Merge remote-tracking branch 'upstream/3.4' into merge-3.4

This commit is contained in:
Alexander Alekhin 2020-02-01 17:25:39 +00:00
commit bf2f7b0f8b
13 changed files with 593 additions and 82 deletions

View File

@ -16,6 +16,6 @@ int main()
{
__vector float vf;
__vector signed int vi;
__asm__ __volatile__ ("xvcvsxwsp %x0,%x1" : "=wf" (vf) : "wa" (vi));
__asm__ __volatile__ ("xvcvsxwsp %x0,%x1" : "=wa" (vf) : "wa" (vi));
return 0;
}

View File

@ -12,7 +12,9 @@ For detailed explanations about the theory, please refer to a computer vision co
* An Invitation to 3-D Vision: From Images to Geometric Models, @cite Ma:2003:IVI
* Computer Vision: Algorithms and Applications, @cite RS10
The tutorial code can be found [here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/features2D/Homography).
The tutorial code can be found here [C++](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/features2D/Homography),
[Python](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/features2D/Homography),
[Java](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/features2D/Homography).
The images used in this tutorial can be found [here](https://github.com/opencv/opencv/tree/master/samples/data) (`left*.jpg`).
Basic theory {#tutorial_homography_Basic_theory}
@ -171,15 +173,45 @@ The following image shows the source image (left) and the chessboard view that w
The first step consists to detect the chessboard corners in the source and desired images:
@add_toggle_cpp
@snippet perspective_correction.cpp find-corners
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/perspective_correction.py find-corners
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PerspectiveCorrection.java find-corners
@end_toggle
The homography is estimated easily with:
@add_toggle_cpp
@snippet perspective_correction.cpp estimate-homography
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/perspective_correction.py estimate-homography
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PerspectiveCorrection.java estimate-homography
@end_toggle
To warp the source chessboard view into the desired chessboard view, we use @ref cv::warpPerspective
@add_toggle_cpp
@snippet perspective_correction.cpp warp-chessboard
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/perspective_correction.py warp-chessboard
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PerspectiveCorrection.java warp-chessboard
@end_toggle
The result image is:
@ -187,7 +219,17 @@ The result image is:
To compute the coordinates of the source corners transformed by the homography:
@add_toggle_cpp
@snippet perspective_correction.cpp compute-transformed-corners
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/perspective_correction.py compute-transformed-corners
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PerspectiveCorrection.java compute-transformed-corners
@end_toggle
To check the correctness of the calculation, the matching lines are displayed:
@ -499,17 +541,57 @@ The figure below shows the two generated views of the Suzanne model, with only a
With the known associated camera poses and the intrinsic parameters, the relative rotation between the two views can be computed:
@add_toggle_cpp
@snippet panorama_stitching_rotating_camera.cpp extract-rotation
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/panorama_stitching_rotating_camera.py extract-rotation
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PanoramaStitchingRotatingCamera.java extract-rotation
@end_toggle
@add_toggle_cpp
@snippet panorama_stitching_rotating_camera.cpp compute-rotation-displacement
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/panorama_stitching_rotating_camera.py compute-rotation-displacement
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PanoramaStitchingRotatingCamera.java compute-rotation-displacement
@end_toggle
Here, the second image will be stitched with respect to the first image. The homography can be calculated using the formula above:
@add_toggle_cpp
@snippet panorama_stitching_rotating_camera.cpp compute-homography
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/panorama_stitching_rotating_camera.py compute-homography
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PanoramaStitchingRotatingCamera.java compute-homography
@end_toggle
The stitching is made simply with:
@add_toggle_cpp
@snippet panorama_stitching_rotating_camera.cpp stitch
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/Homography/panorama_stitching_rotating_camera.py stitch
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/Homography/PanoramaStitchingRotatingCamera.java stitch
@end_toggle
The resulting image is:

View File

@ -118,7 +118,18 @@ v = f_y \times y'' + c_y
tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
coefficients. Higher-order coefficients are not considered in OpenCV.
The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$).
The next figures show two common types of radial distortion: barrel distortion
(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing)
and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing).
Radial distortion is always monotonic for real lenses,
and if the estimator produces a non monotonic result,
this should be considered a calibration failure.
More generally, radial distortion must be monotonic and the distortion function, must be bijective.
A failed estimation result may look deceptively good near the image center
but will work poorly in e.g. AR/SFM applications.
The optimization method used in OpenCV camera calibration does not include these constraints as
the framework does not support the required integer programming and polynomial inequalities.
See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
![](pics/distortion_examples.png)
![](pics/distortion_examples2.png)

View File

@ -167,7 +167,12 @@ namespace cv {
#undef abs
#undef Complex
#if defined __cplusplus
#include <limits>
#else
#include <limits.h>
#endif
#include "opencv2/core/hal/interface.h"
#if defined __ICL

View File

@ -1338,7 +1338,7 @@ inline v_float32x4 v_load_expand(const float16_t* ptr)
return v_float32x4(vec_extract_fp_from_shorth(vf16));
#elif CV_VSX3 && !defined(CV_COMPILER_VSX_BROKEN_ASM)
vec_float4 vf32;
__asm__ __volatile__ ("xvcvhpsp %x0,%x1" : "=wf" (vf32) : "wa" (vec_mergeh(vf16, vf16)));
__asm__ __volatile__ ("xvcvhpsp %x0,%x1" : "=wa" (vf32) : "wa" (vec_mergeh(vf16, vf16)));
return v_float32x4(vf32);
#else
const vec_int4 z = vec_int4_z, delta = vec_int4_sp(0x38000000);
@ -1363,7 +1363,7 @@ inline void v_pack_store(float16_t* ptr, const v_float32x4& v)
// fixme: Is there any builtin op or intrinsic that cover "xvcvsphp"?
#if CV_VSX3 && !defined(CV_COMPILER_VSX_BROKEN_ASM)
vec_ushort8 vf16;
__asm__ __volatile__ ("xvcvsphp %x0,%x1" : "=wa" (vf16) : "wf" (v.val));
__asm__ __volatile__ ("xvcvsphp %x0,%x1" : "=wa" (vf16) : "wa" (v.val));
vec_st_l8(vec_mergesqe(vf16, vf16), ptr);
#else
const vec_int4 signmask = vec_int4_sp(0x80000000);

View File

@ -1215,7 +1215,7 @@ _Tp Point_<_Tp>::dot(const Point_& pt) const
template<typename _Tp> inline
double Point_<_Tp>::ddot(const Point_& pt) const
{
return (double)x*pt.x + (double)y*pt.y;
return (double)x*(double)(pt.x) + (double)y*(double)(pt.y);
}
template<typename _Tp> inline

View File

@ -110,9 +110,9 @@ VSX_FINLINE(rt) fnm(const rg& a, const rg& b) { return fn2(a, b); }
#if defined(__GNUG__) && !defined(__clang__)
// inline asm helper
#define VSX_IMPL_1RG(rt, rto, rg, rgo, opc, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ rt rs; __asm__ __volatile__(#opc" %x0,%x1" : "="#rto (rs) : #rgo (a)); return rs; }
#define VSX_IMPL_1RG(rt, rg, opc, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) \
{ rt rs; __asm__ __volatile__(#opc" %x0,%x1" : "=wa" (rs) : "wa" (a)); return rs; }
#define VSX_IMPL_1VRG(rt, rg, opc, fnm) \
VSX_FINLINE(rt) fnm(const rg& a) \
@ -233,6 +233,10 @@ VSX_FINLINE(rt) fnm(const rg& a, const rg& b) \
#if __GNUG__ < 5
// vec_xxpermdi in gcc4 missing little-endian supports just like clang
# define vec_permi(a, b, c) vec_xxpermdi(b, a, (3 ^ (((c) & 1) << 1 | (c) >> 1)))
// same as vec_xxpermdi
# undef vec_vbpermq
VSX_IMPL_2VRG(vec_udword2, vec_uchar16, vbpermq, vec_vbpermq)
VSX_IMPL_2VRG(vec_dword2, vec_char16, vbpermq, vec_vbpermq)
#else
# define vec_permi vec_xxpermdi
#endif // __GNUG__ < 5
@ -257,44 +261,38 @@ VSX_REDIRECT_1RG(vec_float4, vec_double2, vec_cvfo, __builtin_vsx_xvcvdpsp)
VSX_REDIRECT_1RG(vec_double2, vec_float4, vec_cvfo, __builtin_vsx_xvcvspdp)
// converts word and doubleword to double-precision
#ifdef vec_ctd
# undef vec_ctd
#endif
VSX_IMPL_1RG(vec_double2, wd, vec_int4, wa, xvcvsxwdp, vec_ctdo)
VSX_IMPL_1RG(vec_double2, wd, vec_uint4, wa, xvcvuxwdp, vec_ctdo)
VSX_IMPL_1RG(vec_double2, wd, vec_dword2, wi, xvcvsxddp, vec_ctd)
VSX_IMPL_1RG(vec_double2, wd, vec_udword2, wi, xvcvuxddp, vec_ctd)
#undef vec_ctd
VSX_IMPL_1RG(vec_double2, vec_int4, xvcvsxwdp, vec_ctdo)
VSX_IMPL_1RG(vec_double2, vec_uint4, xvcvuxwdp, vec_ctdo)
VSX_IMPL_1RG(vec_double2, vec_dword2, xvcvsxddp, vec_ctd)
VSX_IMPL_1RG(vec_double2, vec_udword2, xvcvuxddp, vec_ctd)
// converts word and doubleword to single-precision
#undef vec_ctf
VSX_IMPL_1RG(vec_float4, wf, vec_int4, wa, xvcvsxwsp, vec_ctf)
VSX_IMPL_1RG(vec_float4, wf, vec_uint4, wa, xvcvuxwsp, vec_ctf)
VSX_IMPL_1RG(vec_float4, wf, vec_dword2, wi, xvcvsxdsp, vec_ctfo)
VSX_IMPL_1RG(vec_float4, wf, vec_udword2, wi, xvcvuxdsp, vec_ctfo)
VSX_IMPL_1RG(vec_float4, vec_int4, xvcvsxwsp, vec_ctf)
VSX_IMPL_1RG(vec_float4, vec_uint4, xvcvuxwsp, vec_ctf)
VSX_IMPL_1RG(vec_float4, vec_dword2, xvcvsxdsp, vec_ctfo)
VSX_IMPL_1RG(vec_float4, vec_udword2, xvcvuxdsp, vec_ctfo)
// converts single and double precision to signed word
#undef vec_cts
VSX_IMPL_1RG(vec_int4, wa, vec_double2, wd, xvcvdpsxws, vec_ctso)
VSX_IMPL_1RG(vec_int4, wa, vec_float4, wf, xvcvspsxws, vec_cts)
VSX_IMPL_1RG(vec_int4, vec_double2, xvcvdpsxws, vec_ctso)
VSX_IMPL_1RG(vec_int4, vec_float4, xvcvspsxws, vec_cts)
// converts single and double precision to unsigned word
#undef vec_ctu
VSX_IMPL_1RG(vec_uint4, wa, vec_double2, wd, xvcvdpuxws, vec_ctuo)
VSX_IMPL_1RG(vec_uint4, wa, vec_float4, wf, xvcvspuxws, vec_ctu)
VSX_IMPL_1RG(vec_uint4, vec_double2, xvcvdpuxws, vec_ctuo)
VSX_IMPL_1RG(vec_uint4, vec_float4, xvcvspuxws, vec_ctu)
// converts single and double precision to signed doubleword
#ifdef vec_ctsl
# undef vec_ctsl
#endif
VSX_IMPL_1RG(vec_dword2, wi, vec_double2, wd, xvcvdpsxds, vec_ctsl)
VSX_IMPL_1RG(vec_dword2, wi, vec_float4, wf, xvcvspsxds, vec_ctslo)
#undef vec_ctsl
VSX_IMPL_1RG(vec_dword2, vec_double2, xvcvdpsxds, vec_ctsl)
VSX_IMPL_1RG(vec_dword2, vec_float4, xvcvspsxds, vec_ctslo)
// converts single and double precision to unsigned doubleword
#ifdef vec_ctul
# undef vec_ctul
#endif
VSX_IMPL_1RG(vec_udword2, wi, vec_double2, wd, xvcvdpuxds, vec_ctul)
VSX_IMPL_1RG(vec_udword2, wi, vec_float4, wf, xvcvspuxds, vec_ctulo)
#undef vec_ctul
VSX_IMPL_1RG(vec_udword2, vec_double2, xvcvdpuxds, vec_ctul)
VSX_IMPL_1RG(vec_udword2, vec_float4, xvcvspuxds, vec_ctulo)
// just in case if GCC doesn't define it
#ifndef vec_xl

View File

@ -265,6 +265,21 @@ namespace cv{
}
}
template <typename LT> static inline
LT stripeFirstLabel4Connectivity(int y, int w)
{
CV_DbgAssert((y & 1) == 0);
return (LT(y) * LT(w) /*+ 1*/) / 2 + 1;
}
template <typename LT> static inline
LT stripeFirstLabel8Connectivity(int y, int w)
{
CV_DbgAssert((y & 1) == 0);
return LT((y /*+ 1*/) / 2) * LT((w + 1) / 2) + 1;
}
//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
//using decision trees
//Kesheng Wu, et al
@ -283,12 +298,14 @@ namespace cv{
FirstScan8Connectivity& operator=(const FirstScan8Connectivity& ) { return *this; }
void operator()(const cv::Range& range) const CV_OVERRIDE
void operator()(const cv::Range& range2) const CV_OVERRIDE
{
const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows));
int r = range.start;
chunksSizeAndLabels_[r] = range.end;
LabelT label = LabelT((r + 1) / 2) * LabelT((imgLabels_.cols + 1) / 2) + 1;
LabelT label = stripeFirstLabel8Connectivity<LabelT>(r, imgLabels_.cols);
const LabelT firstLabel = label;
const int w = img_.cols;
@ -385,12 +402,14 @@ namespace cv{
FirstScan4Connectivity& operator=(const FirstScan4Connectivity& ) { return *this; }
void operator()(const cv::Range& range) const CV_OVERRIDE
void operator()(const cv::Range& range2) const CV_OVERRIDE
{
const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows));
int r = range.start;
chunksSizeAndLabels_[r] = range.end;
LabelT label = LabelT((r * imgLabels_.cols + 1) / 2 + 1);
LabelT label = stripeFirstLabel4Connectivity<LabelT>(r, imgLabels_.cols);
const LabelT firstLabel = label;
const int w = img_.cols;
@ -462,8 +481,9 @@ namespace cv{
SecondScan& operator=(const SecondScan& ) { return *this; }
void operator()(const cv::Range& range) const CV_OVERRIDE
void operator()(const cv::Range& range2) const CV_OVERRIDE
{
const Range range(range2.start * 2, std::min(range2.end * 2, imgLabels_.rows));
int r = range.start;
const int rowBegin = r;
const int rowEnd = range.end;
@ -595,53 +615,51 @@ namespace cv{
//Array used to store info and labeled pixel by each thread.
//Different threads affect different memory location of chunksSizeAndLabels
int *chunksSizeAndLabels = (int *)cv::fastMalloc(h * sizeof(int));
std::vector<int> chunksSizeAndLabels(roundUp(h, 2));
//Tree of labels
LabelT *P = (LabelT *)cv::fastMalloc(Plength * sizeof(LabelT));
std::vector<LabelT> P_(Plength, 0);
LabelT *P = P_.data();
//First label is for background
P[0] = 0;
//P[0] = 0;
cv::Range range(0, h);
cv::Range range2(0, divUp(h, 2));
const double nParallelStripes = std::max(1, std::min(h / 2, getNumThreads()*4));
LabelT nLabels = 1;
if (connectivity == 8){
//First scan
cv::parallel_for_(range, FirstScan8Connectivity(img, imgLabels, P, chunksSizeAndLabels), nParallelStripes);
cv::parallel_for_(range2, FirstScan8Connectivity(img, imgLabels, P, chunksSizeAndLabels.data()), nParallelStripes);
//merge labels of different chunks
mergeLabels8Connectivity(imgLabels, P, chunksSizeAndLabels);
mergeLabels8Connectivity(imgLabels, P, chunksSizeAndLabels.data());
for (int i = 0; i < h; i = chunksSizeAndLabels[i]){
flattenL(P, int((i + 1) / 2) * int((w + 1) / 2) + 1, chunksSizeAndLabels[i + 1], nLabels);
flattenL(P, stripeFirstLabel8Connectivity<int>(i, w), chunksSizeAndLabels[i + 1], nLabels);
}
}
else{
//First scan
cv::parallel_for_(range, FirstScan4Connectivity(img, imgLabels, P, chunksSizeAndLabels), nParallelStripes);
cv::parallel_for_(range2, FirstScan4Connectivity(img, imgLabels, P, chunksSizeAndLabels.data()), nParallelStripes);
//merge labels of different chunks
mergeLabels4Connectivity(imgLabels, P, chunksSizeAndLabels);
mergeLabels4Connectivity(imgLabels, P, chunksSizeAndLabels.data());
for (int i = 0; i < h; i = chunksSizeAndLabels[i]){
flattenL(P, int(i * w + 1) / 2 + 1, chunksSizeAndLabels[i + 1], nLabels);
flattenL(P, stripeFirstLabel4Connectivity<int>(i, w), chunksSizeAndLabels[i + 1], nLabels);
}
}
//Array for statistics dataof threads
StatsOp *sopArray = new StatsOp[h];
std::vector<StatsOp> sopArray(h);
sop.init(nLabels);
//Second scan
cv::parallel_for_(range, SecondScan(imgLabels, P, sop, sopArray, nLabels), nParallelStripes);
StatsOp::mergeStats(imgLabels, sopArray, sop, nLabels);
cv::parallel_for_(range2, SecondScan(imgLabels, P, sop, sopArray.data(), nLabels), nParallelStripes);
StatsOp::mergeStats(imgLabels, sopArray.data(), sop, nLabels);
sop.finish();
delete[] sopArray;
cv::fastFree(chunksSizeAndLabels);
cv::fastFree(P);
return nLabels;
}
};//End struct LabelingWuParallel
@ -671,9 +689,10 @@ namespace cv{
//Obviously, 4-way connectivity upper bound is also good for 8-way connectivity labeling
const size_t Plength = (size_t(h) * size_t(w) + 1) / 2 + 1;
//array P for equivalences resolution
LabelT *P = (LabelT *)fastMalloc(sizeof(LabelT) *Plength);
std::vector<LabelT> P_(Plength, 0);
LabelT *P = P_.data();
//first label is for background pixels
P[0] = 0;
//P[0] = 0;
LabelT lunique = 1;
if (connectivity == 8){
@ -811,7 +830,6 @@ namespace cv{
}
sop.finish();
fastFree(P);
return nLabels;
}//End function LabelingWu operator()
@ -836,14 +854,14 @@ namespace cv{
FirstScan& operator=(const FirstScan&) { return *this; }
void operator()(const cv::Range& range) const CV_OVERRIDE
void operator()(const cv::Range& range2) const CV_OVERRIDE
{
const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows));
int r = range.start;
r += (r % 2);
chunksSizeAndLabels_[r] = range.end + (range.end % 2);
chunksSizeAndLabels_[r] = range.end;
LabelT label = LabelT((r + 1) / 2) * LabelT((imgLabels_.cols + 1) / 2) + 1;
LabelT label = stripeFirstLabel8Connectivity<LabelT>(r, imgLabels_.cols);
const LabelT firstLabel = label;
const int h = img_.rows, w = img_.cols;
@ -1902,14 +1920,13 @@ namespace cv{
SecondScan(const cv::Mat& img, cv::Mat& imgLabels, LabelT *P, StatsOp& sop, StatsOp *sopArray, LabelT& nLabels)
: img_(img), imgLabels_(imgLabels), P_(P), sop_(sop), sopArray_(sopArray), nLabels_(nLabels){}
SecondScan& operator=(const SecondScan& ) { return *this; }
void operator()(const cv::Range& range) const CV_OVERRIDE
void operator()(const cv::Range& range2) const CV_OVERRIDE
{
const Range range(range2.start * 2, std::min(range2.end * 2, img_.rows));
int r = range.start;
r += (r % 2);
const int rowBegin = r;
const int rowEnd = range.end + range.end % 2;
const int rowEnd = range.end;
if (rowBegin > 0){
sopArray_[rowBegin].initElement(nLabels_);
@ -2542,36 +2559,35 @@ namespace cv{
//Array used to store info and labeled pixel by each thread.
//Different threads affect different memory location of chunksSizeAndLabels
const int chunksSizeAndLabelsSize = h + 1;
cv::AutoBuffer<int, 0> chunksSizeAndLabels(chunksSizeAndLabelsSize);
const int chunksSizeAndLabelsSize = roundUp(h, 2);
std::vector<int> chunksSizeAndLabels(chunksSizeAndLabelsSize);
//Tree of labels
cv::AutoBuffer<LabelT, 0> P(Plength);
std::vector<LabelT> P(Plength, 0);
//First label is for background
P[0] = 0;
//P[0] = 0;
cv::Range range(0, h);
cv::Range range2(0, divUp(h, 2));
const double nParallelStripes = std::max(1, std::min(h / 2, getNumThreads()*4));
//First scan, each thread works with chunk of img.rows/nThreads rows
//e.g. 300 rows, 4 threads -> each chunks is composed of 75 rows
cv::parallel_for_(range, FirstScan(img, imgLabels, P.data(), chunksSizeAndLabels.data()), nParallelStripes);
//First scan
cv::parallel_for_(range2, FirstScan(img, imgLabels, P.data(), chunksSizeAndLabels.data()), nParallelStripes);
//merge labels of different chunks
mergeLabels(img, imgLabels, P.data(), chunksSizeAndLabels.data());
LabelT nLabels = 1;
for (int i = 0; i < h; i = chunksSizeAndLabels[i]){
CV_Assert(i + 1 < chunksSizeAndLabelsSize);
flattenL(P.data(), LabelT((i + 1) / 2) * LabelT((w + 1) / 2) + 1, chunksSizeAndLabels[i + 1], nLabels);
CV_DbgAssert(i + 1 < chunksSizeAndLabelsSize);
flattenL(P.data(), stripeFirstLabel8Connectivity<LabelT>(i, w), chunksSizeAndLabels[i + 1], nLabels);
}
//Array for statistics data
cv::AutoBuffer<StatsOp, 0> sopArray(h);
std::vector<StatsOp> sopArray(h);
sop.init(nLabels);
//Second scan
cv::parallel_for_(range, SecondScan(img, imgLabels, P.data(), sop, sopArray.data(), nLabels), nParallelStripes);
cv::parallel_for_(range2, SecondScan(img, imgLabels, P.data(), sop, sopArray.data(), nLabels), nParallelStripes);
StatsOp::mergeStats(imgLabels, sopArray.data(), sop, nLabels);
sop.finish();
@ -2602,8 +2618,9 @@ namespace cv{
//............
const size_t Plength = size_t(((h + 1) / 2) * size_t((w + 1) / 2)) + 1;
LabelT *P = (LabelT *)fastMalloc(sizeof(LabelT) *Plength);
P[0] = 0;
std::vector<LabelT> P_(Plength, 0);
LabelT *P = P_.data();
//P[0] = 0;
LabelT lunique = 1;
// First scan
@ -3911,7 +3928,6 @@ namespace cv{
}
sop.finish();
fastFree(P);
return nLabels;

View File

@ -150,4 +150,80 @@ TEST(Imgproc_ConnectedComponents, grana_buffer_overflow)
EXPECT_EQ(1, nbComponents);
}
static cv::Mat createCrashMat(int numThreads) {
const int h = numThreads * 4 * 2 + 8;
const double nParallelStripes = std::max(1, std::min(h / 2, numThreads * 4));
const int w = 4;
const int nstripes = cvRound(nParallelStripes <= 0 ? h : MIN(MAX(nParallelStripes, 1.), h));
const cv::Range stripeRange(0, nstripes);
const cv::Range wholeRange(0, h);
cv::Mat m(h, w, CV_8U);
m = 0;
// Look for a range that starts with odd value and ends with even value
cv::Range bugRange;
for (int s = stripeRange.start; s < stripeRange.end; s++) {
cv::Range sr(s, s + 1);
cv::Range r;
r.start = (int) (wholeRange.start +
((uint64) sr.start * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
r.end = sr.end >= nstripes ?
wholeRange.end :
(int) (wholeRange.start +
((uint64) sr.end * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
if (r.start > 0 && r.start % 2 == 1 && r.end % 2 == 0 && r.end >= r.start + 2) {
bugRange = r;
break;
}
}
if (bugRange.empty()) { // Could not create a buggy range
return m;
}
// Fill in bug Range
for (int x = 1; x < w; x++) {
m.at<char>(bugRange.start - 1, x) = 1;
}
m.at<char>(bugRange.start + 0, 0) = 1;
m.at<char>(bugRange.start + 0, 1) = 1;
m.at<char>(bugRange.start + 0, 3) = 1;
m.at<char>(bugRange.start + 1, 1) = 1;
m.at<char>(bugRange.start + 2, 1) = 1;
m.at<char>(bugRange.start + 2, 3) = 1;
m.at<char>(bugRange.start + 3, 0) = 1;
m.at<char>(bugRange.start + 3, 1) = 1;
return m;
}
TEST(Imgproc_ConnectedComponents, parallel_wu_labels)
{
cv::Mat mat = createCrashMat(cv::getNumThreads());
if(mat.empty()) {
return;
}
const int nbPixels = cv::countNonZero(mat);
cv::Mat labels;
cv::Mat stats;
cv::Mat centroids;
int nb = 0;
EXPECT_NO_THROW( nb = cv::connectedComponentsWithStats(mat, labels, stats, centroids, 8, CV_32S, cv::CCL_WU) );
int area = 0;
for(int i=1; i<nb; ++i) {
area += stats.at<int32_t>(i, cv::CC_STAT_AREA);
}
EXPECT_EQ(nbPixels, area);
}
}} // namespace

View File

@ -0,0 +1,89 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.*;
import org.opencv.core.Range;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class PanoramaStitchingRotatingCameraRun {
void basicPanoramaStitching (String[] args) {
String img1path = args[0], img2path = args[1];
Mat img1 = new Mat(), img2 = new Mat();
img1 = Imgcodecs.imread(img1path);
img2 = Imgcodecs.imread(img2path);
//! [camera-pose-from-Blender-at-location-1]
Mat c1Mo = new Mat( 4, 4, CvType.CV_64FC1 );
c1Mo.put(0 ,0 ,0.9659258723258972, 0.2588190734386444, 0.0, 1.5529145002365112,
0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,
-0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,
0, 0, 0, 1 );
//! [camera-pose-from-Blender-at-location-1]
//! [camera-pose-from-Blender-at-location-2]
Mat c2Mo = new Mat( 4, 4, CvType.CV_64FC1 );
c2Mo.put(0, 0, 0.9659258723258972, -0.2588190734386444, 0.0, -1.5529145002365112,
-0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,
0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,
0, 0, 0, 1);
//! [camera-pose-from-Blender-at-location-2]
//! [camera-intrinsics-from-Blender]
Mat cameraMatrix = new Mat(3, 3, CvType.CV_64FC1);
cameraMatrix.put(0, 0, 700.0, 0.0, 320.0, 0.0, 700.0, 240.0, 0, 0, 1 );
//! [camera-intrinsics-from-Blender]
//! [extract-rotation]
Range rowRange = new Range(0,3);
Range colRange = new Range(0,3);
//! [extract-rotation]
//! [compute-rotation-displacement]
//c1Mo * oMc2
Mat R1 = new Mat(c1Mo, rowRange, colRange);
Mat R2 = new Mat(c2Mo, rowRange, colRange);
Mat R_2to1 = new Mat();
Core.gemm(R1, R2.t(), 1, new Mat(), 0, R_2to1 );
//! [compute-rotation-displacement]
//! [compute-homography]
Mat tmp = new Mat(), H = new Mat();
Core.gemm(cameraMatrix, R_2to1, 1, new Mat(), 0, tmp);
Core.gemm(tmp, cameraMatrix.inv(), 1, new Mat(), 0, H);
Scalar s = new Scalar(H.get(2, 2)[0]);
Core.divide(H, s, H);
System.out.println(H.dump());
//! [compute-homography]
//! [stitch]
Mat img_stitch = new Mat();
Imgproc.warpPerspective(img2, img_stitch, H, new Size(img2.cols()*2, img2.rows()) );
Mat half = new Mat();
half = new Mat(img_stitch, new Rect(0, 0, img1.cols(), img1.rows()));
img1.copyTo(half);
//! [stitch]
Mat img_compare = new Mat();
Mat img_space = Mat.zeros(new Size(50, img1.rows()), CvType.CV_8UC3);
List<Mat>list = new ArrayList<>();
list.add(img1);
list.add(img_space);
list.add(img2);
Core.hconcat(list, img_compare);
HighGui.imshow("Compare Images", img_compare);
HighGui.imshow("Panorama Stitching", img_stitch);
HighGui.waitKey(0);
System.exit(0);
}
}
public class PanoramaStitchingRotatingCamera {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new PanoramaStitchingRotatingCameraRun().basicPanoramaStitching(args);
}
}

View File

@ -0,0 +1,89 @@
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.opencv.core.*;
import org.opencv.calib3d.Calib3d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class PerspectiveCorrectionRun {
void perspectiveCorrection (String[] args) {
String img1Path = args[0], img2Path = args[1];
Mat img1 = Imgcodecs.imread(img1Path);
Mat img2 = Imgcodecs.imread(img2Path);
//! [find-corners]
MatOfPoint2f corners1 = new MatOfPoint2f(), corners2 = new MatOfPoint2f();
boolean found1 = Calib3d.findChessboardCorners(img1, new Size(9, 6), corners1 );
boolean found2 = Calib3d.findChessboardCorners(img2, new Size(9, 6), corners2 );
//! [find-corners]
if (!found1 || !found2) {
System.out.println("Error, cannot find the chessboard corners in both images.");
System.exit(-1);
}
//! [estimate-homography]
Mat H = new Mat();
H = Calib3d.findHomography(corners1, corners2);
System.out.println(H.dump());
//! [estimate-homography]
//! [warp-chessboard]
Mat img1_warp = new Mat();
Imgproc.warpPerspective(img1, img1_warp, H, img1.size());
//! [warp-chessboard]
Mat img_draw_warp = new Mat();
List<Mat> list1 = new ArrayList<>(), list2 = new ArrayList<>() ;
list1.add(img2);
list1.add(img1_warp);
Core.hconcat(list1, img_draw_warp);
HighGui.imshow("Desired chessboard view / Warped source chessboard view", img_draw_warp);
//! [compute-transformed-corners]
Mat img_draw_matches = new Mat();
list2.add(img1);
list2.add(img2);
Core.hconcat(list2, img_draw_matches);
Point []corners1Arr = corners1.toArray();
for (int i = 0 ; i < corners1Arr.length; i++) {
Mat pt1 = new Mat(3, 1, CvType.CV_64FC1), pt2 = new Mat();
pt1.put(0, 0, corners1Arr[i].x, corners1Arr[i].y, 1 );
Core.gemm(H, pt1, 1, new Mat(), 0, pt2);
double[] data = pt2.get(2, 0);
Core.divide(pt2, new Scalar(data[0]), pt2);
double[] data1 =pt2.get(0, 0);
double[] data2 = pt2.get(1, 0);
Point end = new Point((int)(img1.cols()+ data1[0]), (int)data2[0]);
Imgproc.line(img_draw_matches, corners1Arr[i], end, RandomColor(), 2);
}
HighGui.imshow("Draw matches", img_draw_matches);
HighGui.waitKey(0);
//! [compute-transformed-corners]
System.exit(0);
}
Scalar RandomColor () {
Random rng = new Random();
int r = rng.nextInt(256);
int g = rng.nextInt(256);
int b = rng.nextInt(256);
return new Scalar(r, g, b);
}
}
public class PerspectiveCorrection {
public static void main (String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new PerspectiveCorrectionRun().perspectiveCorrection(args);
}
}

View File

@ -0,0 +1,71 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
def basicPanoramaStitching(img1Path, img2Path):
img1 = cv.imread(cv.samples.findFile(img1Path))
img2 = cv.imread(cv.samples.findFile(img2Path))
# [camera-pose-from-Blender-at-location-1]
c1Mo = np.array([[0.9659258723258972, 0.2588190734386444, 0.0, 1.5529145002365112],
[ 0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443],
[-0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654],
[0, 0, 0, 1]],dtype=np.float64)
# [camera-pose-from-Blender-at-location-1]
# [camera-pose-from-Blender-at-location-2]
c2Mo = np.array([[0.9659258723258972, -0.2588190734386444, 0.0, -1.5529145002365112],
[-0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443],
[0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654],
[0, 0, 0, 1]],dtype=np.float64)
# [camera-pose-from-Blender-at-location-2]
# [camera-intrinsics-from-Blender]
cameraMatrix = np.array([[700.0, 0.0, 320.0], [0.0, 700.0, 240.0], [0, 0, 1]], dtype=np.float32)
# [camera-intrinsics-from-Blender]
# [extract-rotation]
R1 = c1Mo[0:3, 0:3]
R2 = c2Mo[0:3, 0:3]
#[extract-rotation]
# [compute-rotation-displacement]
R2 = R2.transpose()
R_2to1 = np.dot(R1,R2)
# [compute-rotation-displacement]
# [compute-homography]
H = cameraMatrix.dot(R_2to1).dot(np.linalg.inv(cameraMatrix))
H = H / H[2][2]
# [compute-homography]
# [stitch]
img_stitch = cv.warpPerspective(img2, H, (img2.shape[1]*2, img2.shape[0]))
img_stitch[0:img1.shape[0], 0:img1.shape[1]] = img1
# [stitch]
img_space = np.zeros((img1.shape[0],50,3), dtype=np.uint8)
img_compare = cv.hconcat([img1,img_space, img2])
cv.imshow("Final", img_compare)
cv.imshow("Panorama", img_stitch)
cv.waitKey(0)
def main():
import argparse
parser = argparse.ArgumentParser(description="Code for homography tutorial. Example 5: basic panorama stitching from a rotating camera.")
parser.add_argument("-I1","--image1", help = "path to first image", default="Blender_Suzanne1.jpg")
parser.add_argument("-I2","--image2", help = "path to second image", default="Blender_Suzanne2.jpg")
args = parser.parse_args()
print("Panorama Stitching Started")
basicPanoramaStitching(args.image1, args.image2)
print("Panorama Stitching Completed Successfully")
if __name__ == '__main__':
main()

View File

@ -0,0 +1,74 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import sys
def randomColor():
color = np.random.randint(0, 255,(1, 3))
return color[0].tolist()
def perspectiveCorrection(img1Path, img2Path ,patternSize ):
img1 = cv.imread(cv.samples.findFile(img1Path))
img2 = cv.imread(cv.samples.findFile(img2Path))
# [find-corners]
ret1, corners1 = cv.findChessboardCorners(img1, patternSize)
ret2, corners2 = cv.findChessboardCorners(img2, patternSize)
# [find-corners]
if not ret1 or not ret2:
print("Error, cannot find the chessboard corners in both images.")
sys.exit(-1)
# [estimate-homography]
H, _ = cv.findHomography(corners1, corners2)
print(H)
# [estimate-homography]
# [warp-chessboard]
img1_warp = cv.warpPerspective(img1, H, (img1.shape[1], img1.shape[0]))
# [warp-chessboard]
img_draw_warp = cv.hconcat([img2, img1_warp])
cv.imshow("Desired chessboard view / Warped source chessboard view", img_draw_warp )
corners1 = corners1.tolist()
corners1 = [a[0] for a in corners1]
# [compute-transformed-corners]
img_draw_matches = cv.hconcat([img1, img2])
for i in range(len(corners1)):
pt1 = np.array([corners1[i][0], corners1[i][1], 1])
pt1 = pt1.reshape(3, 1)
pt2 = np.dot(H, pt1)
pt2 = pt2/pt2[2]
end = (int(img1.shape[1] + pt2[0]), int(pt2[1]))
cv.line(img_draw_matches, tuple([int(j) for j in corners1[i]]), end, randomColor(), 2)
cv.imshow("Draw matches", img_draw_matches)
cv.waitKey(0)
# [compute-transformed-corners]
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-I1', "--image1", help="Path to the first image", default="left02.jpg")
parser.add_argument('-I2', "--image2", help="Path to the second image", default="left01.jpg")
parser.add_argument('-H', "--height", help="Height of pattern size", default=6)
parser.add_argument('-W', "--width", help="Width of pattern size", default=9)
args = parser.parse_args()
img1Path = args.image1
img2Path = args.image2
h = args.height
w = args.width
perspectiveCorrection(img1Path, img2Path, (w, h))
if __name__ == "__main__":
main()