From b6b5c27cecad2a93f65d8ba81ba2c88c6c103784 Mon Sep 17 00:00:00 2001 From: Zihao Mu Date: Fri, 18 Mar 2022 10:19:13 +0800 Subject: [PATCH] Support for some reduce layers for onnx --- .../dnn/include/opencv2/dnn/all_layers.hpp | 14 + modules/dnn/src/init.cpp | 2 + modules/dnn/src/int8layers/reduce_layer.cpp | 213 ++++++++++ modules/dnn/src/layers/reduce_layer.cpp | 388 ++++++++++++++++++ modules/dnn/src/net_quantization.cpp | 4 +- modules/dnn/src/onnx/onnx_importer.cpp | 308 +++++++------- ...er_filter_opencv_ocl_fp16_denylist.inl.hpp | 11 + ..._conformance_layer_parser_denylist.inl.hpp | 53 --- 8 files changed, 796 insertions(+), 197 deletions(-) create mode 100644 modules/dnn/src/int8layers/reduce_layer.cpp create mode 100644 modules/dnn/src/layers/reduce_layer.cpp diff --git a/modules/dnn/include/opencv2/dnn/all_layers.hpp b/modules/dnn/include/opencv2/dnn/all_layers.hpp index 44b16f7800..c8c14759d3 100644 --- a/modules/dnn/include/opencv2/dnn/all_layers.hpp +++ b/modules/dnn/include/opencv2/dnn/all_layers.hpp @@ -325,6 +325,20 @@ CV__DNN_INLINE_NS_BEGIN static Ptr create(const LayerParams& params); }; + class CV_EXPORTS ReduceLayer : public Layer + { + public: + int reduceType; + std::vector reduceDims; + static Ptr create(const LayerParams& params); + }; + + class CV_EXPORTS ReduceLayerInt8 : public ReduceLayer + { + public: + static Ptr create(const LayerParams& params); + }; + class CV_EXPORTS SoftmaxLayer : public Layer { public: diff --git a/modules/dnn/src/init.cpp b/modules/dnn/src/init.cpp index 55ed1e5d17..86ceba382e 100644 --- a/modules/dnn/src/init.cpp +++ b/modules/dnn/src/init.cpp @@ -92,6 +92,7 @@ void initializeLayerFactory() CV_DNN_REGISTER_LAYER_CLASS(Pooling, PoolingLayer); CV_DNN_REGISTER_LAYER_CLASS(ROIPooling, PoolingLayer); CV_DNN_REGISTER_LAYER_CLASS(PSROIPooling, PoolingLayer); + CV_DNN_REGISTER_LAYER_CLASS(Reduce, ReduceLayer); CV_DNN_REGISTER_LAYER_CLASS(LRN, LRNLayer); CV_DNN_REGISTER_LAYER_CLASS(InnerProduct, InnerProductLayer); CV_DNN_REGISTER_LAYER_CLASS(Softmax, SoftmaxLayer); @@ -175,6 +176,7 @@ void initializeLayerFactory() CV_DNN_REGISTER_LAYER_CLASS(ConvolutionInt8, ConvolutionLayerInt8); CV_DNN_REGISTER_LAYER_CLASS(InnerProductInt8, InnerProductLayerInt8); CV_DNN_REGISTER_LAYER_CLASS(PoolingInt8, PoolingLayerInt8); + CV_DNN_REGISTER_LAYER_CLASS(ReduceInt8, ReduceLayerInt8); CV_DNN_REGISTER_LAYER_CLASS(EltwiseInt8, EltwiseLayerInt8); CV_DNN_REGISTER_LAYER_CLASS(BatchNormInt8, BatchNormLayerInt8); CV_DNN_REGISTER_LAYER_CLASS(ScaleInt8, ScaleLayerInt8); diff --git a/modules/dnn/src/int8layers/reduce_layer.cpp b/modules/dnn/src/int8layers/reduce_layer.cpp new file mode 100644 index 0000000000..935bdc0659 --- /dev/null +++ b/modules/dnn/src/int8layers/reduce_layer.cpp @@ -0,0 +1,213 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#include "../precomp.hpp" +#include "layers_common.hpp" + +#include +#include +#include + +namespace cv +{ +namespace dnn +{ + +class ReduceLayerInt8Impl CV_FINAL : public ReduceLayerInt8 +{ +public: + ReduceLayerInt8Impl(const LayerParams& params) + { + // Set reduce type + CV_Assert(params.has("reduce")); + String typeString = toLowerCase(params.get("reduce")); + if (typeString == "max") + reduceType = MAX; + else if (typeString == "min") + reduceType = MIN; + else + CV_Error(Error::StsBadArg, "Unknown reduce type \"" + typeString + "\""); + + // Set deleted dims + CV_Assert(params.has("deleted_dims")); + DictValue tempDims = params.get("deleted_dims"); + int i, n = tempDims.size(); + reduceDims.resize(n); + for (i = 0; i < n; i++) + { + reduceDims[i] = tempDims.get(i); + } + } + + virtual bool supportBackend(int backendId) CV_OVERRIDE + { + if (backendId == DNN_BACKEND_OPENCV) + { + return true; + } + return false; + } + + // reduceType == MIN + struct ReduceOpMIN + { + int8_t apply(const int8_t* first, const int8_t* last) + { + return std::accumulate(first, last, *first, + [](int8_t a, int8_t b) + { + return std::min(a, b); + }); + } + }; + + // reduceType == MAX + struct ReduceOpMAX + { + int8_t apply(const int8_t* first, const int8_t* last) + { + return std::accumulate(first, last, *first, + [](int8_t a, int8_t b) + { + return std::max(a, b); + }); + } + }; + + template + class ReduceInvoker : public ParallelLoopBody + { + public: + const Mat* src; + Mat *dst; + std::vector reduceDims; + int nstripes; + int reduceType; + Ptr func; + + ReduceInvoker() : src(0), dst(0), nstripes(0), reduceType(MAX), func(makePtr()) {} + + static void run(const Mat& src, Mat& dst, std::vector reduceDims, int reduceType, int nstripes) + { + CV_Assert_N(src.isContinuous(), dst.isContinuous(), src.type() == CV_8S, src.type() == dst.type()); + + ReduceInvoker p; + + p.src = &src; + p.dst = &dst; + + p.reduceDims = reduceDims; + p.nstripes = nstripes; + p.reduceType = reduceType; + + parallel_for_(Range(0, nstripes), p, nstripes); + } + + void operator()(const Range& r) const CV_OVERRIDE + { + size_t total = dst->total(); + size_t stripeSize = (total + nstripes - 1)/nstripes; + size_t stripeStart = r.start*stripeSize; + size_t stripeEnd = std::min(r.end*stripeSize, total); + size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies()); + + int8_t *dstData = (int8_t *)dst->data; + int8_t *srcData = (int8_t *)src->data; + + for (size_t ofs = stripeStart; ofs < stripeEnd;) + { + const int8_t* first = srcData + ofs * totalDeleted; + const int8_t* last = srcData + (ofs + 1) * totalDeleted; + + dstData[ofs] = func->apply(first, last); + ofs += 1; + } + } + }; + + void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE + { + CV_TRACE_FUNCTION(); + CV_TRACE_ARG_VALUE(name, "name", name.c_str()); + + std::vector inputs, outputs; + inputs_arr.getMatVector(inputs); + outputs_arr.getMatVector(outputs); + CV_Assert(inputs.size() == 1); + const int nstripes = getNumThreads(); + + switch (reduceType) + { + case MIN: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case MAX: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + default: + CV_Error(Error::StsNotImplemented, "Not implemented"); + break; + } + } + + bool getMemoryShapes(const std::vector &inputs, + const int requiredOutputs, + std::vector &outputs, + std::vector &internals) const CV_OVERRIDE + { + CV_Assert(inputs.size() > 0); + CV_Assert(reduceDims.size() != 0 && inputs[0].size() >= reduceDims.size()); + + std::vector outShape; + if (inputs[0].size() == reduceDims.size()) + outShape.push_back(1); + else + { + for (int i = 0; i < inputs[0].size() - reduceDims.size(); i++) + { + outShape.push_back(inputs[0][i]); + } + } + outputs.assign(1, outShape); + + return false; + } + + virtual bool tryQuantize(const std::vector > &scales, + const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE + { + return false; + } + + virtual int64 getFLOPS(const std::vector &inputs, + const std::vector &outputs) const CV_OVERRIDE + { + CV_UNUSED(inputs); // suppress unused variable warning + long flops = 0; + size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies()); + for (int i = 0; i < outputs.size(); i++) + { + flops += total(outputs[i])*(totalDeleted); + } + return flops; + } +private: + enum Type + { + MAX, + MIN + }; +}; + +Ptr ReduceLayerInt8::create(const LayerParams& params) +{ + return Ptr(new ReduceLayerInt8Impl(params)); +} + +} +} diff --git a/modules/dnn/src/layers/reduce_layer.cpp b/modules/dnn/src/layers/reduce_layer.cpp new file mode 100644 index 0000000000..62bb65f897 --- /dev/null +++ b/modules/dnn/src/layers/reduce_layer.cpp @@ -0,0 +1,388 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#include "../precomp.hpp" +#include "opencv2/core/hal/intrin.hpp" +#include "../op_cuda.hpp" +#include "../op_webnn.hpp" + +#include +#include +#include +using std::max; +using std::min; + +#include + +namespace cv +{ +namespace dnn +{ + +class ReduceLayerImpl CV_FINAL : public ReduceLayer +{ +public: + ReduceLayerImpl(const LayerParams& params) + { + // set reduce type + CV_Assert(params.has("reduce")); + String typeString = toLowerCase(params.get("reduce")); + if (typeString == "max") + reduceType= MAX; + else if (typeString == "min") + reduceType= MIN; + else if (typeString == "ave") + reduceType= AVE; + else if (typeString == "sum") + reduceType= SUM; + else if (typeString == "sum_square") + reduceType= SUM_SQUARE; + else if (typeString == "l1") + reduceType= L1; + else if (typeString == "l2") + reduceType= L2; + else if (typeString == "log_sum") + reduceType= LOG_SUM; + else if (typeString == "log_sum_exp") + reduceType= LOG_SUM_EXP; + else if (typeString == "prod") + reduceType= PROD; + else + CV_Error(Error::StsBadArg, "Unknown reduce type\"" + typeString + "\""); + + // set deleted dims + CV_Assert(params.has("deleted_dims")); + DictValue tempDims = params.get("deleted_dims"); + int i, n = tempDims.size(); + reduceDims.resize(n); + for (i = 0; i < n; i++) + { + reduceDims[i] = tempDims.get(i); + } + } + + virtual bool supportBackend(int backendId) CV_OVERRIDE + { + if (backendId == DNN_BACKEND_OPENCV) + { + return true; + } + return false; + } + + // reduceType == MIN + struct ReduceOpMIN + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + return std::accumulate(first, last, FLT_MAX, + [](float a, float b) + { + return std::min(a, b); + }); + } + }; + + // reduceType == MAX + struct ReduceOpMAX + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + return std::accumulate(first, last, -FLT_MAX, + [](float a, float b) + { + return std::max(a, b); + }); + } + }; + + // reduceType == SUM + struct ReduceOpSUM + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + return std::accumulate(first, last, 0.f); + } + }; + + // reduceType == AVE + struct ReduceOpAVE + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + float output = std::accumulate(first, last, 0.f); + return output * ikarea; + } + }; + + // reduceType == SUM_SQUARE + struct ReduceOpSUM_SQUARE + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + return std::accumulate(first, last, 0.f, + [](float a, float b) + { + return a + b * b; + }); + } + }; + + // reduceType == L1 + struct ReduceOpL1 + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + return std::accumulate(first, last, 0.f, + [](float a, float b) + { + return a + std::abs(b); + }); + } + }; + + // reduceType == L2 + struct ReduceOpL2 + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + float output = std::accumulate(first, last, 0.f, + [](float a, float b) + { + return a + b * b; + }); + return std::sqrt(output); + } + }; + + // reduceType == PROD + struct ReduceOpPROD + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + return std::accumulate(first, last, 1.0f, std::multiplies()); + } + }; + + // reduceType == LOG_SUM + struct ReduceOpLOG_SUM + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + float output = std::accumulate(first, last, 0.0f); + return std::log(output); + } + }; + + // reduceType == LOG_SUM_EXP + struct ReduceOpLOG_SUM_EXP + { + float apply(const float* first, const float* last, const float ikarea = 1.0f) + { + float output = std::accumulate(first, last, 0.0f, + [](float a, float b) + { + return a + std::exp(b); + }); + return std::log(output); + } + }; + + template + class ReduceInvoker : public ParallelLoopBody + { + public: + const Mat* src; + Mat *dst; + std::vector reduceDims; + int nstripes; + int reduceType; + Ptr func; + + ReduceInvoker() : src(0), dst(0), nstripes(0), reduceType(MAX), func(makePtr()) {} + + static void run(const Mat& src, Mat& dst, std::vector reduceDims, int reduceType, int nstripes) + { + CV_Assert_N( src.isContinuous(), dst.isContinuous(), src.type() == CV_32F, src.type() == dst.type()); + + ReduceInvoker p; + + p.src = &src; + p.dst = &dst; + + p.reduceDims = reduceDims; + p.nstripes = nstripes; + p.reduceType = reduceType; + + parallel_for_(Range(0, nstripes), p, nstripes); + } + + void operator()(const Range& r) const CV_OVERRIDE + { + size_t total = dst->total(); + size_t stripeSize = (total + nstripes - 1)/nstripes; + size_t stripeStart = r.start*stripeSize; + size_t stripeEnd = std::min(r.end*stripeSize, total); + size_t stride_w = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies()); + + float *dstData = (float *)dst->data; + float *srcData = (float *)src->data; + + for (size_t ofs = stripeStart; ofs < stripeEnd;) + { + const float* first = srcData + ofs * stride_w; + const float* last = srcData + (ofs + 1) * stride_w; + + if (ofs < stripeEnd) + { + dstData[ofs] = func->apply(first, last, 1.0 / stride_w); + ofs += 1; + } + } + } + }; + + void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE + { + CV_TRACE_FUNCTION(); + CV_TRACE_ARG_VALUE(name, "name", name.c_str()); + + if (inputs_arr.depth() == CV_16S) + { + forward_fallback(inputs_arr, outputs_arr, internals_arr); + return; + } + + std::vector inputs, outputs; + inputs_arr.getMatVector(inputs); + outputs_arr.getMatVector(outputs); + CV_Assert(inputs.size() == 1 || (inputs.size() == 2 && reduceType== SUM)); + const int nstripes = getNumThreads(); + + switch (reduceType) + { + case MIN: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case MAX: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case AVE: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case SUM: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case L1: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case L2: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case SUM_SQUARE: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case PROD: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case LOG_SUM: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + case LOG_SUM_EXP: + { + ReduceInvoker::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes); + break; + } + default: + CV_Error(Error::StsNotImplemented, "Not implemented"); + break; + } + } + + bool getMemoryShapes(const std::vector &inputs, + const int requiredOutputs, + std::vector &outputs, + std::vector &internals) const CV_OVERRIDE + { + CV_Assert(inputs.size() > 0); + CV_Assert(reduceDims.size() != 0 && inputs[0].size() >= reduceDims.size()); + + std::vector outShape; + if (inputs[0].size() == reduceDims.size()) + outShape.push_back(1); + else + { + for (int i = 0; i < inputs[0].size() - reduceDims.size(); i++) + { + outShape.push_back(inputs[0][i]); + } + } + outputs.assign(1, outShape); + + return false; + } + + virtual bool tryQuantize(const std::vector > &scales, + const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE + { + if (reduceType== MAX || reduceType== MIN) + { + return true; + } + return false; + } + + virtual int64 getFLOPS(const std::vector &inputs, + const std::vector &outputs) const CV_OVERRIDE + { + CV_UNUSED(inputs); // suppress unused variable warning + long flops = 0; + size_t stride_w = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies()); + for (int i = 0; i < outputs.size(); i++) + { + flops += total(outputs[i])*(stride_w); + } + return flops; + } +private: + enum ReduceType + { + MAX, + MIN, + AVE, + SUM, + L1, + L2, + PROD, + SUM_SQUARE, + LOG_SUM, + LOG_SUM_EXP + }; +}; + +Ptr ReduceLayer::create(const LayerParams& params) +{ + return Ptr(new ReduceLayerImpl(params)); +} + +} +} diff --git a/modules/dnn/src/net_quantization.cpp b/modules/dnn/src/net_quantization.cpp index b8ee2d3219..ef1857a8e2 100644 --- a/modules/dnn/src/net_quantization.cpp +++ b/modules/dnn/src/net_quantization.cpp @@ -133,7 +133,9 @@ Net Net::Impl::quantize(InputArrayOfArrays calibData, int inputsDtype, int outpu if (ld.type == "Blank" || ld.type == "Dropout" || ld.type == "Identity" || ld.type == "Silence" || ld.type == "Flatten" || ld.type == "Padding" || ld.type == "Permute" || ld.type == "Reshape" || ld.type == "ReLU6" || ld.type == "Reorg" || ld.type == "ShuffleChannel" || ld.type == "Resize" || - (ld.type == "ReLU" && !ld.params.get("negative_slope", 0.f)) /* ReLU with negative slope 0 */) + (ld.type == "ReLU" && !ld.params.get("negative_slope", 0.f)) || /* ReLU with negative slope 0 */ + (ld.type == "Reduce" && (toLowerCase(ld.params.get("reduce")) == "max" || + toLowerCase(ld.params.get("reduce")) == "min"))) { for (int i = 0; i < ld.outputBlobs.size(); i++) { diff --git a/modules/dnn/src/onnx/onnx_importer.cpp b/modules/dnn/src/onnx/onnx_importer.cpp index 62569d8b50..5713c025be 100644 --- a/modules/dnn/src/onnx/onnx_importer.cpp +++ b/modules/dnn/src/onnx/onnx_importer.cpp @@ -122,6 +122,7 @@ private: void parseMaxUnpool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); void parseMaxPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); void parseAveragePool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); + void parseGlobalPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); void parseReduce (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); void parseSlice (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); void parseSplit (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); @@ -1087,7 +1088,7 @@ void ONNXImporter::parseAveragePool(LayerParams& layerParams, const opencv_onnx: addLayer(layerParams, node_proto); } -void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) +void ONNXImporter::parseGlobalPool(LayerParams &layerParams, const opencv_onnx::NodeProto &node_proto_) { opencv_onnx::NodeProto node_proto = node_proto_; const std::string& layer_type = node_proto.op_type(); @@ -1096,157 +1097,176 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node CV_Assert(node_proto.input_size() == 1); layerParams.type = "Pooling"; String pool; - if (layer_type == "GlobalMaxPool" || layer_type == "ReduceMax") + if (layer_type == "GlobalMaxPool") pool = "MAX"; - else if (layer_type == "ReduceSum") - pool = "SUM"; - else + else if (layer_type == "GlobalAveragePool") pool = "AVE"; + else + CV_Error(Error::StsNotImplemented, "Unsupported Pooling type of " + layer_type + " operation."); + + CV_Assert(!layerParams.has("axes")); + layerParams.set("global_pooling", true); layerParams.set("pool", pool); - layerParams.set("global_pooling", !layerParams.has("axes")); - bool keepdims = layerParams.get("keepdims", 1) == 1; - if (layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax")) + addLayer(layerParams, node_proto); +} + +void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) +{ + opencv_onnx::NodeProto node_proto = node_proto_; + const std::string& layer_type = node_proto.op_type(); + const std::string output_name = node_proto.output(0); + int depth = layerParams.get("depth", CV_32F); + + CV_Assert(node_proto.input_size() <= 2); + String reduceType; + + if (layer_type == "ReduceMax") + reduceType = "MAX"; + else if (layer_type == "ReduceMin") + reduceType = "MIN"; + else if (layer_type == "ReduceSum") + reduceType = "SUM"; + else if (layer_type == "ReduceSumSquare") + reduceType = "SUM_SQUARE"; + else if (layer_type == "ReduceProd") + reduceType = "PROD"; + else if (layer_type == "ReduceL1") + reduceType = "L1"; + else if (layer_type == "ReduceL2") + reduceType = "L2"; + else if (layer_type == "ReduceLogSum") + reduceType = "LOG_SUM"; + else if (layer_type == "ReduceLogSumExp") + reduceType = "LOG_SUM_EXP"; + else if (layer_type == "ReduceMean") + reduceType = "AVE"; + else + CV_Error(Error::StsNotImplemented, "Unsupported Pooling type of " + layer_type + " operation."); + + // The ReduceInt8 can only support "MAX" and "MIN". + if (depth == CV_8S) + { + CV_Assert(reduceType == "MAX" || reduceType == "MIN"); + } + + layerParams.type = (depth == CV_8S) ? "ReduceInt8" : "Reduce"; + layerParams.set("reduce", reduceType); + bool keepdims = layerParams.get("keepdims", 1) == 1; + + if (layer_type == "ReduceSum" && node_proto.input_size() == 2) + { + // TODO support the opset 13 of ReduceSum. + // in opset 13, the ReduceSum has two input, it takes axes as input instead of attribute + // details:https://github.com/onnx/onnx/issues/3420#issuecomment-844295687 + CV_Error(Error::StsNotImplemented, "Unsupported " + layer_type + " operation of opset 13, please try to " + "re-export the onnx model with opset 11."); + } + + MatShape inpShape = outShapes[node_proto.input(0)]; + std::vector shouldDelete(inpShape.size(), false); + + if (layerParams.has("axes")) { - MatShape inpShape = outShapes[node_proto.input(0)]; DictValue axes = layerParams.get("axes"); - MatShape targetShape; - std::vector shouldDelete(inpShape.size(), false); - for (int i = 0; i < axes.size(); i++) { + for (int i = 0; i < axes.size(); i++) + { int axis = normalize_axis(axes.get(i), inpShape.size()); shouldDelete[axis] = true; } - for (int axis = 0; axis < inpShape.size(); ++axis){ - if (!shouldDelete[axis]) - targetShape.push_back(inpShape[axis]); - else if (keepdims) - targetShape.push_back(1); - } - - if (inpShape.size() == 3 && axes.size() <= 2) - { - int axis = normalize_axis(axes.get(0), inpShape.size()); - CV_CheckNE(axis, 0, ""); - - LayerParams reshapeLp; - reshapeLp.name = layerParams.name + "/reshape"; - reshapeLp.type = "Reshape"; - CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); - reshapeLp.set("axis", 0); - reshapeLp.set("num_axes", 1); - int newShape[] = {1, -1}; - reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 2)); - - opencv_onnx::NodeProto proto; - proto.add_input(node_proto.input(0)); - proto.add_output(reshapeLp.name); - addLayer(reshapeLp, proto); - - LayerParams avgLp; - avgLp.name = layerParams.name + "/avg"; - avgLp.type = "Pooling"; - CV_Assert(layer_id.find(avgLp.name) == layer_id.end()); - avgLp.set("pool", pool); - if (axes.size() == 2) - { - CV_CheckEQ(normalize_axis(axes.get(0), inpShape.size()), 1, "Unsupported mode"); - CV_CheckEQ(normalize_axis(axes.get(1), inpShape.size()), 2, "Unsupported mode"); - avgLp.set("global_pooling", true); - } - else - { - avgLp.set(axis == 2 ? "global_pooling_w" : "global_pooling_h", true); - avgLp.set(axis == 2 ? "kernel_h" : "kernel_w", 1); - } - - node_proto.set_input(0, reshapeLp.name); - node_proto.set_output(0, avgLp.name); - addLayer(avgLp, node_proto); - } - else - { - if (inpShape.size() != 4 && inpShape.size() != 5) - CV_Error(Error::StsNotImplemented, "Unsupported input shape of " + layer_type + " operation."); - - CV_Assert(axes.size() <= inpShape.size() - 2); - std::vector kernel_size(inpShape.size() - 2, 1); - if (axes.size() == 1 && (normalize_axis(axes.get(0), inpShape.size()) <= 1)) - { - int axis = normalize_axis(axes.get(0), inpShape.size()); - MatShape newShape = inpShape; - newShape[axis + 1] = total(newShape, axis + 1); - newShape.resize(axis + 2); - newShape.insert(newShape.begin(), 2 - axis, 1); - - LayerParams reshapeLp; - reshapeLp.type = "Reshape"; - reshapeLp.name = layerParams.name + "/reshape"; - CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); - reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], newShape.size())); - - node_proto.set_output(0, reshapeLp.name); - addLayer(reshapeLp, node_proto); - - kernel_size.resize(2); - kernel_size[0] = inpShape[axis]; - node_proto.set_input(0, node_proto.output(0)); - } - else - { - for (int i = 0; i < axes.size(); i++) { - int axis = normalize_axis(axes.get(i), inpShape.size()); - CV_Assert_N(axis >= 2 + i, axis < inpShape.size()); - kernel_size[axis - 2] = inpShape[axis]; - } - } - - LayerParams poolLp = layerParams; - poolLp.name = layerParams.name + "/avg"; - CV_Assert(layer_id.find(poolLp.name) == layer_id.end()); - poolLp.set("kernel_size", DictValue::arrayInt(&kernel_size[0], kernel_size.size())); - - node_proto.set_output(0, poolLp.name); - addLayer(poolLp, node_proto); - } - - layerParams.type = "Reshape"; - layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size())); - - node_proto.set_input(0, node_proto.output(0)); - node_proto.set_output(0, output_name); } - else if (!layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax")) + else { - IterShape_t shapeIt = outShapes.find(node_proto.input(0)); - CV_Assert(shapeIt != outShapes.end()); - const size_t dims = keepdims ? shapeIt->second.size() : 1; - - LayerParams reshapeLp; - reshapeLp.name = layerParams.name + "/reshape"; - reshapeLp.type = "Reshape"; - CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); - int newShape[] = {1, 1, 1, -1}; - reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 4)); - - opencv_onnx::NodeProto proto; - proto.add_input(node_proto.input(0)); - proto.add_output(reshapeLp.name); - addLayer(reshapeLp, proto); - - LayerParams poolLp = layerParams; - poolLp.name = layerParams.name + "/pool"; - CV_Assert(layer_id.find(poolLp.name) == layer_id.end()); - - node_proto.set_input(0, reshapeLp.name); - node_proto.set_output(0, poolLp.name); - addLayer(poolLp, node_proto); - - layerParams.type = "Reshape"; - std::vector targetShape(dims, 1); - layerParams.set("dim", DictValue::arrayInt(targetShape.data(), targetShape.size())); - - node_proto.set_input(0, node_proto.output(0)); - node_proto.set_output(0, output_name); + for (int i = 0; i < inpShape.size(); i++) + { + shouldDelete[i] = true; + } } + + MatShape targetShape; + for (int i = 0; i < inpShape.size(); ++i) + { + if (!shouldDelete[i]) + { + targetShape.push_back(inpShape[i]); + } + else if (keepdims) + { + targetShape.push_back(1); + } + } + + if (targetShape.empty()) + targetShape.push_back(1); + + // Using PermuteLayer to move the deleted axis to the last. + std::vector perm(inpShape.size(), 0); + for (int i = 0; i < inpShape.size(); i++) + perm[i] = i; + + bool needPermuet = false; + for (int i = 0; i < inpShape.size(); i++) + { + if (shouldDelete[i]) + { + // find the first not deleted element. + std::vector::iterator iter = std::find(shouldDelete.begin() + i, shouldDelete.end(), false); + + if (iter != shouldDelete.end()) + { + int index = iter - shouldDelete.begin(); + + bool temp = shouldDelete[index]; + shouldDelete[index] = shouldDelete[i]; + shouldDelete[i] = temp; + + std::swap(perm[index], perm[i]); + std::swap(inpShape[index], inpShape[i]); + needPermuet = true; + } + else + break; + } + } + + auto inputString= node_proto.input(0); + if (needPermuet) + { + LayerParams permuteLp; + permuteLp.name = layerParams.name + "/permute"; + permuteLp.type = (depth == CV_8S) ? "PermuteInt8" : "Permute"; + permuteLp.set("order", DictValue::arrayInt(perm.data(), perm.size())); + + opencv_onnx::NodeProto protoPermute; + protoPermute.add_input(inputString); + protoPermute.add_output(permuteLp.name); + addLayer(permuteLp, protoPermute); + inputString = permuteLp.name; + } + + std::vector deletedDims; + for (int axis_i = 0; axis_i < inpShape.size(); ++axis_i) + { + if (shouldDelete[axis_i]) + { + deletedDims.push_back(inpShape[axis_i]); + } + } + + LayerParams reduceLp = layerParams; + reduceLp.name = layerParams.name + "/reduce"; + CV_Assert(layer_id.find(reduceLp.name) == layer_id.end()); + reduceLp.set("deleted_dims", DictValue::arrayInt(&deletedDims[0], deletedDims.size())); + + node_proto.set_input(0, inputString); + node_proto.set_output(0, reduceLp.name); + addLayer(reduceLp, node_proto); + + layerParams.type = (depth == CV_8S) ? "ReshapeInt8" : "Reshape"; + layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size())); + + node_proto.set_input(0, node_proto.output(0)); + node_proto.set_output(0, output_name); + addLayer(layerParams, node_proto); } @@ -3406,8 +3426,10 @@ void ONNXImporter::buildDispatchMap_ONNX_AI(int opset_version) dispatch["MaxUnpool"] = &ONNXImporter::parseMaxUnpool; dispatch["MaxPool"] = &ONNXImporter::parseMaxPool; dispatch["AveragePool"] = &ONNXImporter::parseAveragePool; - dispatch["GlobalAveragePool"] = dispatch["GlobalMaxPool"] = dispatch["ReduceMean"] = dispatch["ReduceSum"] = - dispatch["ReduceMax"] = &ONNXImporter::parseReduce; + dispatch["GlobalAveragePool"] = dispatch["GlobalMaxPool"] = &ONNXImporter::parseGlobalPool; + dispatch["ReduceMax"] = dispatch["ReduceMin"] = dispatch["ReduceMean"] = dispatch["ReduceSum"] = dispatch["ReduceMax"] = + dispatch["ReduceMin"] = dispatch["ReduceSumSquare"] = dispatch["ReduceProd"] = dispatch["ReduceL1"] = + dispatch["ReduceL2"] = dispatch["ReduceLogSum"] = dispatch["ReduceLogSumExp"] = &ONNXImporter::parseReduce; dispatch["Slice"] = &ONNXImporter::parseSlice; dispatch["Split"] = &ONNXImporter::parseSplit; dispatch["Add"] = dispatch["Sum"] = dispatch["Sub"] = &ONNXImporter::parseBias; diff --git a/modules/dnn/test/test_onnx_conformance_layer_filter_opencv_ocl_fp16_denylist.inl.hpp b/modules/dnn/test/test_onnx_conformance_layer_filter_opencv_ocl_fp16_denylist.inl.hpp index ccd1568845..c2425d469f 100644 --- a/modules/dnn/test/test_onnx_conformance_layer_filter_opencv_ocl_fp16_denylist.inl.hpp +++ b/modules/dnn/test/test_onnx_conformance_layer_filter_opencv_ocl_fp16_denylist.inl.hpp @@ -20,3 +20,14 @@ "test_split_equal_parts_2d", "test_split_equal_parts_default_axis", "test_tan", +"test_reduce_l2_default_axes_keepdims_example", // Expected: (normL1) <= (l1), actual: 0.00490189 vs 0.004 +"test_reduce_log_sum_exp_default_axes_keepdims_example", // Expected: (normL1) <= (l1), actual: 0.00671387 vs 0.004 +"test_reduce_prod_default_axes_keepdims_example", // Expected: (normL1) <= (l1), actual: inf vs 0.004 +"test_reduce_prod_default_axes_keepdims_random", // Expected: (normL1) <= (l1), actual: 18.6621 vs 0.004, Expected: (normInf) <= (lInf), actual: 18.6621 vs 0.02 +"test_reduce_prod_do_not_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.00436729 vs 0.004, Expected: (normInf) <= (lInf), actual: 0.0201836 vs 0.02 +"test_reduce_prod_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.00436729 vs 0.004, Expected: (normInf) <= (lInf), actual: 0.0201836 vs 0.02 +"test_reduce_prod_negative_axes_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.00436729 vs 0.004, Expected: (normInf) <= (lInf), actual: 0.0201836 vs 0.02 +"test_reduce_sum_square_default_axes_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.0183411 vs 0.004 +"test_reduce_sum_square_do_not_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.010789 vs 0.004, Expected: (normInf) <= (lInf), actual: 0.0290298 vs 0.02 +"test_reduce_sum_square_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.010789 vs 0.004, Expected: (normInf) <= (lInf), actual: 0.0290298 vs 0.02 +"test_reduce_sum_square_negative_axes_keepdims_random", // Expected: (normL1) <= (l1), actual: 0.010789 vs 0.004, Expected: (normInf) <= (lInf), actual: 0.0290298 vs 0.02 \ No newline at end of file diff --git a/modules/dnn/test/test_onnx_conformance_layer_parser_denylist.inl.hpp b/modules/dnn/test/test_onnx_conformance_layer_parser_denylist.inl.hpp index e5d0ead9da..eef421491c 100644 --- a/modules/dnn/test/test_onnx_conformance_layer_parser_denylist.inl.hpp +++ b/modules/dnn/test/test_onnx_conformance_layer_parser_denylist.inl.hpp @@ -339,51 +339,6 @@ "test_range_int32_type_negative_delta_expanded", "test_reciprocal", "test_reciprocal_example", -"test_reduce_l1_default_axes_keepdims_example", -"test_reduce_l1_default_axes_keepdims_random", -"test_reduce_l1_do_not_keepdims_example", -"test_reduce_l1_do_not_keepdims_random", -"test_reduce_l1_keep_dims_example", -"test_reduce_l1_keep_dims_random", -"test_reduce_l1_negative_axes_keep_dims_example", -"test_reduce_l1_negative_axes_keep_dims_random", -"test_reduce_l2_default_axes_keepdims_example", -"test_reduce_l2_default_axes_keepdims_random", -"test_reduce_l2_do_not_keepdims_example", -"test_reduce_l2_do_not_keepdims_random", -"test_reduce_l2_keep_dims_example", -"test_reduce_l2_keep_dims_random", -"test_reduce_l2_negative_axes_keep_dims_example", -"test_reduce_l2_negative_axes_keep_dims_random", -"test_reduce_log_sum", -"test_reduce_log_sum_asc_axes", -"test_reduce_log_sum_default", -"test_reduce_log_sum_desc_axes", -"test_reduce_log_sum_exp_default_axes_keepdims_example", -"test_reduce_log_sum_exp_default_axes_keepdims_random", -"test_reduce_log_sum_exp_do_not_keepdims_example", -"test_reduce_log_sum_exp_do_not_keepdims_random", -"test_reduce_log_sum_exp_keepdims_example", -"test_reduce_log_sum_exp_keepdims_random", -"test_reduce_log_sum_exp_negative_axes_keepdims_example", -"test_reduce_log_sum_exp_negative_axes_keepdims_random", -"test_reduce_log_sum_negative_axes", -"test_reduce_min_default_axes_keepdims_example", -"test_reduce_min_default_axes_keepdims_random", -"test_reduce_min_do_not_keepdims_example", -"test_reduce_min_do_not_keepdims_random", -"test_reduce_min_keepdims_example", -"test_reduce_min_keepdims_random", -"test_reduce_min_negative_axes_keepdims_example", -"test_reduce_min_negative_axes_keepdims_random", -"test_reduce_prod_default_axes_keepdims_example", -"test_reduce_prod_default_axes_keepdims_random", -"test_reduce_prod_do_not_keepdims_example", -"test_reduce_prod_do_not_keepdims_random", -"test_reduce_prod_keepdims_example", -"test_reduce_prod_keepdims_random", -"test_reduce_prod_negative_axes_keepdims_example", -"test_reduce_prod_negative_axes_keepdims_random", "test_reduce_sum_default_axes_keepdims_example", "test_reduce_sum_default_axes_keepdims_random", "test_reduce_sum_do_not_keepdims_example", @@ -394,14 +349,6 @@ "test_reduce_sum_keepdims_random", "test_reduce_sum_negative_axes_keepdims_example", "test_reduce_sum_negative_axes_keepdims_random", -"test_reduce_sum_square_default_axes_keepdims_example", -"test_reduce_sum_square_default_axes_keepdims_random", -"test_reduce_sum_square_do_not_keepdims_example", -"test_reduce_sum_square_do_not_keepdims_random", -"test_reduce_sum_square_keepdims_example", -"test_reduce_sum_square_keepdims_random", -"test_reduce_sum_square_negative_axes_keepdims_example", -"test_reduce_sum_square_negative_axes_keepdims_random", "test_reflect_pad", "test_reshape_allowzero_reordered", "test_reshape_extended_dims",