mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
some attempts to tune the performance
This commit is contained in:
parent
02fb3f0a77
commit
b7553d4e2e
@ -48,7 +48,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>93</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -48,7 +48,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>47</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -48,7 +48,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>213</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -48,7 +48,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>109</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -49,7 +49,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>406</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -48,7 +48,6 @@
|
||||
<height>24</height>
|
||||
<width>24</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>211</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -142,7 +142,6 @@ Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
|
||||
<height>14</height>
|
||||
<width>28</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>107</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -49,7 +49,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>33</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -142,7 +142,6 @@ Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
|
||||
<height>19</height>
|
||||
<width>23</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>89</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -88,7 +88,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>45</height>
|
||||
<width>11</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>85</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -87,7 +87,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>22</height>
|
||||
<width>5</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>133</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -67,7 +67,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>12</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>65</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -87,7 +87,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>18</height>
|
||||
<width>12</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>279</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -87,7 +87,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>25</height>
|
||||
<width>15</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>218</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -87,7 +87,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>18</height>
|
||||
<width>15</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>377</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -67,7 +67,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>12</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>61</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -87,7 +87,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>18</height>
|
||||
<width>12</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>415</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -85,7 +85,6 @@ mcastrillon@iusiani.ulpgc.es
|
||||
<height>22</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>334</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -48,7 +48,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>195</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -49,7 +49,6 @@
|
||||
<height>20</height>
|
||||
<width>20</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>34</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -50,7 +50,6 @@
|
||||
<height>36</height>
|
||||
<width>18</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>53</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -142,7 +142,6 @@ Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
|
||||
<height>22</height>
|
||||
<width>18</width>
|
||||
<stageParams>
|
||||
<maxDepth>0</maxDepth>
|
||||
<maxWeakCount>152</maxWeakCount></stageParams>
|
||||
<featureParams>
|
||||
<maxCatCount>0</maxCatCount></featureParams>
|
||||
|
@ -954,7 +954,7 @@ int CascadeClassifierImpl::runAt( Ptr<FeatureEvaluator>& evaluator, Point pt, do
|
||||
|
||||
if( !evaluator->setWindow(pt) )
|
||||
return -1;
|
||||
if( data.isStumpBased )
|
||||
if( data.isStumpBased() )
|
||||
{
|
||||
if( data.featureType == FeatureEvaluator::HAAR )
|
||||
return predictOrderedStump<HaarEvaluator>( *this, evaluator, weight );
|
||||
@ -1133,6 +1133,7 @@ bool CascadeClassifierImpl::detectSingleScale( InputArray _image, Size processin
|
||||
bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size processingRectSize,
|
||||
int yStep, double factor, Size sumSize0 )
|
||||
{
|
||||
const int VECTOR_SIZE = 4;
|
||||
Ptr<HaarEvaluator> haar = featureEvaluator.dynamicCast<HaarEvaluator>();
|
||||
if( haar.empty() )
|
||||
return false;
|
||||
@ -1142,7 +1143,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
if( cascadeKernel.empty() )
|
||||
{
|
||||
cascadeKernel.create("runHaarClassifierStump", ocl::objdetect::haarobjectdetect_oclsrc,
|
||||
format("-D MAX_FACES=%d", MAX_FACES));
|
||||
format("-D VECTOR_SIZE=%d", VECTOR_SIZE));
|
||||
if( cascadeKernel.empty() )
|
||||
return false;
|
||||
}
|
||||
@ -1150,9 +1151,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
if( ustages.empty() )
|
||||
{
|
||||
copyVectorToUMat(data.stages, ustages);
|
||||
copyVectorToUMat(data.classifiers, uclassifiers);
|
||||
copyVectorToUMat(data.nodes, unodes);
|
||||
copyVectorToUMat(data.leaves, uleaves);
|
||||
copyVectorToUMat(data.stumps, ustumps);
|
||||
}
|
||||
|
||||
std::vector<UMat> bufs;
|
||||
@ -1162,7 +1161,7 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
Rect normrect = haar->getNormRect();
|
||||
|
||||
//processingRectSize = Size(yStep, yStep);
|
||||
size_t globalsize[] = { processingRectSize.width/yStep, processingRectSize.height/yStep };
|
||||
size_t globalsize[] = { (processingRectSize.width/yStep + VECTOR_SIZE-1)/VECTOR_SIZE, processingRectSize.height/yStep };
|
||||
|
||||
cascadeKernel.args(ocl::KernelArg::ReadOnlyNoSize(bufs[0]), // sum
|
||||
ocl::KernelArg::ReadOnlyNoSize(bufs[1]), // sqsum
|
||||
@ -1171,14 +1170,12 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
// cascade classifier
|
||||
(int)data.stages.size(),
|
||||
ocl::KernelArg::PtrReadOnly(ustages),
|
||||
ocl::KernelArg::PtrReadOnly(uclassifiers),
|
||||
ocl::KernelArg::PtrReadOnly(unodes),
|
||||
ocl::KernelArg::PtrReadOnly(uleaves),
|
||||
ocl::KernelArg::PtrReadOnly(ustumps),
|
||||
|
||||
ocl::KernelArg::PtrWriteOnly(ufacepos), // positions
|
||||
processingRectSize,
|
||||
yStep, (float)factor,
|
||||
normrect, data.origWinSize);
|
||||
normrect, data.origWinSize, MAX_FACES);
|
||||
bool ok = cascadeKernel.run(2, globalsize, 0, true);
|
||||
//CV_Assert(ok);
|
||||
return ok;
|
||||
@ -1243,7 +1240,7 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
|
||||
bool use_ocl = ocl::useOpenCL() &&
|
||||
getFeatureType() == FeatureEvaluator::HAAR &&
|
||||
!isOldFormatCascade() &&
|
||||
data.isStumpBased &&
|
||||
data.isStumpBased() &&
|
||||
maskGenerator.empty() &&
|
||||
!outputRejectLevels &&
|
||||
tryOpenCL;
|
||||
@ -1345,7 +1342,6 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
|
||||
Mat facepos = ufacepos.getMat(ACCESS_READ);
|
||||
const int* fptr = facepos.ptr<int>();
|
||||
int i, nfaces = fptr[0];
|
||||
printf("nfaces = %d\n", nfaces);
|
||||
for( i = 0; i < nfaces; i++ )
|
||||
{
|
||||
candidates.push_back(Rect(fptr[i*4+1], fptr[i*4+2], fptr[i*4+3], fptr[i*4+4]));
|
||||
@ -1428,6 +1424,12 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CascadeClassifierImpl::Data::Data()
|
||||
{
|
||||
stageType = featureType = ncategories = maxNodesPerTree = 0;
|
||||
}
|
||||
|
||||
bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
{
|
||||
static const float THRESHOLD_EPS = 1e-5f;
|
||||
@ -1471,9 +1473,10 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
stages.reserve(fn.size());
|
||||
classifiers.clear();
|
||||
nodes.clear();
|
||||
stumps.clear();
|
||||
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
isStumpBased = true;
|
||||
maxNodesPerTree = 0;
|
||||
|
||||
for( int si = 0; it != it_end; si++, ++it )
|
||||
{
|
||||
@ -1499,9 +1502,8 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
|
||||
DTree tree;
|
||||
tree.nodeCount = (int)internalNodes.size()/nodeStep;
|
||||
if( tree.nodeCount > 1 )
|
||||
isStumpBased = false;
|
||||
|
||||
maxNodesPerTree = std::max(maxNodesPerTree, tree.nodeCount);
|
||||
|
||||
classifiers.push_back(tree);
|
||||
|
||||
nodes.reserve(nodes.size() + tree.nodeCount);
|
||||
@ -1536,6 +1538,24 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
leaves.push_back((float)*internalNodesIter);
|
||||
}
|
||||
}
|
||||
|
||||
if( isStumpBased() )
|
||||
{
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
size_t nstages = stages.size();
|
||||
for( size_t stageIdx = 0; stageIdx < nstages; stageIdx++ )
|
||||
{
|
||||
const Stage& stage = stages[stageIdx];
|
||||
|
||||
int ntrees = stage.ntrees;
|
||||
for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 )
|
||||
{
|
||||
const DTreeNode& node = nodes[nodeOfs];
|
||||
stumps.push_back(Stump(node.featureIdx, node.threshold,
|
||||
leaves[leafOfs], leaves[leafOfs+1]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -1546,9 +1566,7 @@ bool CascadeClassifierImpl::read_(const FileNode& root)
|
||||
tryOpenCL = true;
|
||||
cascadeKernel = ocl::Kernel();
|
||||
ustages.release();
|
||||
uclassifiers.release();
|
||||
unodes.release();
|
||||
uleaves.release();
|
||||
ustumps.release();
|
||||
if( !data.read(root) )
|
||||
return false;
|
||||
|
||||
|
@ -48,7 +48,7 @@ public:
|
||||
Ptr<MaskGenerator> getMaskGenerator();
|
||||
|
||||
protected:
|
||||
enum { SUM_ALIGN = 16 };
|
||||
enum { SUM_ALIGN = 64 };
|
||||
|
||||
bool detectSingleScale( InputArray image, Size processingRectSize,
|
||||
int yStep, double factor, std::vector<Rect>& candidates,
|
||||
@ -109,14 +109,29 @@ protected:
|
||||
int ntrees;
|
||||
float threshold;
|
||||
};
|
||||
|
||||
struct Stump
|
||||
{
|
||||
Stump() {};
|
||||
Stump(int _featureIdx, float _threshold, float _left, float _right)
|
||||
: featureIdx(_featureIdx), threshold(_threshold), left(_left), right(_right) {}
|
||||
|
||||
int featureIdx;
|
||||
float threshold;
|
||||
float left;
|
||||
float right;
|
||||
};
|
||||
|
||||
Data();
|
||||
|
||||
bool read(const FileNode &node);
|
||||
|
||||
bool isStumpBased;
|
||||
bool isStumpBased() const { return maxNodesPerTree == 1; }
|
||||
|
||||
int stageType;
|
||||
int featureType;
|
||||
int ncategories;
|
||||
int maxNodesPerTree;
|
||||
Size origWinSize;
|
||||
|
||||
std::vector<Stage> stages;
|
||||
@ -124,6 +139,7 @@ protected:
|
||||
std::vector<DTreeNode> nodes;
|
||||
std::vector<float> leaves;
|
||||
std::vector<int> subsets;
|
||||
std::vector<Stump> stumps;
|
||||
};
|
||||
|
||||
Data data;
|
||||
@ -132,7 +148,7 @@ protected:
|
||||
|
||||
Ptr<MaskGenerator> maskGenerator;
|
||||
UMat ugrayImage, uimageBuffer;
|
||||
UMat ufacepos, ustages, uclassifiers, unodes, uleaves, usubsets;
|
||||
UMat ufacepos, ustages, ustumps, usubsets;
|
||||
ocl::Kernel cascadeKernel;
|
||||
bool tryOpenCL;
|
||||
|
||||
@ -592,30 +608,36 @@ template<class FEval>
|
||||
inline int predictOrderedStump( CascadeClassifierImpl& cascade,
|
||||
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
|
||||
{
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
CV_Assert(!cascade.data.stumps.empty());
|
||||
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
|
||||
float* cascadeLeaves = &cascade.data.leaves[0];
|
||||
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
|
||||
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
|
||||
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
|
||||
int nstages = (int)cascade.data.stages.size();
|
||||
double tmp = 0;
|
||||
|
||||
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
|
||||
{
|
||||
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[stageIdx];
|
||||
sum = 0.0;
|
||||
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[stageIdx];
|
||||
tmp = 0;
|
||||
|
||||
int ntrees = stage.ntrees;
|
||||
for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 )
|
||||
for( int i = 0; i < ntrees; i++ )
|
||||
{
|
||||
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[nodeOfs];
|
||||
double value = featureEvaluator(node.featureIdx);
|
||||
sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ];
|
||||
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[i];
|
||||
double value = featureEvaluator(stump.featureIdx);
|
||||
tmp += value < stump.threshold ? stump.left : stump.right;
|
||||
}
|
||||
|
||||
if( sum < stage.threshold )
|
||||
if( tmp < stage.threshold )
|
||||
{
|
||||
sum = (double)tmp;
|
||||
return -stageIdx;
|
||||
}
|
||||
cascadeStumps += ntrees;
|
||||
}
|
||||
|
||||
sum = (double)tmp;
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -623,56 +645,44 @@ template<class FEval>
|
||||
inline int predictCategoricalStump( CascadeClassifierImpl& cascade,
|
||||
Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
|
||||
{
|
||||
CV_Assert(!cascade.data.stumps.empty());
|
||||
int nstages = (int)cascade.data.stages.size();
|
||||
int nodeOfs = 0, leafOfs = 0;
|
||||
FEval& featureEvaluator = (FEval&)*_featureEvaluator;
|
||||
size_t subsetSize = (cascade.data.ncategories + 31)/32;
|
||||
int* cascadeSubsets = &cascade.data.subsets[0];
|
||||
float* cascadeLeaves = &cascade.data.leaves[0];
|
||||
CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
|
||||
CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
const int* cascadeSubsets = &cascade.data.subsets[0];
|
||||
const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0];
|
||||
const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0];
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
float tmp = 0; // float accumulator -- float operations are quicker
|
||||
#else
|
||||
double tmp = 0;
|
||||
#endif
|
||||
for( int si = 0; si < nstages; si++ )
|
||||
{
|
||||
CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
|
||||
const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si];
|
||||
int wi, ntrees = stage.ntrees;
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
tmp = 0;
|
||||
#else
|
||||
sum = 0;
|
||||
#endif
|
||||
|
||||
for( wi = 0; wi < ntrees; wi++ )
|
||||
{
|
||||
CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[nodeOfs];
|
||||
int c = featureEvaluator(node.featureIdx);
|
||||
const int* subset = &cascadeSubsets[nodeOfs*subsetSize];
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
tmp += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
|
||||
#else
|
||||
sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
|
||||
#endif
|
||||
nodeOfs++;
|
||||
leafOfs += 2;
|
||||
const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[wi];
|
||||
int c = featureEvaluator(stump.featureIdx);
|
||||
const int* subset = &cascadeSubsets[wi*subsetSize];
|
||||
tmp += (subset[c>>5] & (1 << (c & 31))) ? stump.left : stump.right;
|
||||
}
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
if( tmp < stage.threshold ) {
|
||||
|
||||
if( tmp < stage.threshold )
|
||||
{
|
||||
sum = (double)tmp;
|
||||
return -si;
|
||||
}
|
||||
#else
|
||||
if( sum < stage.threshold )
|
||||
return -si;
|
||||
#endif
|
||||
|
||||
cascadeStumps += ntrees;
|
||||
cascadeSubsets += ntrees*subsetSize;
|
||||
}
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
sum = (double)tmp;
|
||||
#endif
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
@ -209,7 +209,6 @@ static bool convert(const String& oldcascade, const String& newcascade)
|
||||
<< "height" << cascadesize.width
|
||||
<< "width" << cascadesize.height
|
||||
<< "stageParams" << "{"
|
||||
<< "maxDepth" << maxdepth
|
||||
<< "maxWeakCount" << (int)maxWeakCount
|
||||
<< "}"
|
||||
<< "featureParams" << "{"
|
||||
|
@ -1,43 +1,5 @@
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Wang Weiyan, wangweiyanster@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Erping Pang, erping@multicorewareinc.com
|
||||
// Vadim Pisarevsky, vadim.pisarevsky@itseez.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//
|
||||
///////////////////////////// OpenCL kernels for face detection //////////////////////////////
|
||||
////////////////////////////// see the opencv/doc/license.txt ///////////////////////////////
|
||||
|
||||
typedef struct __attribute__((aligned(4))) OptFeature
|
||||
{
|
||||
@ -46,20 +8,14 @@ typedef struct __attribute__((aligned(4))) OptFeature
|
||||
}
|
||||
OptFeature;
|
||||
|
||||
typedef struct __attribute__((aligned(4))) DTreeNode
|
||||
typedef struct __attribute__((aligned(4))) Stump
|
||||
{
|
||||
int featureIdx __attribute__((aligned (4)));
|
||||
float threshold __attribute__((aligned (4))); // for ordered features only
|
||||
int left __attribute__((aligned (4)));
|
||||
int right __attribute__((aligned (4)));
|
||||
float left __attribute__((aligned (4)));
|
||||
float right __attribute__((aligned (4)));
|
||||
}
|
||||
DTreeNode;
|
||||
|
||||
typedef struct __attribute__((aligned (4))) DTree
|
||||
{
|
||||
int nodeCount __attribute__((aligned (4)));
|
||||
}
|
||||
DTree;
|
||||
Stump;
|
||||
|
||||
typedef struct __attribute__((aligned (4))) Stage
|
||||
{
|
||||
@ -78,25 +34,23 @@ __kernel void runHaarClassifierStump(
|
||||
|
||||
int nstages,
|
||||
__global const Stage* stages,
|
||||
__global const DTree* trees,
|
||||
__global const DTreeNode* nodes,
|
||||
__global const float* leaves,
|
||||
__global const Stump* stumps,
|
||||
|
||||
volatile __global int* facepos,
|
||||
int2 imgsize, int xyscale, float factor,
|
||||
int4 normrect, int2 windowsize)
|
||||
int4 normrect, int2 windowsize, int maxFaces)
|
||||
{
|
||||
int ix = get_global_id(0)*xyscale;
|
||||
int ix = get_global_id(0)*xyscale*VECTOR_SIZE;
|
||||
int iy = get_global_id(1)*xyscale;
|
||||
sumstep /= sizeof(int);
|
||||
sqsumstep /= sizeof(int);
|
||||
|
||||
if( ix < imgsize.x && iy < imgsize.y )
|
||||
{
|
||||
int ntrees, nodeOfs = 0, leafOfs = 0;
|
||||
int ntrees;
|
||||
int stageIdx, i;
|
||||
float s = 0.f;
|
||||
__global const DTreeNode* node;
|
||||
__global const Stump* stump = stumps;
|
||||
__global const OptFeature* f;
|
||||
|
||||
__global const int* psum = sum + mad24(iy, sumstep, ix);
|
||||
@ -107,19 +61,17 @@ __kernel void runHaarClassifierStump(
|
||||
pnsum[mad24(normrect.w, sumstep, normrect.z)])*invarea;
|
||||
float sqval = (sqsum[mad24(iy + normrect.y, sqsumstep, ix + normrect.x)])*invarea;
|
||||
float nf = (float)normarea * sqrt(max(sqval - sval * sval, 0.f));
|
||||
float4 weight;
|
||||
int4 ofs;
|
||||
float4 weight, vsval;
|
||||
int4 ofs, ofs0, ofs1, ofs2;
|
||||
nf = nf > 0 ? nf : 1.f;
|
||||
|
||||
for( stageIdx = 0; stageIdx < nstages; stageIdx++ )
|
||||
{
|
||||
ntrees = stages[stageIdx].ntrees;
|
||||
s = 0.f;
|
||||
for( i = 0; i < ntrees; i++, nodeOfs++, leafOfs += 2 )
|
||||
for( i = 0; i < ntrees; i++, stump++ )
|
||||
{
|
||||
node = nodes + nodeOfs;
|
||||
f = optfeatures + node->featureIdx;
|
||||
|
||||
f = optfeatures + stump->featureIdx;
|
||||
weight = f->weight;
|
||||
|
||||
ofs = f->ofs[0];
|
||||
@ -131,7 +83,8 @@ __kernel void runHaarClassifierStump(
|
||||
ofs = f->ofs[2];
|
||||
sval += (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.z;
|
||||
}
|
||||
s += leaves[ sval < node->threshold*nf ? leafOfs : leafOfs + 1 ];
|
||||
|
||||
s += (sval < stump->threshold*nf) ? stump->left : stump->right;
|
||||
}
|
||||
|
||||
if( s < stages[stageIdx].threshold )
|
||||
@ -142,7 +95,7 @@ __kernel void runHaarClassifierStump(
|
||||
{
|
||||
int nfaces = atomic_inc(facepos);
|
||||
//printf("detected face #d!!!!\n", nfaces);
|
||||
if( nfaces < MAX_FACES )
|
||||
if( nfaces < maxFaces )
|
||||
{
|
||||
volatile __global int* face = facepos + 1 + nfaces*4;
|
||||
face[0] = convert_int_rte(ix*factor);
|
||||
@ -153,3 +106,82 @@ __kernel void runHaarClassifierStump(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
__kernel void runLBPClassifierStump(
|
||||
__global const int* sum,
|
||||
int sumstep, int sumoffset,
|
||||
__global const int* sqsum,
|
||||
int sqsumstep, int sqsumoffset,
|
||||
__global const OptFeature* optfeatures,
|
||||
|
||||
int nstages,
|
||||
__global const Stage* stages,
|
||||
__global const Stump* stumps,
|
||||
__global const int* bitsets,
|
||||
int bitsetSize,
|
||||
|
||||
volatile __global int* facepos,
|
||||
int2 imgsize, int xyscale, float factor,
|
||||
int4 normrect, int2 windowsize, int maxFaces)
|
||||
{
|
||||
int ix = get_global_id(0)*xyscale*VECTOR_SIZE;
|
||||
int iy = get_global_id(1)*xyscale;
|
||||
sumstep /= sizeof(int);
|
||||
sqsumstep /= sizeof(int);
|
||||
|
||||
if( ix < imgsize.x && iy < imgsize.y )
|
||||
{
|
||||
int ntrees;
|
||||
int stageIdx, i;
|
||||
float s = 0.f;
|
||||
__global const Stump* stump = stumps;
|
||||
__global const int* bitset = bitsets;
|
||||
__global const OptFeature* f;
|
||||
|
||||
__global const int* psum = sum + mad24(iy, sumstep, ix);
|
||||
__global const int* pnsum = psum + mad24(normrect.y, sumstep, normrect.x);
|
||||
int normarea = normrect.z * normrect.w;
|
||||
float invarea = 1.f/normarea;
|
||||
float sval = (pnsum[0] - pnsum[normrect.z] - pnsum[mul24(normrect.w, sumstep)] +
|
||||
pnsum[mad24(normrect.w, sumstep, normrect.z)])*invarea;
|
||||
float sqval = (sqsum[mad24(iy + normrect.y, sqsumstep, ix + normrect.x)])*invarea;
|
||||
float nf = (float)normarea * sqrt(max(sqval - sval * sval, 0.f));
|
||||
float4 weight;
|
||||
int4 ofs;
|
||||
nf = nf > 0 ? nf : 1.f;
|
||||
|
||||
for( stageIdx = 0; stageIdx < nstages; stageIdx++ )
|
||||
{
|
||||
ntrees = stages[stageIdx].ntrees;
|
||||
s = 0.f;
|
||||
for( i = 0; i < ntrees; i++, stump++, bitset += bitsetSize )
|
||||
{
|
||||
f = optfeatures + stump->featureIdx;
|
||||
|
||||
weight = f->weight;
|
||||
|
||||
// compute LBP feature to val
|
||||
s += (bitset[val >> 5] & (1 << (val & 31))) ? stump->left : stump->right;
|
||||
}
|
||||
|
||||
if( s < stages[stageIdx].threshold )
|
||||
break;
|
||||
}
|
||||
|
||||
if( stageIdx == nstages )
|
||||
{
|
||||
int nfaces = atomic_inc(facepos);
|
||||
if( nfaces < maxFaces )
|
||||
{
|
||||
volatile __global int* face = facepos + 1 + nfaces*4;
|
||||
face[0] = convert_int_rte(ix*factor);
|
||||
face[1] = convert_int_rte(iy*factor);
|
||||
face[2] = convert_int_rte(windowsize.x*factor);
|
||||
face[3] = convert_int_rte(windowsize.y*factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user