first version of soft cascade on GPU

This commit is contained in:
marina.kolpakova 2012-09-24 18:00:47 +04:00
parent 1bf85996b3
commit ba50d19341
3 changed files with 311 additions and 84 deletions

View File

@ -42,11 +42,48 @@
#include <icf.hpp>
#include <opencv2/gpu/device/saturate_cast.hpp>
#include <stdio.h>
#include <float.h>
namespace cv { namespace gpu {
namespace cv { namespace gpu { namespace device {
namespace icf {
namespace device {
enum {
HOG_BINS = 6,
HOG_LUV_BINS = 10,
WIDTH = 640,
HEIGHT = 480,
GREY_OFFSET = HEIGHT * HOG_LUV_BINS
};
__global__ void magToHist(const uchar* __restrict__ mag,
const float* __restrict__ angle, const int angPitch,
uchar* __restrict__ hog, const int hogPitch)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int bin = (int)(angle[y * angPitch + x]);
const uchar val = mag[y * angPitch + x];
hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
}
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
{
const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
uchar* hog = (uchar*)hogluv.ptr();
const float* angle = (const float*)nangle.ptr();
dim3 block(32, 8);
dim3 grid(WIDTH / 32, HEIGHT / 8);
magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
enum {
HOG_BINS = 6,
@ -185,65 +222,175 @@ __global__ void intCol(ushort* __restrict__ sum, const int pitch)
}
__global__ void detect(const cv::gpu::icf::Cascade cascade, const uchar* __restrict__ hogluv, const int pitch)
__global__ void detect(const cv::gpu::icf::Cascade cascade, const uchar* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4> objects)
{
cascade.detectAt();
cascade.detectAt(hogluv, pitch, objects);
}
}
void __device icf::Cascade::detectAt() const
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
const int channel, const float threshold) const
{
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
float approx = 1.f;
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
{
const float expected_new_area = farea * relScale * relScale;
approx = expected_new_area / sarea;
}
// compensation areas rounding
float rootThreshold = threshold / approx;
rootThreshold *= level.scaling[(int)(channel > 6)];
return rootThreshold;
}
void icf::Cascade::detect(const cv::gpu::PtrStepSzb& hogluv, cudaStream_t stream) const
typedef unsigned char uchar;
float __device get(const uchar* __restrict__ hogluv, const int pitch,
const int x, const int y, int channel, uchar4 area)
{
const uchar* curr = hogluv + ((channel * 121) + y) * pitch;
int a = curr[area.y * pitch + x + area.x];
int b = curr[area.y * pitch + x + area.z];
int c = curr[area.w * pitch + x + area.z];
int d = curr[area.w * pitch + x + area.x];
return (a - b + c - d);
}
void __device icf::Cascade::detectAt(const uchar* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4>& objects) const
{
const icf::Level* lls = (const icf::Level*)levels.ptr();
Level level = lls[0];
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x >= level.workRect.x || y >= level.workRect.y) return;
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
float detectionScore = 0.f;
int st = stBegin;
for(; st < stEnd; ++st)
{
const float stage = stages(0, st);
{
const int nId = st * 3;
// work with root node
const Node node = ((const Node*)nodes.ptr())[nId];
const Feature feature = ((const Feature*)features.ptr())[node.feature];
uchar4 scaledRect = feature.rect;
float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
int next = 1 + (int)(sum >= threshold);
// leaves
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
scaledRect = fLeaf.rect;
threshold = rescale(level, scaledRect, feature.channel, node.threshold);
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves(0, (st * 4) + lShift);
detectionScore += impact;
}
if (detectionScore <= stage) break;
}
// if (!threadIdx.x && !threadIdx.y)// printf("%f %d\n", detectionScore, st);
// printf("x %d y %d: %d\n", x, y, st);
if (st == stEnd)
{
// printf(" got %d\n", st);
uchar4 a;
a.x = level.workRect.x;
a.y = level.workRect.y;
objects(0, threadIdx.x) = a;
}
}
void icf::Cascade::detect(const cv::gpu::PtrStepSzb& hogluv, PtrStepSz<uchar4> objects,
cudaStream_t stream) const
{
// detection kernel
dim3 block(32, 8, 1);
dim3 grid(32 * ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 64);
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(ushort));
// dim3 grid(32 * ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 1);
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 1);
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(ushort), objects);
cudaSafeCall( cudaGetLastError() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////
void icf::ChannelStorage::frame(const cv::gpu::PtrStepSz<uchar3>& rgb, cudaStream_t stream)
{
// color convertin kernel
dim3 block(32, 8);
dim3 grid(FRAME_WIDTH / 32, FRAME_HEIGHT / 8);
// // // color convertin kernel
// // dim3 block(32, 8);
// // dim3 grid(FRAME_WIDTH / 32, FRAME_HEIGHT / 8);
uchar * channels = (uchar*)dmem.ptr(FRAME_HEIGHT * HOG_BINS);
device::rgb2grayluv<<<grid, block, 0, stream>>>((uchar3*)rgb.ptr(), channels,
rgb.step / sizeof(uchar3), dmem.step);
cudaSafeCall( cudaGetLastError());
// // uchar * channels = (uchar*)dmem.ptr(FRAME_HEIGHT * HOG_BINS);
// // device::rgb2grayluv<<<grid, block, 0, stream>>>((uchar3*)rgb.ptr(), channels,
// // rgb.step / sizeof(uchar3), dmem.step);
// // cudaSafeCall( cudaGetLastError());
// hog calculation kernel
channels = (uchar*)dmem.ptr(FRAME_HEIGHT * HOG_LUV_BINS);
device::gray2hog<<<grid, block, 0, stream>>>(channels, (uchar*)dmem.ptr(), dmem.step, magnitudeScaling);
cudaSafeCall( cudaGetLastError() );
// // // hog calculation kernel
// // channels = (uchar*)dmem.ptr(FRAME_HEIGHT * HOG_LUV_BINS);
// // device::gray2hog<<<grid, block, 0, stream>>>(channels, (uchar*)dmem.ptr(), dmem.step, magnitudeScaling);
// // cudaSafeCall( cudaGetLastError() );
const int shrWidth = FRAME_WIDTH / shrinkage;
const int shrHeight = FRAME_HEIGHT / shrinkage;
// // const int shrWidth = FRAME_WIDTH / shrinkage;
// // const int shrHeight = FRAME_HEIGHT / shrinkage;
// decimate kernel
grid = dim3(shrWidth / 32, shrHeight / 8);
device::decimate<4><<<grid, block, 0, stream>>>((uchar*)dmem.ptr(), (uchar*)shrunk.ptr(), dmem.step, shrunk.step);
cudaSafeCall( cudaGetLastError() );
// // // decimate kernel
// // grid = dim3(shrWidth / 32, shrHeight / 8);
// // device::decimate<4><<<grid, block, 0, stream>>>((uchar*)dmem.ptr(), (uchar*)shrunk.ptr(), dmem.step, shrunk.step);
// // cudaSafeCall( cudaGetLastError() );
// integrate rows
block = dim3(shrWidth, 1);
grid = dim3(shrHeight * HOG_LUV_BINS, 1);
device::intRow<<<grid, block, 0, stream>>>((uchar*)shrunk.ptr(), (ushort*)hogluv.ptr(),
shrunk.step, hogluv.step / sizeof(ushort));
cudaSafeCall( cudaGetLastError() );
// // // integrate rows
// // block = dim3(shrWidth, 1);
// // grid = dim3(shrHeight * HOG_LUV_BINS, 1);
// // device::intRow<<<grid, block, 0, stream>>>((uchar*)shrunk.ptr(), (ushort*)hogluv.ptr(),
// // shrunk.step, hogluv.step / sizeof(ushort));
// // cudaSafeCall( cudaGetLastError() );
// integrate cols
block = dim3(128, 1);
grid = dim3(shrWidth * HOG_LUV_BINS, 1);
device::intCol<<<grid, block, 0, stream>>>((ushort*)hogluv.ptr(), hogluv.step / hogluv.step / sizeof(ushort));
cudaSafeCall( cudaGetLastError() );
// // // integrate cols
// // block = dim3(128, 1);
// // grid = dim3(shrWidth * HOG_LUV_BINS, 1);
// // device::intCol<<<grid, block, 0, stream>>>((ushort*)hogluv.ptr(), hogluv.step / hogluv.step / sizeof(ushort));
// // cudaSafeCall( cudaGetLastError() );
}
}}

View File

@ -59,6 +59,42 @@ using cv::gpu::PtrStepSzf;
typedef unsigned char uchar;
struct __align__(16) Octave
{
ushort index;
ushort stages;
ushort shrinkage;
ushort2 size;
float scale;
Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
: index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
};
struct __align__(8) Level //is actually 24 bytes
{
int octave;
// float origScale; //not actually used
float relScale;
float shrScale; // used for marking detection
float scaling[2]; // calculated according to Dollal paper
// for 640x480 we can not get overflow
uchar2 workRect;
uchar2 objSize;
Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
{
workRect.x = round(w / (float)oct.shrinkage);
workRect.y = round(h / (float)oct.shrinkage);
objSize.x = round(oct.size.x * relScale);
objSize.y = round(oct.size.y * relScale);
}
};
struct Cascade
{
Cascade() {}
@ -66,8 +102,10 @@ struct Cascade
const cv::gpu::PtrStepSzf& lvs, const cv::gpu::PtrStepSzb& fts, const cv::gpu::PtrStepSzb& lls)
: octaves(octs), stages(sts), nodes(nds), leaves(lvs), features(fts), levels(lls) {}
void detect(const cv::gpu::PtrStepSzb& hogluv, cudaStream_t stream) const;
void __device detectAt() const;
void detect(const cv::gpu::PtrStepSzb& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
void __device detectAt(const uchar* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
float __device rescale(const icf::Level& level, uchar4& scaledRect,
const int channel, const float threshold) const;
PtrStepSzb octaves;
PtrStepSzf stages;
@ -108,18 +146,6 @@ struct ChannelStorage
static const float magnitudeScaling = 1.f ;// / sqrt(2);
};
struct __align__(16) Octave
{
ushort index;
ushort stages;
ushort shrinkage;
ushort2 size;
float scale;
Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
: index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
};
struct __align__(8) Node
{
int feature;
@ -135,30 +161,6 @@ struct __align__(8) Feature
Feature(const int c, const uchar4 r) : channel(c), rect(r) {}
};
struct __align__(8) Level //is actually 24 bytes
{
int octave;
// float origScale; //not actually used
float relScale;
float shrScale; // used for marking detection
float scaling[2]; // calculated according to Dollal paper
// for 640x480 we can not get overflow
uchar2 workRect;
uchar2 objSize;
Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
{
workRect.x = round(w / (float)oct.shrinkage);
workRect.y = round(h / (float)oct.shrinkage);
objSize.x = round(oct.size.x * relScale);
objSize.y = round(oct.size.y * relScale);
}
};
}}}
#endif

View File

@ -41,6 +41,7 @@
//M*/
#include <precomp.hpp>
#include "opencv2/highgui/highgui.hpp"
#if !defined (HAVE_CUDA)
@ -58,6 +59,12 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat
#include <icf.hpp>
namespace cv { namespace gpu { namespace device {
namespace icf {
void fillBins(cv::gpu::PtrStepSzb hogluv,const cv::gpu::PtrStepSzf& nangle);
}
}}}
struct cv::gpu::SoftCascade::Filds
{
// scales range
@ -81,6 +88,16 @@ struct cv::gpu::SoftCascade::Filds
// 161x121x10
GpuMat hogluv;
// will be removed in final version
// temporial mat for cvtColor
GpuMat luv;
// temporial mat for integrall
GpuMat integralBuffer;
// temp matrix for sobel and cartToPolar
GpuMat dfdx, dfdy, angle, mag, nmag, nangle;
std::vector<float> scales;
icf::Cascade cascade;
@ -100,9 +117,9 @@ struct cv::gpu::SoftCascade::Filds
};
bool fill(const FileNode &root, const float mins, const float maxs);
void detect(cudaStream_t stream) const
void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const
{
cascade.detect(hogluv, stream);
cascade.detect(hogluv, objects, stream);
}
private:
@ -284,7 +301,18 @@ inline bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float
// allocate buffers
dmem.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
shrunk.create(FRAME_HEIGHT / shrinkage * HOG_LUV_BINS, FRAME_WIDTH / shrinkage, CV_8UC1);
hogluv.create( (FRAME_HEIGHT / shrinkage * HOG_LUV_BINS) + 1, (FRAME_WIDTH / shrinkage) + 1, CV_16UC1);
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_32SC1);
luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1);
dfdx.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
dfdy.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
angle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
mag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
nmag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
nangle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
storage = icf::ChannelStorage(dmem, shrunk, hogluv, shrinkage);
return true;
@ -393,21 +421,71 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
return true;
}
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& image, const GpuMat& /*rois*/,
GpuMat& /*objects*/, const int /*rejectfactor*/, Stream s)
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& /*rois*/,
GpuMat& objects, const int /*rejectfactor*/, Stream s)
{
// only color images are supperted
CV_Assert(image.type() == CV_8UC3);
CV_Assert(colored.type() == CV_8UC3);
// only this window size allowed
CV_Assert(image.cols == 640 && image.rows == 480);
// // only this window size allowed
CV_Assert(colored.cols == 640 && colored.rows == 480);
Filds& flds = *filds;
GpuMat& dmem = flds.dmem;
cudaMemset(dmem.data, 0, dmem.step * dmem.rows);
GpuMat& shrunk = flds.shrunk;
int w = shrunk.cols;
int h = colored.rows / flds.storage.shrinkage;
cudaStream_t stream = StreamAccessor::getStream(s);
flds.storage.frame(image, stream);
flds.detect(stream);
std::vector<GpuMat> splited;
for(int i = 0; i < 3; ++i)
{
splited.push_back(GpuMat(dmem, cv::Rect(0, colored.rows * (7 + i), colored.cols, colored.rows)));
}
GpuMat gray(dmem, cv::Rect(0, colored.rows * 10, colored.cols, colored.rows) );
cv::gpu::cvtColor(colored, gray, CV_RGB2GRAY);
//create hog
cv::gpu::Sobel(gray, flds.dfdx, CV_32F, 1, 0, 3, 0.25);
cv::gpu::Sobel(gray, flds.dfdy, CV_32F, 0, 1, 3, 0.25);
cv::gpu::cartToPolar(flds.dfdx, flds.dfdy, flds.mag, flds.angle, true);
cv::gpu::multiply(flds.mag, cv::Scalar::all(1.0 / ::log(2)), flds.nmag);
cv::gpu::multiply(flds.angle, cv::Scalar::all(1.0 / 60.0), flds.nangle);
GpuMat magCannel(dmem, cv::Rect(0, colored.rows * 6, colored.cols, colored.rows));
flds.nmag.convertTo(magCannel, CV_8UC1);
device::icf::fillBins(dmem, flds.nangle);
// create luv
cv::gpu::cvtColor(colored, flds.luv, CV_BGR2Luv);
cv::gpu::split(flds.luv, splited);
GpuMat plane(dmem, cv::Rect(0, 0, colored.cols, colored.rows * Filds::HOG_LUV_BINS));
cv::gpu::resize(plane, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
// cv::Mat cpu(plane);
// cv::imshow("channels", cpu);
// cv::waitKey(0);
// fer debug purpose
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
{
GpuMat channel(shrunk, cv::Rect(0, h * i, w, h ));
GpuMat sum(flds.hogluv, cv::Rect(0, (h + 1) * i, w + 1, h + 1));
cv::gpu::integralBuffered(channel, sum, flds.integralBuffer);
}
// detection
flds.detect(objects, stream);
// flds.storage.frame(colored, stream);
}
#endif