mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Tutorial Smoothing Images
This commit is contained in:
parent
5f6ce6f4b0
commit
bc18fb481f
@ -1,16 +1,18 @@
|
||||
Smoothing Images {#tutorial_gausian_median_blur_bilateral_filter}
|
||||
================
|
||||
|
||||
@next_tutorial{tutorial_erosion_dilatation}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to apply diverse linear filters to smooth images using OpenCV
|
||||
functions such as:
|
||||
|
||||
- @ref cv::blur
|
||||
- @ref cv::GaussianBlur
|
||||
- @ref cv::medianBlur
|
||||
- @ref cv::bilateralFilter
|
||||
- **blur()**
|
||||
- **GaussianBlur()**
|
||||
- **medianBlur()**
|
||||
- **bilateralFilter()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -92,23 +94,41 @@ Code
|
||||
- Loads an image
|
||||
- Applies 4 different kinds of filters (explained in Theory) and show the filtered images
|
||||
sequentially
|
||||
|
||||
@add_toggle_cpp
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgProc/Smoothing.cpp)
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/cpp/tutorial_code/ImgProc/Smoothing.cpp
|
||||
@include samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
- **Downloadable code**: Click
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
- **Downloadable code**: Click
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/imgProc/Smoothing/smoothing.py)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/python/tutorial_code/imgProc/Smoothing/smoothing.py
|
||||
@end_toggle
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# Let's check the OpenCV functions that involve only the smoothing procedure, since the rest is
|
||||
Let's check the OpenCV functions that involve only the smoothing procedure, since the rest is
|
||||
already known by now.
|
||||
-# **Normalized Block Filter:**
|
||||
|
||||
OpenCV offers the function @ref cv::blur to perform smoothing with this filter.
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing.cpp blur
|
||||
#### Normalized Block Filter:
|
||||
|
||||
- OpenCV offers the function **blur()** to perform smoothing with this filter.
|
||||
We specify 4 arguments (more details, check the Reference):
|
||||
|
||||
- *src*: Source image
|
||||
- *dst*: Destination image
|
||||
- *Size( w, h )*: Defines the size of the kernel to be used ( of width *w* pixels and height
|
||||
@ -117,13 +137,22 @@ Explanation
|
||||
respect to the neighborhood. If there is a negative value, then the center of the kernel is
|
||||
considered the anchor point.
|
||||
|
||||
-# **Gaussian Filter:**
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp blur
|
||||
@end_toggle
|
||||
|
||||
It is performed by the function @ref cv::GaussianBlur :
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing.cpp gaussianblur
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java blur
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/Smoothing/smoothing.py blur
|
||||
@end_toggle
|
||||
|
||||
#### Gaussian Filter:
|
||||
|
||||
- It is performed by the function **GaussianBlur()** :
|
||||
Here we use 4 arguments (more details, check the OpenCV reference):
|
||||
|
||||
- *src*: Source image
|
||||
- *dst*: Destination image
|
||||
- *Size(w, h)*: The size of the kernel to be used (the neighbors to be considered). \f$w\f$ and
|
||||
@ -134,35 +163,65 @@ Explanation
|
||||
- \f$\sigma_{y}\f$: The standard deviation in y. Writing \f$0\f$ implies that \f$\sigma_{y}\f$ is
|
||||
calculated using kernel size.
|
||||
|
||||
-# **Median Filter:**
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp gaussianblur
|
||||
@end_toggle
|
||||
|
||||
This filter is provided by the @ref cv::medianBlur function:
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing.cpp medianblur
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java gaussianblur
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/Smoothing/smoothing.py gaussianblur
|
||||
@end_toggle
|
||||
|
||||
#### Median Filter:
|
||||
|
||||
- This filter is provided by the **medianBlur()** function:
|
||||
We use three arguments:
|
||||
|
||||
- *src*: Source image
|
||||
- *dst*: Destination image, must be the same type as *src*
|
||||
- *i*: Size of the kernel (only one because we use a square window). Must be odd.
|
||||
|
||||
-# **Bilateral Filter**
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp medianblur
|
||||
@end_toggle
|
||||
|
||||
Provided by OpenCV function @ref cv::bilateralFilter
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing.cpp bilateralfilter
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java medianblur
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/Smoothing/smoothing.py medianblur
|
||||
@end_toggle
|
||||
|
||||
#### Bilateral Filter
|
||||
|
||||
- Provided by OpenCV function **bilateralFilter()**
|
||||
We use 5 arguments:
|
||||
|
||||
- *src*: Source image
|
||||
- *dst*: Destination image
|
||||
- *d*: The diameter of each pixel neighborhood.
|
||||
- \f$\sigma_{Color}\f$: Standard deviation in the color space.
|
||||
- \f$\sigma_{Space}\f$: Standard deviation in the coordinate space (in pixel terms)
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp bilateralfilter
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java bilateralfilter
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/Smoothing/smoothing.py bilateralfilter
|
||||
@end_toggle
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
- The code opens an image (in this case *lena.jpg*) and display it under the effects of the 4
|
||||
filters explained.
|
||||
- The code opens an image (in this case [lena.jpg](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/lena.jpg))
|
||||
and display it under the effects of the 4 filters explained.
|
||||
- Here is a snapshot of the image smoothed using *medianBlur*:
|
||||
|
||||
![](images/Smoothing_Tutorial_Result_Median_Filter.jpg)
|
||||
|
@ -5,6 +5,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_gausian_median_blur_bilateral_filter
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
|
@ -1,112 +0,0 @@
|
||||
/**
|
||||
* file Smoothing.cpp
|
||||
* brief Sample code for simple filters
|
||||
* author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/// Global Variables
|
||||
int DELAY_CAPTION = 1500;
|
||||
int DELAY_BLUR = 100;
|
||||
int MAX_KERNEL_LENGTH = 31;
|
||||
|
||||
Mat src; Mat dst;
|
||||
char window_name[] = "Smoothing Demo";
|
||||
|
||||
/// Function headers
|
||||
int display_caption( const char* caption );
|
||||
int display_dst( int delay );
|
||||
|
||||
|
||||
/**
|
||||
* function main
|
||||
*/
|
||||
int main( void )
|
||||
{
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
|
||||
/// Load the source image
|
||||
src = imread( "../data/lena.jpg", IMREAD_COLOR );
|
||||
|
||||
if( display_caption( "Original Image" ) != 0 ) { return 0; }
|
||||
|
||||
dst = src.clone();
|
||||
if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; }
|
||||
|
||||
|
||||
/// Applying Homogeneous blur
|
||||
if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![blur]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ blur( src, dst, Size( i, i ), Point(-1,-1) );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![blur]
|
||||
|
||||
/// Applying Gaussian blur
|
||||
if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![gaussianblur]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ GaussianBlur( src, dst, Size( i, i ), 0, 0 );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![gaussianblur]
|
||||
|
||||
/// Applying Median blur
|
||||
if( display_caption( "Median Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![medianblur]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ medianBlur ( src, dst, i );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![medianblur]
|
||||
|
||||
/// Applying Bilateral Filter
|
||||
if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![bilateralfilter]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ bilateralFilter ( src, dst, i, i*2, i/2 );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![bilateralfilter]
|
||||
|
||||
/// Wait until user press a key
|
||||
display_caption( "End: Press a key!" );
|
||||
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function display_caption
|
||||
*/
|
||||
int display_caption( const char* caption )
|
||||
{
|
||||
dst = Mat::zeros( src.size(), src.type() );
|
||||
putText( dst, caption,
|
||||
Point( src.cols/4, src.rows/2),
|
||||
FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );
|
||||
|
||||
imshow( window_name, dst );
|
||||
int c = waitKey( DELAY_CAPTION );
|
||||
if( c >= 0 ) { return -1; }
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function display_dst
|
||||
*/
|
||||
int display_dst( int delay )
|
||||
{
|
||||
imshow( window_name, dst );
|
||||
int c = waitKey ( delay );
|
||||
if( c >= 0 ) { return -1; }
|
||||
return 0;
|
||||
}
|
115
samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
Normal file
115
samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
Normal file
@ -0,0 +1,115 @@
|
||||
/**
|
||||
* file Smoothing.cpp
|
||||
* brief Sample code for simple filters
|
||||
* author OpenCV team
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/// Global Variables
|
||||
int DELAY_CAPTION = 1500;
|
||||
int DELAY_BLUR = 100;
|
||||
int MAX_KERNEL_LENGTH = 31;
|
||||
|
||||
Mat src; Mat dst;
|
||||
char window_name[] = "Smoothing Demo";
|
||||
|
||||
/// Function headers
|
||||
int display_caption( const char* caption );
|
||||
int display_dst( int delay );
|
||||
|
||||
|
||||
/**
|
||||
* function main
|
||||
*/
|
||||
int main( int argc, char ** argv )
|
||||
{
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
|
||||
/// Load the source image
|
||||
const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg";
|
||||
|
||||
src = imread( filename, IMREAD_COLOR );
|
||||
if(src.empty()){
|
||||
printf(" Error opening image\n");
|
||||
printf(" Usage: ./Smoothing [image_name -- default ../data/lena.jpg] \n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if( display_caption( "Original Image" ) != 0 ) { return 0; }
|
||||
|
||||
dst = src.clone();
|
||||
if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; }
|
||||
|
||||
|
||||
/// Applying Homogeneous blur
|
||||
if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![blur]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ blur( src, dst, Size( i, i ), Point(-1,-1) );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![blur]
|
||||
|
||||
/// Applying Gaussian blur
|
||||
if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![gaussianblur]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ GaussianBlur( src, dst, Size( i, i ), 0, 0 );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![gaussianblur]
|
||||
|
||||
/// Applying Median blur
|
||||
if( display_caption( "Median Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![medianblur]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ medianBlur ( src, dst, i );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![medianblur]
|
||||
|
||||
/// Applying Bilateral Filter
|
||||
if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; }
|
||||
|
||||
//![bilateralfilter]
|
||||
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||||
{ bilateralFilter ( src, dst, i, i*2, i/2 );
|
||||
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||||
//![bilateralfilter]
|
||||
|
||||
/// Done
|
||||
display_caption( "Done!" );
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function display_caption
|
||||
*/
|
||||
int display_caption( const char* caption )
|
||||
{
|
||||
dst = Mat::zeros( src.size(), src.type() );
|
||||
putText( dst, caption,
|
||||
Point( src.cols/4, src.rows/2),
|
||||
FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );
|
||||
|
||||
return display_dst(DELAY_CAPTION);
|
||||
}
|
||||
|
||||
/**
|
||||
* @function display_dst
|
||||
*/
|
||||
int display_dst( int delay )
|
||||
{
|
||||
imshow( window_name, dst );
|
||||
int c = waitKey ( delay );
|
||||
if( c >= 0 ) { return -1; }
|
||||
return 0;
|
||||
}
|
101
samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java
Normal file
101
samples/java/tutorial_code/ImgProc/Smoothing/Smoothing.java
Normal file
@ -0,0 +1,101 @@
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
class SmoothingRun {
|
||||
|
||||
/// Global Variables
|
||||
int DELAY_CAPTION = 1500;
|
||||
int DELAY_BLUR = 100;
|
||||
int MAX_KERNEL_LENGTH = 31;
|
||||
|
||||
Mat src = new Mat(), dst = new Mat();
|
||||
String windowName = "Filter Demo 1";
|
||||
|
||||
public void run(String[] args) {
|
||||
|
||||
String filename = ((args.length > 0) ? args[0] : "../data/lena.jpg");
|
||||
|
||||
src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
|
||||
if( src.empty() ) {
|
||||
System.out.println("Error opening image");
|
||||
System.out.println("Usage: ./Smoothing [image_name -- default ../data/lena.jpg] \n");
|
||||
System.exit(-1);
|
||||
}
|
||||
|
||||
if( displayCaption( "Original Image" ) != 0 ) { System.exit(0); }
|
||||
|
||||
dst = src.clone();
|
||||
if( displayDst( DELAY_CAPTION ) != 0 ) { System.exit(0); }
|
||||
|
||||
/// Applying Homogeneous blur
|
||||
if( displayCaption( "Homogeneous Blur" ) != 0 ) { System.exit(0); }
|
||||
|
||||
//! [blur]
|
||||
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
|
||||
Imgproc.blur(src, dst, new Size(i, i), new Point(-1, -1));
|
||||
displayDst(DELAY_BLUR);
|
||||
}
|
||||
//! [blur]
|
||||
|
||||
/// Applying Gaussian blur
|
||||
if( displayCaption( "Gaussian Blur" ) != 0 ) { System.exit(0); }
|
||||
|
||||
//! [gaussianblur]
|
||||
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
|
||||
Imgproc.GaussianBlur(src, dst, new Size(i, i), 0, 0);
|
||||
displayDst(DELAY_BLUR);
|
||||
}
|
||||
//! [gaussianblur]
|
||||
|
||||
/// Applying Median blur
|
||||
if( displayCaption( "Median Blur" ) != 0 ) { System.exit(0); }
|
||||
|
||||
//! [medianblur]
|
||||
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
|
||||
Imgproc.medianBlur(src, dst, i);
|
||||
displayDst(DELAY_BLUR);
|
||||
}
|
||||
//! [medianblur]
|
||||
|
||||
/// Applying Bilateral Filter
|
||||
if( displayCaption( "Bilateral Blur" ) != 0 ) { System.exit(0); }
|
||||
|
||||
//![bilateralfilter]
|
||||
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
|
||||
Imgproc.bilateralFilter(src, dst, i, i * 2, i / 2);
|
||||
displayDst(DELAY_BLUR);
|
||||
}
|
||||
//![bilateralfilter]
|
||||
|
||||
/// Done
|
||||
displayCaption( "Done!" );
|
||||
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
int displayCaption(String caption) {
|
||||
dst = Mat.zeros(src.size(), src.type());
|
||||
Imgproc.putText(dst, caption,
|
||||
new Point(src.cols() / 4, src.rows() / 2),
|
||||
Core.FONT_HERSHEY_COMPLEX, 1, new Scalar(255, 255, 255));
|
||||
|
||||
return displayDst(DELAY_CAPTION);
|
||||
}
|
||||
|
||||
int displayDst(int delay) {
|
||||
HighGui.imshow( windowName, dst );
|
||||
int c = HighGui.waitKey( delay );
|
||||
if (c >= 0) { return -1; }
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
public class Smoothing {
|
||||
public static void main(String[] args) {
|
||||
// Load the native library.
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new SmoothingRun().run(args);
|
||||
}
|
||||
}
|
107
samples/python/tutorial_code/imgProc/Smoothing/smoothing.py
Normal file
107
samples/python/tutorial_code/imgProc/Smoothing/smoothing.py
Normal file
@ -0,0 +1,107 @@
|
||||
import sys
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
# Global Variables
|
||||
|
||||
DELAY_CAPTION = 1500
|
||||
DELAY_BLUR = 100
|
||||
MAX_KERNEL_LENGTH = 31
|
||||
|
||||
src = None
|
||||
dst = None
|
||||
window_name = 'Smoothing Demo'
|
||||
|
||||
|
||||
def main(argv):
|
||||
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
|
||||
|
||||
# Load the source image
|
||||
imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg"
|
||||
|
||||
global src
|
||||
src = cv2.imread(imageName, 1)
|
||||
if src is None:
|
||||
print ('Error opening image')
|
||||
print ('Usage: smoothing.py [image_name -- default ../data/lena.jpg] \n')
|
||||
return -1
|
||||
|
||||
if display_caption('Original Image') != 0:
|
||||
return 0
|
||||
|
||||
global dst
|
||||
dst = np.copy(src)
|
||||
if display_dst(DELAY_CAPTION) != 0:
|
||||
return 0
|
||||
|
||||
# Applying Homogeneous blur
|
||||
if display_caption('Homogeneous Blur') != 0:
|
||||
return 0
|
||||
|
||||
## [blur]
|
||||
for i in range(1, MAX_KERNEL_LENGTH, 2):
|
||||
dst = cv2.blur(src, (i, i))
|
||||
if display_dst(DELAY_BLUR) != 0:
|
||||
return 0
|
||||
## [blur]
|
||||
|
||||
# Applying Gaussian blur
|
||||
if display_caption('Gaussian Blur') != 0:
|
||||
return 0
|
||||
|
||||
## [gaussianblur]
|
||||
for i in range(1, MAX_KERNEL_LENGTH, 2):
|
||||
dst = cv2.GaussianBlur(src, (i, i), 0)
|
||||
if display_dst(DELAY_BLUR) != 0:
|
||||
return 0
|
||||
## [gaussianblur]
|
||||
|
||||
# Applying Median blur
|
||||
if display_caption('Median Blur') != 0:
|
||||
return 0
|
||||
|
||||
## [medianblur]
|
||||
for i in range(1, MAX_KERNEL_LENGTH, 2):
|
||||
dst = cv2.medianBlur(src, i)
|
||||
if display_dst(DELAY_BLUR) != 0:
|
||||
return 0
|
||||
## [medianblur]
|
||||
|
||||
# Applying Bilateral Filter
|
||||
if display_caption('Bilateral Blur') != 0:
|
||||
return 0
|
||||
|
||||
## [bilateralfilter]
|
||||
# Remember, bilateral is a bit slow, so as value go higher, it takes long time
|
||||
for i in range(1, MAX_KERNEL_LENGTH, 2):
|
||||
dst = cv2.bilateralFilter(src, i, i * 2, i / 2)
|
||||
if display_dst(DELAY_BLUR) != 0:
|
||||
return 0
|
||||
## [bilateralfilter]
|
||||
|
||||
# Done
|
||||
display_caption('Done!')
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
def display_caption(caption):
|
||||
global dst
|
||||
dst = np.zeros(src.shape, src.dtype)
|
||||
rows, cols, ch = src.shape
|
||||
cv2.putText(dst, caption,
|
||||
(int(cols / 4), int(rows / 2)),
|
||||
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255))
|
||||
|
||||
return display_dst(DELAY_CAPTION)
|
||||
|
||||
|
||||
def display_dst(delay):
|
||||
cv2.imshow(window_name, dst)
|
||||
c = cv2.waitKey(delay)
|
||||
if c >= 0 : return -1
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv[1:])
|
Loading…
Reference in New Issue
Block a user