mirror of
https://github.com/opencv/opencv.git
synced 2025-06-13 13:13:26 +08:00
Added tests for Const, Concat, ScatterND, NaryEltwise, Arg, Blanc
This commit is contained in:
parent
c1e2f16f91
commit
b64ce1e7f1
@ -43,7 +43,7 @@ public:
|
|||||||
|
|
||||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||||
{
|
{
|
||||||
return backendId == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU;
|
return backendId == DNN_BACKEND_OPENCV;
|
||||||
}
|
}
|
||||||
|
|
||||||
void handleKeepDims(MatShape& shape, const int axis_) const
|
void handleKeepDims(MatShape& shape, const int axis_) const
|
||||||
|
@ -76,7 +76,7 @@ public:
|
|||||||
std::vector<MatType>& internals) const CV_OVERRIDE
|
std::vector<MatType>& internals) const CV_OVERRIDE
|
||||||
{
|
{
|
||||||
CV_CheckEQ(inputs.size(), (size_t)3, "");
|
CV_CheckEQ(inputs.size(), (size_t)3, "");
|
||||||
CV_CheckType(inputs[0], inputs[0] == CV_32F || inputs[0] == CV_32S || inputs[0] == CV_16F || inputs[0] == CV_8U, "");
|
CV_CheckType(inputs[0], inputs[0] == CV_32F || inputs[0] == CV_32S || inputs[0] == CV_64S || inputs[0] == CV_16F || inputs[0] == CV_8U, "");
|
||||||
CV_CheckType(inputs[1], inputs[1] == CV_64S || inputs[1] == CV_32S, "");
|
CV_CheckType(inputs[1], inputs[1] == CV_64S || inputs[1] == CV_32S, "");
|
||||||
CV_CheckTypeEQ(inputs[2], inputs[0], "");
|
CV_CheckTypeEQ(inputs[2], inputs[0], "");
|
||||||
outputs.assign(1, inputs[0]);
|
outputs.assign(1, inputs[0]);
|
||||||
|
@ -21,19 +21,20 @@ int64_t getValueAt(const Mat &m, const int *indices)
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
typedef testing::TestWithParam<tuple<Backend, Target> > Test_int64_sum;
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_NaryEltwise_Int;
|
||||||
TEST_P(Test_int64_sum, basic)
|
TEST_P(Test_NaryEltwise_Int, random)
|
||||||
{
|
{
|
||||||
Backend backend = get<0>(GetParam());
|
int matType = get<0>(GetParam());
|
||||||
Target target = get<1>(GetParam());
|
tuple<Backend, Target> backend_target= get<1>(GetParam());
|
||||||
|
Backend backend = get<0>(backend_target);
|
||||||
|
Target target = get<1>(backend_target);
|
||||||
|
|
||||||
int64_t a_value = 1000000000000000ll;
|
std::vector<int> inShape{2, 3, 4, 5};
|
||||||
int64_t b_value = 1;
|
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
|
||||||
int64_t result_value = 1000000000000001ll;
|
Mat input1(inShape, matType);
|
||||||
EXPECT_NE(int64_t(float(a_value) + float(b_value)), result_value);
|
cv::randu(input1, low, low + 100);
|
||||||
|
Mat input2(inShape, matType);
|
||||||
Mat a(3, 5, CV_64SC1, cv::Scalar_<int64_t>(a_value));
|
cv::randu(input2, low, low + 100);
|
||||||
Mat b = Mat::ones(3, 5, CV_64S);
|
|
||||||
|
|
||||||
Net net;
|
Net net;
|
||||||
LayerParams lp;
|
LayerParams lp;
|
||||||
@ -44,26 +45,440 @@ TEST_P(Test_int64_sum, basic)
|
|||||||
net.connect(0, 1, id, 1);
|
net.connect(0, 1, id, 1);
|
||||||
|
|
||||||
vector<String> inpNames(2);
|
vector<String> inpNames(2);
|
||||||
inpNames[0] = "a";
|
inpNames[0] = "input1";
|
||||||
inpNames[1] = "b";
|
inpNames[1] = "input2";
|
||||||
net.setInputsNames(inpNames);
|
net.setInputsNames(inpNames);
|
||||||
net.setInput(a, inpNames[0]);
|
net.setInput(input1, inpNames[0]);
|
||||||
net.setInput(b, inpNames[1]);
|
net.setInput(input2, inpNames[1]);
|
||||||
|
|
||||||
net.setPreferableBackend(backend);
|
net.setPreferableBackend(backend);
|
||||||
net.setPreferableTarget(target);
|
net.setPreferableTarget(target);
|
||||||
|
|
||||||
Mat re;
|
Mat re;
|
||||||
re = net.forward();
|
re = net.forward();
|
||||||
EXPECT_EQ(re.depth(), CV_64S);
|
EXPECT_EQ(re.depth(), matType);
|
||||||
auto ptr_re = (int64_t *) re.data;
|
EXPECT_EQ(re.size.dims(), 4);
|
||||||
for (int i = 0; i < re.total(); i++)
|
EXPECT_EQ(re.size[0], input1.size[0]);
|
||||||
ASSERT_EQ(result_value, ptr_re[i]);
|
EXPECT_EQ(re.size[1], input1.size[1]);
|
||||||
|
EXPECT_EQ(re.size[2], input1.size[2]);
|
||||||
|
EXPECT_EQ(re.size[3], input1.size[3]);
|
||||||
|
|
||||||
|
std::vector<int> reIndices(4);
|
||||||
|
for (int i0 = 0; i0 < re.size[0]; ++i0)
|
||||||
|
{
|
||||||
|
reIndices[0] = i0;
|
||||||
|
for (int i1 = 0; i1 < re.size[1]; ++i1)
|
||||||
|
{
|
||||||
|
reIndices[1] = i1;
|
||||||
|
for (int i2 = 0; i2 < re.size[2]; ++i2)
|
||||||
|
{
|
||||||
|
reIndices[2] = i2;
|
||||||
|
for (int i3 = 0; i3 < re.size[3]; ++i3)
|
||||||
|
{
|
||||||
|
reIndices[3] = i3;
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input1, reIndices.data()) + getValueAt(input2, reIndices.data()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_int64_sum,
|
INSTANTIATE_TEST_CASE_P(/**/, Test_NaryEltwise_Int, Combine(
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
dnnBackendsAndTargets()
|
dnnBackendsAndTargets()
|
||||||
);
|
));
|
||||||
|
|
||||||
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Const_Int;
|
||||||
|
TEST_P(Test_Const_Int, random)
|
||||||
|
{
|
||||||
|
int matType = get<0>(GetParam());
|
||||||
|
tuple<Backend, Target> backend_target= get<1>(GetParam());
|
||||||
|
Backend backend = get<0>(backend_target);
|
||||||
|
Target target = get<1>(backend_target);
|
||||||
|
|
||||||
|
std::vector<int> inShape{2, 3, 4, 5};
|
||||||
|
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
|
||||||
|
Mat input1(inShape, matType);
|
||||||
|
cv::randu(input1, low, low + 100);
|
||||||
|
Mat inputConst(inShape, matType);
|
||||||
|
cv::randu(inputConst, low, low + 100);
|
||||||
|
|
||||||
|
Net net;
|
||||||
|
|
||||||
|
LayerParams lpConst;
|
||||||
|
lpConst.type = "Const";
|
||||||
|
lpConst.name = "constLayer";
|
||||||
|
lpConst.blobs.push_back(inputConst);
|
||||||
|
int idConst = net.addLayer(lpConst.name, lpConst.type, lpConst);
|
||||||
|
|
||||||
|
LayerParams lp;
|
||||||
|
lp.type = "NaryEltwise";
|
||||||
|
lp.name = "testLayer";
|
||||||
|
lp.set("operation", "sum");
|
||||||
|
int idSum = net.addLayer(lp.name, lp.type, lp);
|
||||||
|
|
||||||
|
net.connect(0, 0, idSum, 0);
|
||||||
|
net.connect(idConst, 0, idSum, 1);
|
||||||
|
|
||||||
|
net.setInput(input1);
|
||||||
|
net.setPreferableBackend(backend);
|
||||||
|
net.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Mat re;
|
||||||
|
re = net.forward();
|
||||||
|
EXPECT_EQ(re.depth(), matType);
|
||||||
|
EXPECT_EQ(re.size.dims(), 4);
|
||||||
|
EXPECT_EQ(re.size[0], input1.size[0]);
|
||||||
|
EXPECT_EQ(re.size[1], input1.size[1]);
|
||||||
|
EXPECT_EQ(re.size[2], input1.size[2]);
|
||||||
|
EXPECT_EQ(re.size[3], input1.size[3]);
|
||||||
|
|
||||||
|
std::vector<int> reIndices(4);
|
||||||
|
for (int i0 = 0; i0 < re.size[0]; ++i0)
|
||||||
|
{
|
||||||
|
reIndices[0] = i0;
|
||||||
|
for (int i1 = 0; i1 < re.size[1]; ++i1)
|
||||||
|
{
|
||||||
|
reIndices[1] = i1;
|
||||||
|
for (int i2 = 0; i2 < re.size[2]; ++i2)
|
||||||
|
{
|
||||||
|
reIndices[2] = i2;
|
||||||
|
for (int i3 = 0; i3 < re.size[3]; ++i3)
|
||||||
|
{
|
||||||
|
reIndices[3] = i3;
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input1, reIndices.data()) + getValueAt(inputConst, reIndices.data()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Const_Int, Combine(
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
|
dnnBackendsAndTargets()
|
||||||
|
));
|
||||||
|
|
||||||
|
|
||||||
|
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_ScatterND_Int;
|
||||||
|
TEST_P(Test_ScatterND_Int, random)
|
||||||
|
{
|
||||||
|
int matType = get<0>(GetParam());
|
||||||
|
int indicesType = get<1>(GetParam());
|
||||||
|
tuple<Backend, Target> backend_target= get<2>(GetParam());
|
||||||
|
Backend backend = get<0>(backend_target);
|
||||||
|
Target target = get<1>(backend_target);
|
||||||
|
|
||||||
|
std::vector<int> inShape{2, 3, 4, 5};
|
||||||
|
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
|
||||||
|
Mat input(inShape, matType);
|
||||||
|
cv::randu(input, low, low + 100);
|
||||||
|
|
||||||
|
std::vector<int64_t> indicesValues{0, 1, 2, 3,
|
||||||
|
1, 2, 3, 4};
|
||||||
|
std::vector<int64_t> updatesValues{25, 35};
|
||||||
|
|
||||||
|
Mat indices(2, 4, indicesType);
|
||||||
|
std::vector<int> updatesShape{2};
|
||||||
|
Mat updates(updatesShape, matType);
|
||||||
|
|
||||||
|
for (int i = 0; i < indicesValues.size(); ++i)
|
||||||
|
{
|
||||||
|
if (indicesType == CV_32S)
|
||||||
|
indices.ptr<int32_t>()[i] = indicesValues[i];
|
||||||
|
else
|
||||||
|
indices.ptr<int64_t>()[i] = indicesValues[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < updatesValues.size(); ++i)
|
||||||
|
{
|
||||||
|
if (matType == CV_32S)
|
||||||
|
updates.ptr<int32_t>()[i] = updatesValues[i];
|
||||||
|
else
|
||||||
|
updates.ptr<int64_t>()[i] = updatesValues[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
Net net;
|
||||||
|
LayerParams lp;
|
||||||
|
lp.type = "ScatterND";
|
||||||
|
lp.name = "testLayer";
|
||||||
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
||||||
|
net.connect(0, 1, id, 1);
|
||||||
|
net.connect(0, 2, id, 2);
|
||||||
|
|
||||||
|
std::vector<String> inpNames(3);
|
||||||
|
inpNames[0] = "scattedND_input";
|
||||||
|
inpNames[1] = "scatterND_indices";
|
||||||
|
inpNames[2] = "scatterND_updates";
|
||||||
|
net.setInputsNames(inpNames);
|
||||||
|
net.setInput(input, inpNames[0]);
|
||||||
|
net.setInput(indices, inpNames[1]);
|
||||||
|
net.setInput(updates, inpNames[2]);
|
||||||
|
|
||||||
|
net.setPreferableBackend(backend);
|
||||||
|
net.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Mat re;
|
||||||
|
re = net.forward();
|
||||||
|
EXPECT_EQ(re.depth(), matType);
|
||||||
|
EXPECT_EQ(re.size.dims(), 4);
|
||||||
|
ASSERT_EQ(shape(input), shape(re));
|
||||||
|
|
||||||
|
std::vector<int> reIndices(4);
|
||||||
|
for (int i0 = 0; i0 < input.size[0]; ++i0)
|
||||||
|
{
|
||||||
|
reIndices[0] = i0;
|
||||||
|
for (int i1 = 0; i1 < input.size[1]; ++i1)
|
||||||
|
{
|
||||||
|
reIndices[1] = i1;
|
||||||
|
for (int i2 = 0; i2 < input.size[2]; ++i2)
|
||||||
|
{
|
||||||
|
reIndices[2] = i2;
|
||||||
|
for (int i3 = 0; i3 < input.size[3]; ++i3)
|
||||||
|
{
|
||||||
|
reIndices[3] = i3;
|
||||||
|
if (reIndices[0] == indicesValues[0] &&
|
||||||
|
reIndices[1] == indicesValues[1] &&
|
||||||
|
reIndices[2] == indicesValues[2] &&
|
||||||
|
reIndices[3] == indicesValues[3])
|
||||||
|
{
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), updatesValues[0]);
|
||||||
|
}
|
||||||
|
else if (reIndices[0] == indicesValues[4] &&
|
||||||
|
reIndices[1] == indicesValues[5] &&
|
||||||
|
reIndices[2] == indicesValues[6] &&
|
||||||
|
reIndices[3] == indicesValues[7])
|
||||||
|
{
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), updatesValues[1]);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, reIndices.data()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_ScatterND_Int, Combine(
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
|
dnnBackendsAndTargets()
|
||||||
|
));
|
||||||
|
|
||||||
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Concat_Int;
|
||||||
|
TEST_P(Test_Concat_Int, random)
|
||||||
|
{
|
||||||
|
int matType = get<0>(GetParam());
|
||||||
|
tuple<Backend, Target> backend_target= get<1>(GetParam());
|
||||||
|
Backend backend = get<0>(backend_target);
|
||||||
|
Target target = get<1>(backend_target);
|
||||||
|
|
||||||
|
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
|
||||||
|
std::vector<int> inShape1{2, 3, 4, 5};
|
||||||
|
Mat input1(inShape1, matType);
|
||||||
|
cv::randu(input1, low, low + 100);
|
||||||
|
std::vector<int> inShape2{2, 2, 4, 5};
|
||||||
|
Mat input2(inShape2, matType);
|
||||||
|
cv::randu(input2, low, low + 100);
|
||||||
|
|
||||||
|
Net net;
|
||||||
|
LayerParams lp;
|
||||||
|
lp.type = "Concat";
|
||||||
|
lp.name = "testLayer";
|
||||||
|
lp.set<int>("axis", 1);
|
||||||
|
|
||||||
|
int id = net.addLayerToPrev(lp.name, lp.type, lp);
|
||||||
|
net.connect(0, 1, id, 1);
|
||||||
|
|
||||||
|
vector<String> inpNames(2);
|
||||||
|
inpNames[0] = "input1";
|
||||||
|
inpNames[1] = "input2";
|
||||||
|
net.setInputsNames(inpNames);
|
||||||
|
net.setInput(input1, inpNames[0]);
|
||||||
|
net.setInput(input2, inpNames[1]);
|
||||||
|
|
||||||
|
net.setPreferableBackend(backend);
|
||||||
|
net.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Mat re;
|
||||||
|
re = net.forward();
|
||||||
|
EXPECT_EQ(re.depth(), matType);
|
||||||
|
EXPECT_EQ(re.size.dims(), 4);
|
||||||
|
EXPECT_EQ(re.size[0], input1.size[0]);
|
||||||
|
EXPECT_EQ(re.size[1], input1.size[1] + input2.size[1]);
|
||||||
|
EXPECT_EQ(re.size[2], input1.size[2]);
|
||||||
|
EXPECT_EQ(re.size[3], input1.size[3]);
|
||||||
|
|
||||||
|
std::vector<int> inIndices(4);
|
||||||
|
std::vector<int> reIndices(4);
|
||||||
|
for (int i0 = 0; i0 < re.size[0]; ++i0)
|
||||||
|
{
|
||||||
|
reIndices[0] = i0;
|
||||||
|
inIndices[0] = i0;
|
||||||
|
for (int i1 = 0; i1 < re.size[1]; ++i1)
|
||||||
|
{
|
||||||
|
reIndices[1] = i1;
|
||||||
|
if (i1 < input1.size[1])
|
||||||
|
inIndices[1] = i1;
|
||||||
|
else
|
||||||
|
inIndices[1] = i1 - input1.size[1];
|
||||||
|
for (int i2 = 0; i2 < re.size[2]; ++i2)
|
||||||
|
{
|
||||||
|
reIndices[2] = i2;
|
||||||
|
inIndices[2] = i2;
|
||||||
|
for (int i3 = 0; i3 < re.size[3]; ++i3)
|
||||||
|
{
|
||||||
|
reIndices[3] = i3;
|
||||||
|
inIndices[3] = i3;
|
||||||
|
if (i1 < input1.size[1])
|
||||||
|
{
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input1, inIndices.data()));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input2, inIndices.data()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Concat_Int, Combine(
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
|
dnnBackendsAndTargets()
|
||||||
|
));
|
||||||
|
|
||||||
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_ArgMax_Int;
|
||||||
|
TEST_P(Test_ArgMax_Int, random)
|
||||||
|
{
|
||||||
|
int matType = get<0>(GetParam());
|
||||||
|
tuple<Backend, Target> backend_target= get<1>(GetParam());
|
||||||
|
Backend backend = get<0>(backend_target);
|
||||||
|
Target target = get<1>(backend_target);
|
||||||
|
|
||||||
|
std::vector<int> inShape{5, 4, 3, 2};
|
||||||
|
int64_t low = matType == CV_64S ? 1000000000000000ll : 100000000;
|
||||||
|
Mat input(inShape, matType);
|
||||||
|
cv::randu(input, low, low + 100);
|
||||||
|
|
||||||
|
Net net;
|
||||||
|
LayerParams lp;
|
||||||
|
lp.type = "Arg";
|
||||||
|
lp.name = "testLayer";
|
||||||
|
lp.set("op", "max");
|
||||||
|
lp.set<int>("keepdims", 0);
|
||||||
|
lp.set<int>("axis", 1);
|
||||||
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||||
|
|
||||||
|
net.setInput(input);
|
||||||
|
net.setPreferableBackend(backend);
|
||||||
|
net.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Mat re;
|
||||||
|
re = net.forward();
|
||||||
|
EXPECT_EQ(re.depth(), CV_64S);
|
||||||
|
EXPECT_EQ(re.size.dims(), 3);
|
||||||
|
EXPECT_EQ(re.size[0], inShape[0]);
|
||||||
|
EXPECT_EQ(re.size[1], inShape[2]);
|
||||||
|
EXPECT_EQ(re.size[2], inShape[3]);
|
||||||
|
|
||||||
|
std::vector<int> inIndices(4);
|
||||||
|
std::vector<int> reIndices(3);
|
||||||
|
|
||||||
|
for (int i0 = 0; i0 < re.size[0]; ++i0)
|
||||||
|
{
|
||||||
|
inIndices[0] = i0;
|
||||||
|
reIndices[0] = i0;
|
||||||
|
for (int i1 = 0; i1 < re.size[1]; ++i1)
|
||||||
|
{
|
||||||
|
inIndices[2] = i1;
|
||||||
|
reIndices[1] = i1;
|
||||||
|
for (int i2 = 0; i2 < re.size[2]; ++i2)
|
||||||
|
{
|
||||||
|
inIndices[3] = i2;
|
||||||
|
reIndices[2] = i2;
|
||||||
|
|
||||||
|
int64_t max_value = 0;
|
||||||
|
int64_t index = 0;
|
||||||
|
for (int j = 0; j < input.size[1]; ++j)
|
||||||
|
{
|
||||||
|
inIndices[1] = j;
|
||||||
|
int64_t cur_value = getValueAt(input, inIndices.data());
|
||||||
|
if (cur_value > max_value)
|
||||||
|
{
|
||||||
|
max_value = cur_value;
|
||||||
|
index = j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), index);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_ArgMax_Int, Combine(
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
|
dnnBackendsAndTargets()
|
||||||
|
));
|
||||||
|
|
||||||
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Blank_Int;
|
||||||
|
TEST_P(Test_Blank_Int, random)
|
||||||
|
{
|
||||||
|
int matType = get<0>(GetParam());
|
||||||
|
tuple<Backend, Target> backend_target= get<1>(GetParam());
|
||||||
|
Backend backend = get<0>(backend_target);
|
||||||
|
Target target = get<1>(backend_target);
|
||||||
|
|
||||||
|
std::vector<int> inShape{2, 3, 4, 5};
|
||||||
|
int64_t low = matType == CV_64S ? 1000000000000000ll : 1000000000;
|
||||||
|
Mat input(inShape, matType);
|
||||||
|
cv::randu(input, low, low + 100);
|
||||||
|
|
||||||
|
Net net;
|
||||||
|
LayerParams lp;
|
||||||
|
lp.type = "Identity";
|
||||||
|
lp.name = "testLayer";
|
||||||
|
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||||
|
|
||||||
|
net.setInput(input);
|
||||||
|
net.setPreferableBackend(backend);
|
||||||
|
net.setPreferableTarget(target);
|
||||||
|
|
||||||
|
Mat re;
|
||||||
|
re = net.forward();
|
||||||
|
EXPECT_EQ(re.depth(), matType);
|
||||||
|
EXPECT_EQ(re.size.dims(), 4);
|
||||||
|
EXPECT_EQ(re.size[0], 2);
|
||||||
|
EXPECT_EQ(re.size[1], 3);
|
||||||
|
EXPECT_EQ(re.size[2], 4);
|
||||||
|
EXPECT_EQ(re.size[3], 5);
|
||||||
|
|
||||||
|
std::vector<int> reIndices(4);
|
||||||
|
for (int i0 = 0; i0 < re.size[0]; ++i0)
|
||||||
|
{
|
||||||
|
reIndices[0] = i0;
|
||||||
|
for (int i1 = 0; i1 < re.size[1]; ++i1)
|
||||||
|
{
|
||||||
|
reIndices[1] = i1;
|
||||||
|
for (int i2 = 0; i2 < re.size[2]; ++i2)
|
||||||
|
{
|
||||||
|
reIndices[2] = i2;
|
||||||
|
for (int i3 = 0; i3 < re.size[3]; ++i3)
|
||||||
|
{
|
||||||
|
reIndices[3] = i3;
|
||||||
|
EXPECT_EQ(getValueAt(re, reIndices.data()), getValueAt(input, reIndices.data()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Blank_Int, Combine(
|
||||||
|
testing::Values(CV_32S, CV_64S),
|
||||||
|
dnnBackendsAndTargets()
|
||||||
|
));
|
||||||
|
|
||||||
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Expand_Int;
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Test_Expand_Int;
|
||||||
TEST_P(Test_Expand_Int, random)
|
TEST_P(Test_Expand_Int, random)
|
||||||
|
Loading…
Reference in New Issue
Block a user