mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
imgproc: dispatch smooth
This commit is contained in:
parent
6ec08f268f
commit
b99c9145bf
@ -5,4 +5,5 @@ ocv_add_dispatched_file(color_hsv SSE2 SSE4_1 AVX2)
|
||||
ocv_add_dispatched_file(color_rgb SSE2 SSE4_1 AVX2)
|
||||
ocv_add_dispatched_file(color_yuv SSE2 SSE4_1 AVX2)
|
||||
ocv_add_dispatched_file(median_blur SSE2 SSE4_1 AVX2)
|
||||
ocv_add_dispatched_file(smooth SSE2 SSE4_1 AVX2)
|
||||
ocv_define_module(imgproc opencv_core WRAP java python js)
|
||||
|
@ -9,10 +9,7 @@
|
||||
#ifndef _CV_FIXEDPOINT_HPP_
|
||||
#define _CV_FIXEDPOINT_HPP_
|
||||
|
||||
#include "opencv2/core/softfloat.hpp"
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace {
|
||||
|
||||
class fixedpoint64
|
||||
{
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -46,120 +46,28 @@
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
#include "opencl_kernels_imgproc.hpp"
|
||||
|
||||
#include "opencv2/core/openvx/ovx_defs.hpp"
|
||||
|
||||
#include "filter.hpp"
|
||||
|
||||
#include "fixedpoint.inl.hpp"
|
||||
|
||||
/****************************************************************************************\
|
||||
Gaussian Blur
|
||||
\****************************************************************************************/
|
||||
|
||||
cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype )
|
||||
{
|
||||
CV_Assert(n > 0);
|
||||
const int SMALL_GAUSSIAN_SIZE = 7;
|
||||
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
|
||||
{
|
||||
{1.f},
|
||||
{0.25f, 0.5f, 0.25f},
|
||||
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
|
||||
{0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
|
||||
};
|
||||
|
||||
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
|
||||
small_gaussian_tab[n>>1] : 0;
|
||||
|
||||
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
||||
Mat kernel(n, 1, ktype);
|
||||
float* cf = kernel.ptr<float>();
|
||||
double* cd = kernel.ptr<double>();
|
||||
|
||||
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
|
||||
double scale2X = -0.5/(sigmaX*sigmaX);
|
||||
double sum = 0;
|
||||
|
||||
int i;
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
double x = i - (n-1)*0.5;
|
||||
double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
|
||||
if( ktype == CV_32F )
|
||||
{
|
||||
cf[i] = (float)t;
|
||||
sum += cf[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
cd[i] = t;
|
||||
sum += cd[i];
|
||||
}
|
||||
}
|
||||
|
||||
CV_DbgAssert(fabs(sum) > 0);
|
||||
sum = 1./sum;
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
if( ktype == CV_32F )
|
||||
cf[i] = (float)(cf[i]*sum);
|
||||
else
|
||||
cd[i] *= sum;
|
||||
}
|
||||
|
||||
return kernel;
|
||||
}
|
||||
#include "opencv2/core/softfloat.hpp"
|
||||
|
||||
namespace cv {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
// forward declarations
|
||||
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst,
|
||||
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size,
|
||||
const uint16_t/*ufixedpoint16*/* fky, int fky_size,
|
||||
int borderType);
|
||||
|
||||
template <typename T>
|
||||
static std::vector<T> getFixedpointGaussianKernel( int n, double sigma )
|
||||
{
|
||||
if (sigma <= 0)
|
||||
{
|
||||
if(n == 1)
|
||||
return std::vector<T>(1, softdouble(1.0));
|
||||
else if(n == 3)
|
||||
{
|
||||
T v3[] = { softdouble(0.25), softdouble(0.5), softdouble(0.25) };
|
||||
return std::vector<T>(v3, v3 + 3);
|
||||
}
|
||||
else if(n == 5)
|
||||
{
|
||||
T v5[] = { softdouble(0.0625), softdouble(0.25), softdouble(0.375), softdouble(0.25), softdouble(0.0625) };
|
||||
return std::vector<T>(v5, v5 + 5);
|
||||
}
|
||||
else if(n == 7)
|
||||
{
|
||||
T v7[] = { softdouble(0.03125), softdouble(0.109375), softdouble(0.21875), softdouble(0.28125), softdouble(0.21875), softdouble(0.109375), softdouble(0.03125) };
|
||||
return std::vector<T>(v7, v7 + 7);
|
||||
}
|
||||
}
|
||||
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
#if defined(CV_CPU_BASELINE_MODE)
|
||||
// included in dispatch.cpp
|
||||
#else
|
||||
#include "fixedpoint.inl.hpp"
|
||||
#endif
|
||||
|
||||
softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n),softdouble(0.15),softdouble(0.35));// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8)
|
||||
softdouble scale2X = softdouble(-0.5*0.25)/(sigmaX*sigmaX);
|
||||
std::vector<softdouble> values(n);
|
||||
softdouble sum(0.);
|
||||
for(int i = 0, x = 1 - n; i < n; i++, x+=2 )
|
||||
{
|
||||
// x = i - (n - 1)*0.5
|
||||
// t = std::exp(scale2X*x*x)
|
||||
values[i] = exp(softdouble(x*x)*scale2X);
|
||||
sum += values[i];
|
||||
}
|
||||
sum = softdouble::one()/sum;
|
||||
|
||||
std::vector<T> kernel(n);
|
||||
for(int i = 0; i < n; i++ )
|
||||
{
|
||||
kernel[i] = values[i] * sum;
|
||||
}
|
||||
|
||||
return kernel;
|
||||
};
|
||||
namespace {
|
||||
|
||||
template <typename ET, typename FT>
|
||||
void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int)
|
||||
@ -2119,418 +2027,27 @@ private:
|
||||
fixedSmoothInvoker& operator=(const fixedSmoothInvoker&);
|
||||
};
|
||||
|
||||
static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); }
|
||||
template <typename T> static void getGaussianKernel(int n, double sigma, int, std::vector<T>& res) { res = getFixedpointGaussianKernel<T>(n, sigma); }
|
||||
} // namespace anon
|
||||
|
||||
template <typename T>
|
||||
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize,
|
||||
double sigma1, double sigma2 )
|
||||
{
|
||||
int depth = CV_MAT_DEPTH(type);
|
||||
if( sigma2 <= 0 )
|
||||
sigma2 = sigma1;
|
||||
|
||||
// automatic detection of kernel size from sigma
|
||||
if( ksize.width <= 0 && sigma1 > 0 )
|
||||
ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
|
||||
if( ksize.height <= 0 && sigma2 > 0 )
|
||||
ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
|
||||
|
||||
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 &&
|
||||
ksize.height > 0 && ksize.height % 2 == 1 );
|
||||
|
||||
sigma1 = std::max( sigma1, 0. );
|
||||
sigma2 = std::max( sigma2, 0. );
|
||||
|
||||
getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx );
|
||||
if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
|
||||
ky = kx;
|
||||
else
|
||||
getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
|
||||
double sigma1, double sigma2,
|
||||
int borderType )
|
||||
{
|
||||
Mat kx, ky;
|
||||
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
|
||||
|
||||
return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType );
|
||||
}
|
||||
|
||||
namespace cv
|
||||
{
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth,
|
||||
InputArray _kernelX, InputArray _kernelY, int borderType)
|
||||
{
|
||||
const ocl::Device & dev = ocl::Device::getDefault();
|
||||
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
|
||||
if ( !(dev.isIntel() && (type == CV_8UC1) &&
|
||||
(_src.offset() == 0) && (_src.step() % 4 == 0) &&
|
||||
((ksize.width == 5 && (_src.cols() % 4 == 0)) ||
|
||||
(ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) )
|
||||
return false;
|
||||
|
||||
Mat kernelX = _kernelX.getMat().reshape(1, 1);
|
||||
if (kernelX.cols % 2 != 1)
|
||||
return false;
|
||||
Mat kernelY = _kernelY.getMat().reshape(1, 1);
|
||||
if (kernelY.cols % 2 != 1)
|
||||
return false;
|
||||
|
||||
if (ddepth < 0)
|
||||
ddepth = sdepth;
|
||||
|
||||
Size size = _src.size();
|
||||
size_t globalsize[2] = { 0, 0 };
|
||||
size_t localsize[2] = { 0, 0 };
|
||||
|
||||
if (ksize.width == 3)
|
||||
{
|
||||
globalsize[0] = size.width / 16;
|
||||
globalsize[1] = size.height / 2;
|
||||
}
|
||||
else if (ksize.width == 5)
|
||||
{
|
||||
globalsize[0] = size.width / 4;
|
||||
globalsize[1] = size.height / 1;
|
||||
}
|
||||
|
||||
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" };
|
||||
char build_opts[1024];
|
||||
sprintf(build_opts, "-D %s %s%s", borderMap[borderType & ~BORDER_ISOLATED],
|
||||
ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(),
|
||||
ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str());
|
||||
|
||||
ocl::Kernel kernel;
|
||||
|
||||
if (ksize.width == 3)
|
||||
kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts);
|
||||
else if (ksize.width == 5)
|
||||
kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts);
|
||||
|
||||
if (kernel.empty())
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
_dst.create(size, CV_MAKETYPE(ddepth, cn));
|
||||
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0))
|
||||
return false;
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
|
||||
idxArg = kernel.set(idxArg, (int)src.step);
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst));
|
||||
idxArg = kernel.set(idxArg, (int)dst.step);
|
||||
idxArg = kernel.set(idxArg, (int)dst.rows);
|
||||
idxArg = kernel.set(idxArg, (int)dst.cols);
|
||||
|
||||
return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_OPENVX
|
||||
|
||||
namespace ovx {
|
||||
template <> inline bool skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(int w, int h) { return w*h < 320 * 240; }
|
||||
}
|
||||
static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigma1, double sigma2, int borderType)
|
||||
{
|
||||
if (sigma2 <= 0)
|
||||
sigma2 = sigma1;
|
||||
// automatic detection of kernel size from sigma
|
||||
if (ksize.width <= 0 && sigma1 > 0)
|
||||
ksize.width = cvRound(sigma1*6 + 1) | 1;
|
||||
if (ksize.height <= 0 && sigma2 > 0)
|
||||
ksize.height = cvRound(sigma2*6 + 1) | 1;
|
||||
|
||||
if (_src.type() != CV_8UC1 ||
|
||||
_src.cols() < 3 || _src.rows() < 3 ||
|
||||
ksize.width != 3 || ksize.height != 3)
|
||||
return false;
|
||||
|
||||
sigma1 = std::max(sigma1, 0.);
|
||||
sigma2 = std::max(sigma2, 0.);
|
||||
|
||||
if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) ||
|
||||
ovx::skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(_src.cols(), _src.rows()))
|
||||
return false;
|
||||
|
||||
Mat src = _src.getMat();
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
|
||||
return false; //Process isolated borders only
|
||||
vx_enum border;
|
||||
switch (borderType & ~BORDER_ISOLATED)
|
||||
{
|
||||
case BORDER_CONSTANT:
|
||||
border = VX_BORDER_CONSTANT;
|
||||
break;
|
||||
case BORDER_REPLICATE:
|
||||
border = VX_BORDER_REPLICATE;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
ivx::Context ctx = ovx::getOpenVXContext();
|
||||
|
||||
Mat a;
|
||||
if (dst.data != src.data)
|
||||
a = src;
|
||||
else
|
||||
src.copyTo(a);
|
||||
|
||||
ivx::Image
|
||||
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
|
||||
ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data),
|
||||
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
|
||||
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data);
|
||||
|
||||
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
|
||||
//since OpenVX standard says nothing about thread-safety for now
|
||||
ivx::border_t prevBorder = ctx.immediateBorder();
|
||||
ctx.setImmediateBorder(border, (vx_uint8)(0));
|
||||
ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib));
|
||||
ctx.setImmediateBorder(prevBorder);
|
||||
}
|
||||
catch (const ivx::RuntimeError & e)
|
||||
{
|
||||
VX_DbgThrow(e.what());
|
||||
}
|
||||
catch (const ivx::WrapperError & e)
|
||||
{
|
||||
VX_DbgThrow(e.what());
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_IPP
|
||||
// IW 2017u2 has bug which doesn't allow use of partial inMem with tiling
|
||||
#if IPP_DISABLE_GAUSSIANBLUR_PARALLEL
|
||||
#define IPP_GAUSSIANBLUR_PARALLEL 0
|
||||
#else
|
||||
#define IPP_GAUSSIANBLUR_PARALLEL 1
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_IPP_IW
|
||||
|
||||
class ipp_gaussianBlurParallel: public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk):
|
||||
m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) {
|
||||
*m_pOk = true;
|
||||
}
|
||||
~ipp_gaussianBlurParallel()
|
||||
{
|
||||
}
|
||||
|
||||
virtual void operator() (const Range& range) const CV_OVERRIDE
|
||||
{
|
||||
CV_INSTRUMENT_REGION_IPP();
|
||||
|
||||
if(!*m_pOk)
|
||||
return;
|
||||
|
||||
try
|
||||
{
|
||||
::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start);
|
||||
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile);
|
||||
}
|
||||
catch(const ::ipp::IwException &)
|
||||
{
|
||||
*m_pOk = false;
|
||||
return;
|
||||
}
|
||||
}
|
||||
private:
|
||||
::ipp::IwiImage &m_src;
|
||||
::ipp::IwiImage &m_dst;
|
||||
|
||||
int m_kernelSize;
|
||||
float m_sigma;
|
||||
::ipp::IwiBorderType &m_border;
|
||||
|
||||
volatile bool *m_pOk;
|
||||
const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigma1, double sigma2, int borderType )
|
||||
{
|
||||
#ifdef HAVE_IPP_IW
|
||||
CV_INSTRUMENT_REGION_IPP();
|
||||
|
||||
#if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__))
|
||||
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType);
|
||||
return false; // bug on ia32
|
||||
#else
|
||||
if(sigma1 != sigma2)
|
||||
return false;
|
||||
|
||||
if(sigma1 < FLT_EPSILON)
|
||||
return false;
|
||||
|
||||
if(ksize.width != ksize.height)
|
||||
return false;
|
||||
|
||||
// Acquire data and begin processing
|
||||
try
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
Mat dst = _dst.getMat();
|
||||
::ipp::IwiImage iwSrc = ippiGetImage(src);
|
||||
::ipp::IwiImage iwDst = ippiGetImage(dst);
|
||||
::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize));
|
||||
::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize));
|
||||
if(!ippBorder)
|
||||
return false;
|
||||
|
||||
const int threads = ippiSuggestThreadsNum(iwDst, 2);
|
||||
if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1) {
|
||||
bool ok;
|
||||
ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok);
|
||||
|
||||
if(!ok)
|
||||
return false;
|
||||
const Range range(0, (int) iwDst.m_size.height);
|
||||
parallel_for_(range, invoker, threads*4);
|
||||
|
||||
if(!ok)
|
||||
return false;
|
||||
} else {
|
||||
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder);
|
||||
}
|
||||
}
|
||||
catch (const ::ipp::IwException &)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
#endif
|
||||
#else
|
||||
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType);
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigma1, double sigma2,
|
||||
int borderType )
|
||||
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst,
|
||||
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size,
|
||||
const uint16_t/*ufixedpoint16*/* fky, int fky_size,
|
||||
int borderType)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
int type = _src.type();
|
||||
Size size = _src.size();
|
||||
_dst.create( size, type );
|
||||
|
||||
if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT &&
|
||||
((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) )
|
||||
CV_Assert(src.depth() == CV_8U && ((borderType & BORDER_ISOLATED) || !src.isSubmatrix()));
|
||||
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(
|
||||
src.ptr<uint8_t>(), src.step1(),
|
||||
dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(),
|
||||
(const ufixedpoint16*)fkx, fkx_size, (const ufixedpoint16*)fky, fky_size,
|
||||
borderType & ~BORDER_ISOLATED);
|
||||
{
|
||||
if( size.height == 1 )
|
||||
ksize.height = 1;
|
||||
if( size.width == 1 )
|
||||
ksize.width = 1;
|
||||
}
|
||||
|
||||
if( ksize.width == 1 && ksize.height == 1 )
|
||||
{
|
||||
_src.copyTo(_dst);
|
||||
return;
|
||||
}
|
||||
|
||||
bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 &&
|
||||
((ksize.width == 3 && ksize.height == 3) ||
|
||||
(ksize.width == 5 && ksize.height == 5)) &&
|
||||
_src.rows() > ksize.height && _src.cols() > ksize.width);
|
||||
CV_UNUSED(useOpenCL);
|
||||
|
||||
int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
|
||||
Mat kx, ky;
|
||||
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
|
||||
|
||||
CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType));
|
||||
|
||||
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(),
|
||||
ocl_sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType))
|
||||
|
||||
Mat src = _src.getMat();
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
Point ofs;
|
||||
Size wsz(src.cols, src.rows);
|
||||
if(!(borderType & BORDER_ISOLATED))
|
||||
src.locateROI( wsz, ofs );
|
||||
|
||||
CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn,
|
||||
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height,
|
||||
sigma1, sigma2, borderType&~BORDER_ISOLATED);
|
||||
|
||||
CV_OVX_RUN(true,
|
||||
openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType))
|
||||
|
||||
CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType));
|
||||
|
||||
if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix()))
|
||||
{
|
||||
std::vector<ufixedpoint16> fkx, fky;
|
||||
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2);
|
||||
if (src.data == dst.data)
|
||||
src = src.clone();
|
||||
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(src.ptr<uint8_t>(), src.step1(), dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), &fkx[0], (int)fkx.size(), &fky[0], (int)fky.size(), borderType & ~BORDER_ISOLATED);
|
||||
// TODO AVX guard (external call)
|
||||
parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs())));
|
||||
return;
|
||||
}
|
||||
|
||||
sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
cvSmooth( const void* srcarr, void* dstarr, int smooth_type,
|
||||
int param1, int param2, double param3, double param4 )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
|
||||
|
||||
CV_Assert( dst.size() == src.size() &&
|
||||
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) );
|
||||
|
||||
if( param2 <= 0 )
|
||||
param2 = param1;
|
||||
|
||||
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE )
|
||||
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1),
|
||||
smooth_type == CV_BLUR, cv::BORDER_REPLICATE );
|
||||
else if( smooth_type == CV_GAUSSIAN )
|
||||
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE );
|
||||
else if( smooth_type == CV_MEDIAN )
|
||||
cv::medianBlur( src, dst, param1 );
|
||||
else
|
||||
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE );
|
||||
|
||||
if( dst.data != dst0.data )
|
||||
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
#endif
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user