mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
digits_video.py prints warning if trained classifier (should be created by digits.py) not found
This commit is contained in:
parent
3804ca3e20
commit
b987154ebc
@ -1,63 +1,74 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
#import video
|
||||
import digits
|
||||
import os
|
||||
import video
|
||||
from common import mosaic
|
||||
|
||||
#cap = video.create_capture()
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
model = digits.SVM()
|
||||
model.load('digits_svm.dat')
|
||||
|
||||
SZ = 20
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
|
||||
bin = cv2.medianBlur(bin, 3)
|
||||
contours, _ = cv2.findContours( bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
boxes = []
|
||||
for cnt in contours:
|
||||
x, y, w, h = cv2.boundingRect(cnt)
|
||||
if h < 20 or h > 60 or 1.2*h < w:
|
||||
continue
|
||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
|
||||
sub = bin[y:,x:][:h,:w]
|
||||
#sub = ~cv2.equalizeHist(sub)
|
||||
#_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
||||
|
||||
s = 1.1*h/SZ
|
||||
m = cv2.moments(sub)
|
||||
m00 = m['m00']
|
||||
if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h:
|
||||
continue
|
||||
|
||||
#frame[y:,x:][:h,:w] = sub[...,np.newaxis]
|
||||
c1 = np.float32([m['m10'], m['m01']]) / m00
|
||||
c0 = np.float32([SZ/2, SZ/2])
|
||||
t = c1 - s*c0
|
||||
A = np.zeros((2, 3), np.float32)
|
||||
A[:,:2] = np.eye(2)*2
|
||||
A[:,2] = t
|
||||
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
sub1 = digits.deskew(sub1)
|
||||
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0
|
||||
digit = model.predict(sample)[0]
|
||||
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
|
||||
boxes.append(sub1)
|
||||
|
||||
|
||||
if len(boxes) > 0:
|
||||
cv2.imshow('box', mosaic(10, boxes))
|
||||
|
||||
def main():
|
||||
cap = video.create_capture()
|
||||
|
||||
cv2.imshow('frame', frame)
|
||||
cv2.imshow('bin', bin)
|
||||
if cv2.waitKey(1) == 27:
|
||||
break
|
||||
classifier_fn = 'digits_svm.dat'
|
||||
if not os.path.exists(classifier_fn):
|
||||
print '"%s" not found, run digits.py first' % classifier_fn
|
||||
return
|
||||
|
||||
model = digits.SVM()
|
||||
model.load('digits_svm.dat')
|
||||
|
||||
SZ = 20
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
|
||||
bin = cv2.medianBlur(bin, 3)
|
||||
contours, _ = cv2.findContours( bin.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
boxes = []
|
||||
for cnt in contours:
|
||||
x, y, w, h = cv2.boundingRect(cnt)
|
||||
if h < 20 or h > 60 or 1.2*h < w:
|
||||
continue
|
||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
|
||||
sub = bin[y:,x:][:h,:w]
|
||||
#sub = ~cv2.equalizeHist(sub)
|
||||
#_, sub_bin = cv2.threshold(sub, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
||||
|
||||
s = 1.1*h/SZ
|
||||
m = cv2.moments(sub)
|
||||
m00 = m['m00']
|
||||
if m00/255 < 0.1*w*h or m00/255 > 0.9*w*h:
|
||||
continue
|
||||
|
||||
#frame[y:,x:][:h,:w] = sub[...,np.newaxis]
|
||||
c1 = np.float32([m['m10'], m['m01']]) / m00
|
||||
c0 = np.float32([SZ/2, SZ/2])
|
||||
t = c1 - s*c0
|
||||
A = np.zeros((2, 3), np.float32)
|
||||
A[:,:2] = np.eye(2)*2
|
||||
A[:,2] = t
|
||||
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
sub1 = digits.deskew(sub1)
|
||||
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0
|
||||
digit = model.predict(sample)[0]
|
||||
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
|
||||
boxes.append(sub1)
|
||||
|
||||
|
||||
if len(boxes) > 0:
|
||||
cv2.imshow('box', mosaic(10, boxes))
|
||||
|
||||
|
||||
cv2.imshow('frame', frame)
|
||||
cv2.imshow('bin', bin)
|
||||
if cv2.waitKey(1) == 27:
|
||||
break
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user