlags, solverTermCrit);
|
||||
}
|
||||
dataController->updateUndistortMap();
|
||||
|
Loading…
Reference in New Issue
Block a user