mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #1633 from ilya-lavrenov:ocl_imgproc
This commit is contained in:
commit
bd1a1cc031
@ -52,25 +52,24 @@ using namespace cv::ocl;
|
||||
void cv::ocl::columnSum(const oclMat &src, oclMat &dst)
|
||||
{
|
||||
CV_Assert(src.type() == CV_32FC1);
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
Context *clCxt = src.clCxt;
|
||||
|
||||
const std::string kernelName = "columnSum";
|
||||
int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize();
|
||||
int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize();
|
||||
|
||||
std::vector< pair<size_t, const void *> > args;
|
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset));
|
||||
|
||||
size_t globalThreads[3] = {dst.cols, 1, 1};
|
||||
size_t localThreads[3] = {256, 1, 1};
|
||||
|
||||
openCLExecuteKernel(clCxt, &imgproc_columnsum, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
||||
openCLExecuteKernel(src.clCxt, &imgproc_columnsum, "columnSum", globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
||||
|
||||
}
|
||||
|
@ -183,111 +183,89 @@ namespace cv
|
||||
void remap( const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int borderType, const Scalar &borderValue )
|
||||
{
|
||||
Context *clCxt = src.clCxt;
|
||||
bool supportsDouble = clCxt->supportsFeature(FEATURE_CL_DOUBLE);
|
||||
if (!supportsDouble && src.depth() == CV_64F)
|
||||
{
|
||||
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device does not support double");
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST
|
||||
|| interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4);
|
||||
CV_Assert((map1.type() == CV_16SC2 && !map2.data) || (map1.type() == CV_32FC2 && !map2.data) || (map1.type() == CV_32FC1 && map2.type() == CV_32FC1));
|
||||
CV_Assert((map1.type() == CV_16SC2 && !map2.data) || (map1.type() == CV_32FC2 && !map2.data) ||
|
||||
(map1.type() == CV_32FC1 && map2.type() == CV_32FC1));
|
||||
CV_Assert(!map2.data || map2.size() == map1.size());
|
||||
CV_Assert(dst.size() == map1.size());
|
||||
CV_Assert(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE || borderType == BORDER_WRAP
|
||||
|| borderType == BORDER_REFLECT_101 || borderType == BORDER_REFLECT);
|
||||
|
||||
dst.create(map1.size(), src.type());
|
||||
|
||||
string kernelName;
|
||||
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
|
||||
const char * const channelMap[] = { "", "", "2", "4", "4" };
|
||||
const char * const interMap[] = { "INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_LINEAR", "INTER_LANCZOS" };
|
||||
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
|
||||
"BORDER_REFLECT_101", "BORDER_TRANSPARENT" };
|
||||
|
||||
string kernelName = "remap";
|
||||
if ( map1.type() == CV_32FC2 && !map2.data )
|
||||
{
|
||||
if (interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
||||
kernelName = "remapLNFConstant";
|
||||
else if (interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
||||
kernelName = "remapNNFConstant";
|
||||
}
|
||||
kernelName += "_32FC2";
|
||||
else if (map1.type() == CV_16SC2 && !map2.data)
|
||||
{
|
||||
if (interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
||||
kernelName = "remapLNSConstant";
|
||||
else if (interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
||||
kernelName = "remapNNSConstant";
|
||||
|
||||
}
|
||||
kernelName += "_16SC2";
|
||||
else if (map1.type() == CV_32FC1 && map2.type() == CV_32FC1)
|
||||
{
|
||||
if (interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
||||
kernelName = "remapLNF1Constant";
|
||||
else if (interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
||||
kernelName = "remapNNF1Constant";
|
||||
}
|
||||
|
||||
size_t blkSizeX = 16, blkSizeY = 16;
|
||||
size_t glbSizeX;
|
||||
int cols = dst.cols;
|
||||
if (src.type() == CV_8UC1)
|
||||
{
|
||||
cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
||||
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
||||
|
||||
}
|
||||
else if (src.type() == CV_32FC1 && interpolation == INTER_LINEAR)
|
||||
{
|
||||
cols = (dst.cols + (dst.offset >> 2) % 4 + 3) / 4;
|
||||
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
||||
}
|
||||
kernelName += "_2_32FC1";
|
||||
else
|
||||
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
||||
CV_Error(CV_StsBadArg, "Unsupported map types");
|
||||
|
||||
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
||||
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
||||
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
||||
int ocn = dst.oclchannels();
|
||||
size_t localThreads[3] = { 16, 16, 1};
|
||||
size_t globalThreads[3] = { dst.cols, dst.rows, 1};
|
||||
|
||||
Mat scalar(1, 1, CV_MAKE_TYPE(dst.depth(), ocn), borderValue);
|
||||
std::string buildOptions = format("-D %s -D %s -D T=%s%s", interMap[interpolation],
|
||||
borderMap[borderType], typeMap[src.depth()], channelMap[ocn]);
|
||||
|
||||
if (interpolation != INTER_NEAREST)
|
||||
{
|
||||
int wdepth = std::max(CV_32F, dst.depth());
|
||||
if (!supportsDouble)
|
||||
wdepth = std::min(CV_32F, wdepth);
|
||||
|
||||
buildOptions += format(" -D WT=%s%s -D convertToT=convert_%s%s%s -D convertToWT=convert_%s%s"
|
||||
" -D convertToWT2=convert_%s2 -D WT2=%s2",
|
||||
typeMap[wdepth], channelMap[ocn],
|
||||
typeMap[src.depth()], channelMap[ocn], src.depth() < CV_32F ? "_sat_rte" : "",
|
||||
typeMap[wdepth], channelMap[ocn],
|
||||
typeMap[wdepth], typeMap[wdepth]);
|
||||
}
|
||||
|
||||
int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize();
|
||||
int map1_step = map1.step / map1.elemSize(), map1_offset = map1.offset / map1.elemSize();
|
||||
int map2_step = map2.step / map2.elemSize(), map2_offset = map2.offset / map2.elemSize();
|
||||
int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize();
|
||||
|
||||
float borderFloat[4] = {(float)borderValue[0], (float)borderValue[1], (float)borderValue[2], (float)borderValue[3]};
|
||||
vector< pair<size_t, const void *> > args;
|
||||
if (map1.channels() == 2)
|
||||
{
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&map1.data));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&cols));
|
||||
|
||||
if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
|
||||
args.push_back( make_pair(sizeof(cl_double4), (void *)&borderValue));
|
||||
else
|
||||
args.push_back( make_pair(sizeof(cl_float4), (void *)&borderFloat));
|
||||
}
|
||||
if (map1.channels() == 1)
|
||||
{
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&map1.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&map1.data));
|
||||
if (!map2.empty())
|
||||
args.push_back( make_pair(sizeof(cl_mem), (void *)&map2.data));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&cols));
|
||||
if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
|
||||
args.push_back( make_pair(sizeof(cl_double4), (void *)&borderValue));
|
||||
else
|
||||
args.push_back( make_pair(sizeof(cl_float4), (void *)&borderFloat));
|
||||
}
|
||||
openCLExecuteKernel(clCxt, &imgproc_remap, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src_offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1_offset));
|
||||
if (!map2.empty())
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map2_offset));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src_step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map1_step));
|
||||
if (!map2.empty())
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&map2_step));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
||||
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
||||
args.push_back( make_pair(scalar.elemSize(), (void *)scalar.data));
|
||||
|
||||
openCLExecuteKernel(clCxt, &imgproc_remap, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str());
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -448,31 +426,47 @@ namespace cv
|
||||
|
||||
void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int bordertype, const Scalar &scalar)
|
||||
{
|
||||
CV_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0);
|
||||
if ((dst.cols != dst.wholecols) || (dst.rows != dst.wholerows)) //has roi
|
||||
if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
|
||||
{
|
||||
if (((bordertype & cv::BORDER_ISOLATED) == 0) &&
|
||||
(bordertype != cv::BORDER_CONSTANT) &&
|
||||
(bordertype != cv::BORDER_REPLICATE))
|
||||
{
|
||||
CV_Error(CV_StsBadArg, "Unsupported border type");
|
||||
}
|
||||
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device does not support double");
|
||||
return;
|
||||
}
|
||||
|
||||
oclMat _src = src;
|
||||
|
||||
CV_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0);
|
||||
|
||||
if( _src.offset != 0 && (bordertype & BORDER_ISOLATED) == 0 )
|
||||
{
|
||||
Size wholeSize;
|
||||
Point ofs;
|
||||
_src.locateROI(wholeSize, ofs);
|
||||
int dtop = std::min(ofs.y, top);
|
||||
int dbottom = std::min(wholeSize.height - _src.rows - ofs.y, bottom);
|
||||
int dleft = std::min(ofs.x, left);
|
||||
int dright = std::min(wholeSize.width - _src.cols - ofs.x, right);
|
||||
_src.adjustROI(dtop, dbottom, dleft, dright);
|
||||
top -= dtop;
|
||||
left -= dleft;
|
||||
bottom -= dbottom;
|
||||
right -= dright;
|
||||
}
|
||||
bordertype &= ~cv::BORDER_ISOLATED;
|
||||
|
||||
// TODO need to remove this conditions and fix the code
|
||||
if (bordertype == cv::BORDER_REFLECT || bordertype == cv::BORDER_WRAP)
|
||||
{
|
||||
CV_Assert((src.cols >= left) && (src.cols >= right) && (src.rows >= top) && (src.rows >= bottom));
|
||||
CV_Assert((_src.cols >= left) && (_src.cols >= right) && (_src.rows >= top) && (_src.rows >= bottom));
|
||||
}
|
||||
else if (bordertype == cv::BORDER_REFLECT_101)
|
||||
{
|
||||
CV_Assert((src.cols > left) && (src.cols > right) && (src.rows > top) && (src.rows > bottom));
|
||||
CV_Assert((_src.cols > left) && (_src.cols > right) && (_src.rows > top) && (_src.rows > bottom));
|
||||
}
|
||||
|
||||
dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
|
||||
int srcStep = src.step1() / src.oclchannels(), dstStep = dst.step1() / dst.oclchannels();
|
||||
int srcOffset = src.offset / src.elemSize(), dstOffset = dst.offset / dst.elemSize();
|
||||
int depth = src.depth(), ochannels = src.oclchannels();
|
||||
dst.create(_src.rows + top + bottom, _src.cols + left + right, _src.type());
|
||||
int srcStep = _src.step1() / _src.oclchannels(), dstStep = dst.step1() / dst.oclchannels();
|
||||
int srcOffset = _src.offset / _src.elemSize(), dstOffset = dst.offset / dst.elemSize();
|
||||
int depth = _src.depth(), ochannels = _src.oclchannels();
|
||||
|
||||
int __bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101};
|
||||
const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101"};
|
||||
@ -483,19 +477,19 @@ namespace cv
|
||||
break;
|
||||
|
||||
if (bordertype_index == sizeof(__bordertype) / sizeof(int))
|
||||
CV_Error(CV_StsBadArg, "unsupported border type");
|
||||
CV_Error(CV_StsBadArg, "Unsupported border type");
|
||||
|
||||
string kernelName = "copymakeborder";
|
||||
size_t localThreads[3] = {16, 16, 1};
|
||||
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
|
||||
|
||||
vector< pair<size_t, const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&_src.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&_src.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&_src.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&srcOffset));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
|
||||
@ -1314,6 +1308,8 @@ namespace cv
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&clipLimit ));
|
||||
args.push_back( std::make_pair( sizeof(cl_float), (void *)&lutScale ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset ));
|
||||
|
||||
String kernelName = "calcLut";
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
@ -1333,7 +1329,7 @@ namespace cv
|
||||
}
|
||||
|
||||
static void transform(const oclMat &src, oclMat &dst, const oclMat &lut,
|
||||
const int tilesX, const int tilesY, const cv::Size tileSize)
|
||||
const int tilesX, const int tilesY, const Size & tileSize)
|
||||
{
|
||||
cl_int2 tile_size;
|
||||
tile_size.s[0] = tileSize.width;
|
||||
@ -1351,6 +1347,9 @@ namespace cv
|
||||
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesY ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset ));
|
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.offset ));
|
||||
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { src.cols, src.rows, 1 };
|
||||
@ -1419,9 +1418,10 @@ namespace cv
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::ocl::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar());
|
||||
ocl::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0,
|
||||
tilesX_ - (src.cols % tilesX_), BORDER_REFLECT_101, Scalar::all(0));
|
||||
|
||||
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
|
||||
tileSize = Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
|
||||
srcForLut = srcExt_;
|
||||
}
|
||||
|
||||
@ -1579,30 +1579,31 @@ static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, st
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
int channels = dst.oclchannels(), depth = dst.depth();
|
||||
|
||||
size_t vector_length = 1;
|
||||
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1);
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
int rows = dst.rows;
|
||||
|
||||
size_t localThreads[3] = { 16, 16, 1 };
|
||||
size_t globalThreads[3] = { cols, rows, 1 };
|
||||
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
|
||||
|
||||
int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize();
|
||||
int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize();
|
||||
int temp1_step = temp1.step / temp1.elemSize(), temp1_offset = temp1.offset / temp1.elemSize();
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&temp1.data ));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1_step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1_offset ));
|
||||
|
||||
openCLExecuteKernel(src.clCxt, source, kernelName, globalThreads, localThreads, args, -1, depth);
|
||||
openCLExecuteKernel(src.clCxt, source, kernelName, globalThreads, localThreads, args, -1, dst.depth());
|
||||
}
|
||||
|
||||
void cv::ocl::convolve(const oclMat &x, const oclMat &t, oclMat &y)
|
||||
{
|
||||
CV_Assert(x.depth() == CV_32F && t.depth() == CV_32F);
|
||||
|
@ -53,12 +53,8 @@ int calc_lut(__local int* smem, int val, int tid)
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
for (int i = 1; i < 256; ++i)
|
||||
{
|
||||
smem[i] += smem[i - 1];
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
return smem[tid];
|
||||
@ -71,69 +67,51 @@ void reduce(volatile __local int* smem, int val, int tid)
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 128)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 128];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 64];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
smem[tid] += smem[tid + 32];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 16)
|
||||
{
|
||||
smem[tid] += smem[tid + 16];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
smem[tid] += smem[tid + 8];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 4)
|
||||
{
|
||||
smem[tid] += smem[tid + 4];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 2)
|
||||
{
|
||||
smem[tid] += smem[tid + 2];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 1)
|
||||
{
|
||||
smem[256] = smem[tid] + smem[tid + 1];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void reduce(__local volatile int* smem, int val, int tid)
|
||||
{
|
||||
smem[tid] = val;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 128)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 128];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
smem[tid] = val += smem[tid + 64];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 32)
|
||||
@ -141,12 +119,17 @@ void reduce(__local volatile int* smem, int val, int tid)
|
||||
smem[tid] += smem[tid + 32];
|
||||
#if WAVE_SIZE < 32
|
||||
} barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (tid < 16) {
|
||||
|
||||
if (tid < 16)
|
||||
{
|
||||
#endif
|
||||
smem[tid] += smem[tid + 16];
|
||||
#if WAVE_SIZE < 16
|
||||
} barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (tid < 8) {
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
#endif
|
||||
smem[tid] += smem[tid + 8];
|
||||
smem[tid] += smem[tid + 4];
|
||||
@ -159,7 +142,8 @@ void reduce(__local volatile int* smem, int val, int tid)
|
||||
__kernel void calcLut(__global __const uchar * src, __global uchar * lut,
|
||||
const int srcStep, const int dstStep,
|
||||
const int2 tileSize, const int tilesX,
|
||||
const int clipLimit, const float lutScale)
|
||||
const int clipLimit, const float lutScale,
|
||||
const int src_offset, const int dst_offset)
|
||||
{
|
||||
__local int smem[512];
|
||||
|
||||
@ -173,25 +157,21 @@ __kernel void calcLut(__global __const uchar * src, __global uchar * lut,
|
||||
|
||||
for (int i = get_local_id(1); i < tileSize.y; i += get_local_size(1))
|
||||
{
|
||||
__global const uchar* srcPtr = src + mad24( ty * tileSize.y + i,
|
||||
srcStep, tx * tileSize.x );
|
||||
__global const uchar* srcPtr = src + mad24(ty * tileSize.y + i, srcStep, tx * tileSize.x + src_offset);
|
||||
for (int j = get_local_id(0); j < tileSize.x; j += get_local_size(0))
|
||||
{
|
||||
const int data = srcPtr[j];
|
||||
atomic_inc(&smem[data]);
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int tHistVal = smem[tid];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (clipLimit > 0)
|
||||
{
|
||||
// clip histogram bar
|
||||
|
||||
int clipped = 0;
|
||||
if (tHistVal > clipLimit)
|
||||
{
|
||||
@ -200,7 +180,6 @@ __kernel void calcLut(__global __const uchar * src, __global uchar * lut,
|
||||
}
|
||||
|
||||
// find number of overall clipped samples
|
||||
|
||||
reduce(smem, clipped, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#ifdef CPU
|
||||
@ -229,7 +208,7 @@ __kernel void calcLut(__global __const uchar * src, __global uchar * lut,
|
||||
|
||||
const int lutVal = calc_lut(smem, tHistVal, tid);
|
||||
uint ires = (uint)convert_int_rte(lutScale * lutVal);
|
||||
lut[(ty * tilesX + tx) * dstStep + tid] =
|
||||
lut[(ty * tilesX + tx) * dstStep + tid + dst_offset] =
|
||||
convert_uchar(clamp(ires, (uint)0, (uint)255));
|
||||
}
|
||||
|
||||
@ -239,7 +218,8 @@ __kernel void transform(__global __const uchar * src,
|
||||
const int srcStep, const int dstStep, const int lutStep,
|
||||
const int cols, const int rows,
|
||||
const int2 tileSize,
|
||||
const int tilesX, const int tilesY)
|
||||
const int tilesX, const int tilesY,
|
||||
const int src_offset, const int dst_offset, int lut_offset)
|
||||
{
|
||||
const int x = get_global_id(0);
|
||||
const int y = get_global_id(1);
|
||||
@ -261,15 +241,15 @@ __kernel void transform(__global __const uchar * src,
|
||||
tx1 = max(tx1, 0);
|
||||
tx2 = min(tx2, tilesX - 1);
|
||||
|
||||
const int srcVal = src[mad24(y, srcStep, x)];
|
||||
const int srcVal = src[mad24(y, srcStep, x + src_offset)];
|
||||
|
||||
float res = 0;
|
||||
|
||||
res += lut[mad24(ty1 * tilesX + tx1, lutStep, srcVal)] * ((1.0f - xa) * (1.0f - ya));
|
||||
res += lut[mad24(ty1 * tilesX + tx2, lutStep, srcVal)] * ((xa) * (1.0f - ya));
|
||||
res += lut[mad24(ty2 * tilesX + tx1, lutStep, srcVal)] * ((1.0f - xa) * (ya));
|
||||
res += lut[mad24(ty2 * tilesX + tx2, lutStep, srcVal)] * ((xa) * (ya));
|
||||
res += lut[mad24(ty1 * tilesX + tx1, lutStep, srcVal + lut_offset)] * ((1.0f - xa) * (1.0f - ya));
|
||||
res += lut[mad24(ty1 * tilesX + tx2, lutStep, srcVal + lut_offset)] * ((xa) * (1.0f - ya));
|
||||
res += lut[mad24(ty2 * tilesX + tx1, lutStep, srcVal + lut_offset)] * ((1.0f - xa) * (ya));
|
||||
res += lut[mad24(ty2 * tilesX + tx2, lutStep, srcVal + lut_offset)] * ((xa) * (ya));
|
||||
|
||||
uint ires = (uint)convert_int_rte(res);
|
||||
dst[mad24(y, dstStep, x)] = convert_uchar(clamp(ires, (uint)0, (uint)255));
|
||||
dst[mad24(y, dstStep, x + dst_offset)] = convert_uchar(clamp(ires, (uint)0, (uint)255));
|
||||
}
|
||||
|
@ -43,38 +43,28 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#pragma OPENCL EXTENSION cl_amd_printf : enable
|
||||
#if defined (__ATI__)
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
|
||||
#elif defined (__NVIDIA__)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
///////////////////////// columnSum ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////
|
||||
/// CV_32FC1
|
||||
__kernel void columnSum_C1_D5(__global float* src,__global float* dst,int srcCols,int srcRows,int srcStep,int dstStep)
|
||||
|
||||
__kernel void columnSum_C1_D5(__global float * src, __global float * dst,
|
||||
int cols, int rows, int src_step, int dst_step, int src_offset, int dst_offset)
|
||||
{
|
||||
const int x = get_global_id(0);
|
||||
|
||||
srcStep >>= 2;
|
||||
dstStep >>= 2;
|
||||
|
||||
if (x < srcCols)
|
||||
if (x < cols)
|
||||
{
|
||||
int srcIdx = x ;
|
||||
int dstIdx = x ;
|
||||
int srcIdx = x + src_offset;
|
||||
int dstIdx = x + dst_offset;
|
||||
|
||||
float sum = 0;
|
||||
|
||||
for (int y = 0; y < srcRows; ++y)
|
||||
for (int y = 0; y < rows; ++y)
|
||||
{
|
||||
sum += src[srcIdx];
|
||||
dst[dstIdx] = sum;
|
||||
srcIdx += srcStep;
|
||||
dstIdx += dstStep;
|
||||
srcIdx += src_step;
|
||||
dstIdx += dst_step;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -48,9 +48,12 @@
|
||||
#elif defined (__NVIDIA__)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
|
||||
/************************************** convolve **************************************/
|
||||
__kernel void convolve_D5 (__global float *src, __global float *temp1, __global float *dst,
|
||||
int rows, int cols, int src_step, int dst_step,int k_step, int kWidth, int kHeight)
|
||||
|
||||
__kernel void convolve_D5(__global float *src, __global float *temp1, __global float *dst,
|
||||
int rows, int cols, int src_step, int dst_step,int k_step, int kWidth, int kHeight,
|
||||
int src_offset, int dst_offset, int koffset)
|
||||
{
|
||||
__local float smem[16 + 2 * 8][16 + 2 * 8];
|
||||
|
||||
@ -65,7 +68,7 @@ __kernel void convolve_D5 (__global float *src, __global float *temp1, __global
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
// 0 | 0 0 | 0
|
||||
smem[y][x] = src[min(max(gy - 8, 0), rows - 1)*(src_step >> 2) + min(max(gx - 8, 0), cols - 1)];
|
||||
smem[y][x] = src[min(max(gy - 8, 0), rows - 1) * src_step + min(max(gx - 8, 0), cols - 1) + src_offset];
|
||||
|
||||
// 0 | 0 x | x
|
||||
// -----------
|
||||
@ -73,7 +76,7 @@ __kernel void convolve_D5 (__global float *src, __global float *temp1, __global
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
// 0 | 0 0 | 0
|
||||
smem[y][x + 16] = src[min(max(gy - 8, 0), rows - 1)*(src_step >> 2) + min(gx + 8, cols - 1)];
|
||||
smem[y][x + 16] = src[min(max(gy - 8, 0), rows - 1) * src_step + min(gx + 8, cols - 1) + src_offset];
|
||||
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
@ -81,7 +84,7 @@ __kernel void convolve_D5 (__global float *src, __global float *temp1, __global
|
||||
// x | x 0 | 0
|
||||
// -----------
|
||||
// x | x 0 | 0
|
||||
smem[y + 16][x] = src[min(gy + 8, rows - 1)*(src_step >> 2) + min(max(gx - 8, 0), cols - 1)];
|
||||
smem[y + 16][x] = src[min(gy + 8, rows - 1) * src_step + min(max(gx - 8, 0), cols - 1) + src_offset];
|
||||
|
||||
// 0 | 0 0 | 0
|
||||
// -----------
|
||||
@ -89,21 +92,18 @@ __kernel void convolve_D5 (__global float *src, __global float *temp1, __global
|
||||
// 0 | 0 x | x
|
||||
// -----------
|
||||
// 0 | 0 x | x
|
||||
smem[y + 16][x + 16] = src[min(gy + 8, rows - 1)*(src_step >> 2) + min(gx + 8, cols - 1)];
|
||||
smem[y + 16][x + 16] = src[min(gy + 8, rows - 1) * src_step + min(gx + 8, cols - 1) + src_offset];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (gx < cols && gy < rows)
|
||||
{
|
||||
float res = 0;
|
||||
float res = 0;
|
||||
|
||||
for (int i = 0; i < kHeight; ++i)
|
||||
{
|
||||
for (int j = 0; j < kWidth; ++j)
|
||||
{
|
||||
res += smem[y + 8 - kHeight / 2 + i][x + 8 - kWidth / 2 + j] * temp1[i * (k_step>>2) + j];
|
||||
}
|
||||
}
|
||||
dst[gy*(dst_step >> 2)+gx] = res;
|
||||
}
|
||||
res += smem[y + 8 - kHeight / 2 + i][x + 8 - kWidth / 2 + j] * temp1[i * k_step + j + koffset];
|
||||
|
||||
dst[gy * dst_step + gx + dst_offset] = res;
|
||||
}
|
||||
}
|
||||
|
@ -34,6 +34,13 @@
|
||||
//
|
||||
//
|
||||
|
||||
#if defined (DOUBLE_SUPPORT)
|
||||
#ifdef cl_khr_fp64
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#elif defined (cl_amd_fp64)
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef BORDER_CONSTANT
|
||||
//BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -62,8 +62,7 @@ PARAM_TEST_CASE(FilterTestBase, MatType,
|
||||
int, // border type, or iteration
|
||||
bool) // roi or not
|
||||
{
|
||||
int type, borderType;
|
||||
int ksize;
|
||||
int type, borderType, ksize;
|
||||
bool useRoi;
|
||||
|
||||
Mat src, dst_whole, src_roi, dst_roi;
|
||||
@ -92,8 +91,12 @@ PARAM_TEST_CASE(FilterTestBase, MatType,
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
EXPECT_MAT_NEAR(dst_whole, Mat(gdst_whole), threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, Mat(gdst_roi), threshold);
|
||||
Mat roi, whole;
|
||||
gdst_whole.download(whole);
|
||||
gdst_roi.download(roi);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_whole, whole, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
408
modules/ocl/test/test_mean_shift.cpp
Normal file
408
modules/ocl/test/test_mean_shift.cpp
Normal file
@ -0,0 +1,408 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Shengen Yan, yanshengen@gmail.com
|
||||
// Jiang Liyuan, lyuan001.good@163.com
|
||||
// Rock Li, Rock.Li@amd.com
|
||||
// Wu Zailong, bullet@yeah.net
|
||||
// Xu Pang, pangxu010@163.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
short x;
|
||||
short y;
|
||||
} COOR;
|
||||
|
||||
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, Size size, int sp, int sr, int maxIter, float eps, int *tab)
|
||||
{
|
||||
|
||||
int isr2 = sr * sr;
|
||||
int c0, c1, c2, c3;
|
||||
int iter;
|
||||
uchar *ptr = NULL;
|
||||
uchar *pstart = NULL;
|
||||
int revx = 0, revy = 0;
|
||||
c0 = sptr[0];
|
||||
c1 = sptr[1];
|
||||
c2 = sptr[2];
|
||||
c3 = sptr[3];
|
||||
// iterate meanshift procedure
|
||||
for(iter = 0; iter < maxIter; iter++ )
|
||||
{
|
||||
int count = 0;
|
||||
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
|
||||
|
||||
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
|
||||
int minx = x0 - sp;
|
||||
int miny = y0 - sp;
|
||||
int maxx = x0 + sp;
|
||||
int maxy = y0 + sp;
|
||||
|
||||
//deal with the image boundary
|
||||
if(minx < 0) minx = 0;
|
||||
if(miny < 0) miny = 0;
|
||||
if(maxx >= size.width) maxx = size.width - 1;
|
||||
if(maxy >= size.height) maxy = size.height - 1;
|
||||
if(iter == 0)
|
||||
{
|
||||
pstart = sptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
pstart = pstart + revy * sstep + (revx << 2); //point to the new position
|
||||
}
|
||||
ptr = pstart;
|
||||
ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row
|
||||
|
||||
for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2))
|
||||
{
|
||||
int rowCount = 0;
|
||||
int x = minx;
|
||||
#if CV_ENABLE_UNROLLED
|
||||
for( ; x + 4 <= maxx; x += 4, ptr += 16)
|
||||
{
|
||||
int t0, t1, t2;
|
||||
t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
||||
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x;
|
||||
rowCount++;
|
||||
}
|
||||
t0 = ptr[4], t1 = ptr[5], t2 = ptr[6];
|
||||
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x + 1;
|
||||
rowCount++;
|
||||
}
|
||||
t0 = ptr[8], t1 = ptr[9], t2 = ptr[10];
|
||||
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x + 2;
|
||||
rowCount++;
|
||||
}
|
||||
t0 = ptr[12], t1 = ptr[13], t2 = ptr[14];
|
||||
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x + 3;
|
||||
rowCount++;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for(; x <= maxx; x++, ptr += 4)
|
||||
{
|
||||
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
||||
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
||||
{
|
||||
s0 += t0;
|
||||
s1 += t1;
|
||||
s2 += t2;
|
||||
sx += x;
|
||||
rowCount++;
|
||||
}
|
||||
}
|
||||
if(rowCount == 0)
|
||||
continue;
|
||||
count += rowCount;
|
||||
sy += y * rowCount;
|
||||
}
|
||||
|
||||
if( count == 0 )
|
||||
break;
|
||||
|
||||
int x1 = sx / count;
|
||||
int y1 = sy / count;
|
||||
s0 = s0 / count;
|
||||
s1 = s1 / count;
|
||||
s2 = s2 / count;
|
||||
|
||||
bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) +
|
||||
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps);
|
||||
|
||||
//revise the pointer corresponding to the new (y0,x0)
|
||||
revx = x1 - x0;
|
||||
revy = y1 - y0;
|
||||
|
||||
x0 = x1;
|
||||
y0 = y1;
|
||||
c0 = s0;
|
||||
c1 = s1;
|
||||
c2 = s2;
|
||||
|
||||
if( stopFlag )
|
||||
break;
|
||||
} //for iter
|
||||
|
||||
dptr[0] = (uchar)c0;
|
||||
dptr[1] = (uchar)c1;
|
||||
dptr[2] = (uchar)c2;
|
||||
dptr[3] = (uchar)c3;
|
||||
|
||||
COOR coor;
|
||||
coor.x = (short)x0;
|
||||
coor.y = (short)y0;
|
||||
return coor;
|
||||
}
|
||||
|
||||
void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, TermCriteria crit)
|
||||
{
|
||||
if( src_roi.empty() )
|
||||
CV_Error( CV_StsBadArg, "The input image is empty" );
|
||||
|
||||
if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
||||
|
||||
CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) );
|
||||
CV_Assert( !(dst_roi.step & 0x3) );
|
||||
|
||||
if( !(crit.type & TermCriteria::MAX_ITER) )
|
||||
crit.maxCount = 5;
|
||||
int maxIter = std::min(std::max(crit.maxCount, 1), 100);
|
||||
float eps;
|
||||
if( !(crit.type & TermCriteria::EPS) )
|
||||
eps = 1.f;
|
||||
eps = (float)std::max(crit.epsilon, 0.0);
|
||||
|
||||
int tab[512];
|
||||
for(int i = 0; i < 512; i++)
|
||||
tab[i] = (i - 255) * (i - 255);
|
||||
uchar *sptr = src_roi.data;
|
||||
uchar *dptr = dst_roi.data;
|
||||
int sstep = (int)src_roi.step;
|
||||
int dstep = (int)dst_roi.step;
|
||||
Size size = src_roi.size();
|
||||
|
||||
for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
|
||||
dptr += dstep - (size.width << 2))
|
||||
{
|
||||
for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4)
|
||||
{
|
||||
do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, TermCriteria crit)
|
||||
{
|
||||
if( src_roi.empty() )
|
||||
CV_Error( CV_StsBadArg, "The input image is empty" );
|
||||
if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
||||
CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) &&
|
||||
(src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows));
|
||||
CV_Assert( !(dstCoor_roi.step & 0x3) );
|
||||
|
||||
if( !(crit.type & TermCriteria::MAX_ITER) )
|
||||
crit.maxCount = 5;
|
||||
int maxIter = std::min(std::max(crit.maxCount, 1), 100);
|
||||
float eps;
|
||||
if( !(crit.type & TermCriteria::EPS) )
|
||||
eps = 1.f;
|
||||
eps = (float)std::max(crit.epsilon, 0.0);
|
||||
|
||||
int tab[512];
|
||||
for(int i = 0; i < 512; i++)
|
||||
tab[i] = (i - 255) * (i - 255);
|
||||
uchar *sptr = src_roi.data;
|
||||
uchar *dptr = dst_roi.data;
|
||||
short *dCoorptr = (short *)dstCoor_roi.data;
|
||||
int sstep = (int)src_roi.step;
|
||||
int dstep = (int)dst_roi.step;
|
||||
int dCoorstep = (int)dstCoor_roi.step >> 1;
|
||||
Size size = src_roi.size();
|
||||
|
||||
for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
|
||||
dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1))
|
||||
{
|
||||
for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2)
|
||||
{
|
||||
*((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//////////////////////////////// meanShift //////////////////////////////////////////
|
||||
|
||||
PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, TermCriteria, bool)
|
||||
{
|
||||
int type, typeCoor;
|
||||
int sp, sr;
|
||||
TermCriteria crit;
|
||||
bool useRoi;
|
||||
|
||||
// src mat
|
||||
Mat src, src_roi;
|
||||
Mat dst, dst_roi;
|
||||
Mat dstCoor, dstCoor_roi;
|
||||
|
||||
// ocl dst mat
|
||||
ocl::oclMat gsrc, gsrc_roi;
|
||||
ocl::oclMat gdst, gdst_roi;
|
||||
ocl::oclMat gdstCoor, gdstCoor_roi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
typeCoor = GET_PARAM(1);
|
||||
sp = GET_PARAM(2);
|
||||
sr = GET_PARAM(3);
|
||||
crit = GET_PARAM(4);
|
||||
useRoi = GET_PARAM(5);
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
Size roiSize = randomSize(1, MAX_VALUE);
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, type, 5, 256);
|
||||
generateOclMat(gsrc, gsrc_roi, src, roiSize, srcBorder);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 5, 256);
|
||||
generateOclMat(gdst, gdst_roi, dst, roiSize, dstBorder);
|
||||
|
||||
randomSubMat(dstCoor, dstCoor_roi, roiSize, dstBorder, typeCoor, 5, 256);
|
||||
generateOclMat(gdstCoor, gdstCoor_roi, dstCoor, roiSize, dstBorder);
|
||||
}
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
Mat whole, roi;
|
||||
gdst.download(whole);
|
||||
gdst_roi.download(roi);
|
||||
|
||||
EXPECT_MAT_NEAR(dst, whole, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
||||
}
|
||||
|
||||
void Near1(double threshold = 0.0)
|
||||
{
|
||||
Mat whole, roi;
|
||||
gdstCoor.download(whole);
|
||||
gdstCoor_roi.download(roi);
|
||||
|
||||
EXPECT_MAT_NEAR(dstCoor, whole, threshold);
|
||||
EXPECT_MAT_NEAR(dstCoor_roi, roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////meanShiftFiltering/////////////////////////////
|
||||
|
||||
typedef meanShiftTestBase meanShiftFiltering;
|
||||
|
||||
OCL_TEST_P(meanShiftFiltering, Mat)
|
||||
{
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
meanShiftFiltering_(src_roi, dst_roi, sp, sr, crit);
|
||||
ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit);
|
||||
|
||||
Near();
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////meanShiftProc//////////////////////////////////
|
||||
|
||||
typedef meanShiftTestBase meanShiftProc;
|
||||
|
||||
OCL_TEST_P(meanShiftProc, Mat)
|
||||
{
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
meanShiftProc_(src_roi, dst_roi, dstCoor_roi, sp, sr, crit);
|
||||
ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit);
|
||||
|
||||
Near();
|
||||
Near1();
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine(
|
||||
Values((MatType)CV_8UC4),
|
||||
Values((MatType)CV_16SC2),
|
||||
Values(5),
|
||||
Values(6),
|
||||
Values(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 5, 1)),
|
||||
Bool()
|
||||
));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine(
|
||||
Values((MatType)CV_8UC4),
|
||||
Values((MatType)CV_16SC2),
|
||||
Values(5),
|
||||
Values(6),
|
||||
Values(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 5, 1)),
|
||||
Bool()
|
||||
));
|
||||
|
||||
#endif // HAVE_OPENCL
|
371
modules/ocl/test/test_warp.cpp
Normal file
371
modules/ocl/test/test_warp.cpp
Normal file
@ -0,0 +1,371 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Shengen Yan, yanshengen@gmail.com
|
||||
// Jiang Liyuan, lyuan001.good@163.com
|
||||
// Rock Li, Rock.Li@amd.com
|
||||
// Wu Zailong, bullet@yeah.net
|
||||
// Xu Pang, pangxu010@163.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cv;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
static MatType noType = -1;
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// warpAffine & warpPerspective
|
||||
|
||||
PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool)
|
||||
{
|
||||
int type, interpolation;
|
||||
Size dsize;
|
||||
bool useRoi, mapInverse;
|
||||
|
||||
Mat src, dst_whole, src_roi, dst_roi;
|
||||
ocl::oclMat gsrc_whole, gsrc_roi, gdst_whole, gdst_roi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
interpolation = GET_PARAM(1);
|
||||
mapInverse = GET_PARAM(2);
|
||||
useRoi = GET_PARAM(3);
|
||||
|
||||
if (mapInverse)
|
||||
interpolation |= WARP_INVERSE_MAP;
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
Size roiSize = randomSize(1, MAX_VALUE);
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst_whole, dst_roi, roiSize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder);
|
||||
generateOclMat(gdst_whole, gdst_roi, dst_whole, roiSize, dstBorder);
|
||||
|
||||
dsize = randomSize(1, MAX_VALUE);
|
||||
}
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
Mat whole, roi;
|
||||
gdst_whole.download(whole);
|
||||
gdst_roi.download(roi);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_whole, whole, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
/////warpAffine
|
||||
|
||||
typedef WarpTestBase WarpAffine;
|
||||
|
||||
OCL_TEST_P(WarpAffine, Mat)
|
||||
{
|
||||
static const double coeffs[2][3] =
|
||||
{
|
||||
{ cos(CV_PI / 6), -sin(CV_PI / 6), 100.0 },
|
||||
{ sin(CV_PI / 6), cos(CV_PI / 6), -100.0 }
|
||||
};
|
||||
|
||||
static Mat M(2, 3, CV_64FC1, (void *)coeffs);
|
||||
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
warpAffine(src_roi, dst_roi, M, dsize, interpolation);
|
||||
ocl::warpAffine(gsrc_roi, gdst_roi, M, dsize, interpolation);
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
// warpPerspective
|
||||
|
||||
typedef WarpTestBase WarpPerspective;
|
||||
|
||||
OCL_TEST_P(WarpPerspective, Mat)
|
||||
{
|
||||
static const double coeffs[3][3] =
|
||||
{
|
||||
{ cos(CV_PI / 6), -sin(CV_PI / 6), 100.0 },
|
||||
{ sin(CV_PI / 6), cos(CV_PI / 6), -100.0 },
|
||||
{ 0.0, 0.0, 1.0 }
|
||||
};
|
||||
|
||||
static Mat M(3, 3, CV_64FC1, (void *)coeffs);
|
||||
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
warpPerspective(src_roi, dst_roi, M, dsize, interpolation);
|
||||
ocl::warpPerspective(gsrc_roi, gdst_roi, M, dsize, interpolation);
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// remap
|
||||
|
||||
PARAM_TEST_CASE(Remap, MatDepth, Channels, pair<MatType, MatType>, Border, bool)
|
||||
{
|
||||
int srcType, map1Type, map2Type;
|
||||
int borderType;
|
||||
bool useRoi;
|
||||
|
||||
Scalar val;
|
||||
|
||||
Mat src, src_roi;
|
||||
Mat dst, dst_roi;
|
||||
Mat map1, map1_roi;
|
||||
Mat map2, map2_roi;
|
||||
|
||||
// ocl mat with roi
|
||||
ocl::oclMat gsrc, gsrc_roi;
|
||||
ocl::oclMat gdst, gdst_roi;
|
||||
ocl::oclMat gmap1, gmap1_roi;
|
||||
ocl::oclMat gmap2, gmap2_roi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1));
|
||||
map1Type = GET_PARAM(2).first;
|
||||
map2Type = GET_PARAM(2).second;
|
||||
borderType = GET_PARAM(3);
|
||||
useRoi = GET_PARAM(4);
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
val = randomScalar(-MAX_VALUE, MAX_VALUE);
|
||||
Size srcROISize = randomSize(1, MAX_VALUE);
|
||||
Size dstROISize = randomSize(1, MAX_VALUE);
|
||||
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
int mapMaxValue = MAX_VALUE << 2;
|
||||
Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue);
|
||||
|
||||
Border map2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
if (map2Type != noType)
|
||||
randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, -mapMaxValue, mapMaxValue);
|
||||
|
||||
generateOclMat(gsrc, gsrc_roi, src, srcROISize, srcBorder);
|
||||
generateOclMat(gdst, gdst_roi, dst, dstROISize, dstBorder);
|
||||
generateOclMat(gmap1, gmap1_roi, map1, dstROISize, map1Border);
|
||||
if (noType != map2Type)
|
||||
generateOclMat(gmap2, gmap2_roi, map2, dstROISize, map2Border);
|
||||
}
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
Mat whole, roi;
|
||||
gdst.download(whole);
|
||||
gdst_roi.download(roi);
|
||||
|
||||
EXPECT_MAT_NEAR(dst, whole, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
typedef Remap Remap_INTER_NEAREST;
|
||||
|
||||
OCL_TEST_P(Remap_INTER_NEAREST, Mat)
|
||||
{
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val);
|
||||
ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, INTER_NEAREST, borderType, val);
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
typedef Remap Remap_INTER_LINEAR;
|
||||
|
||||
OCL_TEST_P(Remap_INTER_LINEAR, Mat)
|
||||
{
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val);
|
||||
ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, INTER_LINEAR, borderType, val);
|
||||
|
||||
Near(2.0);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// resize
|
||||
|
||||
PARAM_TEST_CASE(Resize, MatType, double, double, Interpolation, bool)
|
||||
{
|
||||
int type, interpolation;
|
||||
double fx, fy;
|
||||
bool useRoi;
|
||||
|
||||
Mat src, dst_whole, src_roi, dst_roi;
|
||||
ocl::oclMat gsrc_whole, gsrc_roi, gdst_whole, gdst_roi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
fx = GET_PARAM(1);
|
||||
fy = GET_PARAM(2);
|
||||
interpolation = GET_PARAM(3);
|
||||
useRoi = GET_PARAM(4);
|
||||
}
|
||||
|
||||
void random_roi()
|
||||
{
|
||||
Size srcRoiSize = randomSize(1, MAX_VALUE);
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, srcRoiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
Size dstRoiSize;
|
||||
dstRoiSize.width = cvRound(srcRoiSize.width * fx);
|
||||
dstRoiSize.height = cvRound(srcRoiSize.height * fy);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst_whole, dst_roi, dstRoiSize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
|
||||
|
||||
generateOclMat(gsrc_whole, gsrc_roi, src, srcRoiSize, srcBorder);
|
||||
generateOclMat(gdst_whole, gdst_roi, dst_whole, dstRoiSize, dstBorder);
|
||||
}
|
||||
|
||||
void Near(double threshold = 0.0)
|
||||
{
|
||||
Mat whole, roi;
|
||||
gdst_whole.download(whole);
|
||||
gdst_roi.download(roi);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_whole, whole, threshold);
|
||||
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
||||
}
|
||||
};
|
||||
|
||||
OCL_TEST_P(Resize, Mat)
|
||||
{
|
||||
for (int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
resize(src_roi, dst_roi, Size(), fx, fy, interpolation);
|
||||
ocl::resize(gsrc_roi, gdst_roi, Size(), fx, fy, interpolation);
|
||||
|
||||
Near(1.0);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
||||
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
|
||||
Bool(),
|
||||
Bool()));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpPerspective, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
||||
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
|
||||
Bool(),
|
||||
Bool()));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine(
|
||||
Values(CV_8U, CV_16U, CV_16S, CV_32F, CV_64F),
|
||||
Values(1, 2, 3, 4),
|
||||
Values(pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
|
||||
pair<MatType, MatType>((MatType)CV_32FC2, noType)),
|
||||
Values((Border)BORDER_CONSTANT,
|
||||
(Border)BORDER_REPLICATE,
|
||||
(Border)BORDER_WRAP,
|
||||
(Border)BORDER_REFLECT,
|
||||
(Border)BORDER_REFLECT_101),
|
||||
Bool()));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine(
|
||||
Values(CV_8U, CV_16U, CV_16S, CV_32F, CV_64F),
|
||||
Values(1, 2, 3, 4),
|
||||
Values(pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
|
||||
pair<MatType, MatType>((MatType)CV_32FC2, noType),
|
||||
pair<MatType, MatType>((MatType)CV_16SC2, noType)),
|
||||
Values((Border)BORDER_CONSTANT,
|
||||
(Border)BORDER_REPLICATE,
|
||||
(Border)BORDER_WRAP,
|
||||
(Border)BORDER_REFLECT,
|
||||
(Border)BORDER_REFLECT_101),
|
||||
Bool()));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocWarp, Resize, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
||||
Values(0.5, 1.5, 2.0),
|
||||
Values(0.5, 1.5, 2.0),
|
||||
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR),
|
||||
Bool()));
|
||||
|
||||
#endif // HAVE_OPENCL
|
Loading…
Reference in New Issue
Block a user