mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #20103 from thezane:make-div-spectrums-public
* Make divSpectrums public * Add unit test
This commit is contained in:
parent
1ae16beb06
commit
c0162a64d1
@ -2835,6 +2835,22 @@ An example is shown below:
|
||||
*/
|
||||
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
|
||||
|
||||
/** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
|
||||
|
||||
The function cv::divSpectrums performs the per-element division of the first array by the second array.
|
||||
The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
|
||||
|
||||
@param a first input array.
|
||||
@param b second input array of the same size and type as src1 .
|
||||
@param c output array of the same size and type as src1 .
|
||||
@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
|
||||
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
|
||||
@param conjB optional flag that conjugates the second input array before the multiplication (true)
|
||||
or not (false).
|
||||
*/
|
||||
CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c,
|
||||
int flags, bool conjB = false);
|
||||
|
||||
//! @} imgproc_motion
|
||||
|
||||
//! @addtogroup imgproc_misc
|
||||
|
@ -154,7 +154,7 @@ static void magSpectrums( InputArray _src, OutputArray _dst)
|
||||
}
|
||||
}
|
||||
|
||||
static void divSpectrums( InputArray _srcA, InputArray _srcB, OutputArray _dst, int flags, bool conjB)
|
||||
void divSpectrums( InputArray _srcA, InputArray _srcB, OutputArray _dst, int flags, bool conjB)
|
||||
{
|
||||
Mat srcA = _srcA.getMat(), srcB = _srcB.getMat();
|
||||
int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type();
|
||||
|
@ -120,4 +120,278 @@ TEST(Imgproc_PhaseCorrelatorTest, accuracy_1d_odd_fft) {
|
||||
ASSERT_NEAR(phaseShift.x, (double)xShift, 1.);
|
||||
}
|
||||
|
||||
////////////////////// DivSpectrums ////////////////////////
|
||||
class CV_DivSpectrumsTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_DivSpectrumsTest();
|
||||
protected:
|
||||
void run_func();
|
||||
void get_test_array_types_and_sizes( int, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void prepare_to_validation( int test_case_idx );
|
||||
int flags;
|
||||
};
|
||||
|
||||
|
||||
CV_DivSpectrumsTest::CV_DivSpectrumsTest() : flags(0)
|
||||
{
|
||||
// Allocate test matrices.
|
||||
test_array[INPUT].push_back(NULL); // first input DFT as a CCS-packed array or complex matrix.
|
||||
test_array[INPUT].push_back(NULL); // second input DFT as a CCS-packed array or complex matrix.
|
||||
test_array[OUTPUT].push_back(NULL); // output DFT as a complex matrix.
|
||||
test_array[REF_OUTPUT].push_back(NULL); // reference output DFT as a complex matrix.
|
||||
test_array[TEMP].push_back(NULL); // first input DFT converted to a complex matrix.
|
||||
test_array[TEMP].push_back(NULL); // second input DFT converted to a complex matrix.
|
||||
test_array[TEMP].push_back(NULL); // output DFT as a CCV-packed array.
|
||||
}
|
||||
|
||||
void CV_DivSpectrumsTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx, sizes, types);
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
// Get the flag of the input.
|
||||
const int rand_int_flags = cvtest::randInt(rng);
|
||||
flags = rand_int_flags & (CV_DXT_MUL_CONJ | CV_DXT_ROWS);
|
||||
|
||||
// Get input type.
|
||||
const int rand_int_type = cvtest::randInt(rng);
|
||||
int type;
|
||||
|
||||
if (rand_int_type % 4)
|
||||
{
|
||||
type = CV_32FC1;
|
||||
}
|
||||
else if (rand_int_type % 4 == 1)
|
||||
{
|
||||
type = CV_32FC2;
|
||||
}
|
||||
else if (rand_int_type % 4 == 2)
|
||||
{
|
||||
type = CV_64FC1;
|
||||
}
|
||||
else
|
||||
{
|
||||
type = CV_64FC2;
|
||||
}
|
||||
|
||||
for( size_t i = 0; i < types.size(); i++ )
|
||||
{
|
||||
for( size_t j = 0; j < types[i].size(); j++ )
|
||||
{
|
||||
types[i][j] = type;
|
||||
}
|
||||
}
|
||||
|
||||
// Inputs are CCS-packed arrays. Prepare outputs and temporary inputs as complex matrices.
|
||||
if( type == CV_32FC1 || type == CV_64FC1 )
|
||||
{
|
||||
types[OUTPUT][0] += 8;
|
||||
types[REF_OUTPUT][0] += 8;
|
||||
types[TEMP][0] += 8;
|
||||
types[TEMP][1] += 8;
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper function to convert a ccs array of depth_t into a complex matrix.
|
||||
template<typename depth_t>
|
||||
static void convert_from_ccs_helper( const Mat& src0, const Mat& src1, Mat& dst )
|
||||
{
|
||||
const int cn = src0.channels();
|
||||
int srcstep = cn;
|
||||
int dststep = 1;
|
||||
|
||||
if( !dst.isContinuous() )
|
||||
dststep = (int)(dst.step/dst.elemSize());
|
||||
|
||||
if( !src0.isContinuous() )
|
||||
srcstep = (int)(src0.step/src0.elemSize1());
|
||||
|
||||
Complex<depth_t> *dst_data = dst.ptr<Complex<depth_t> >();
|
||||
const depth_t* src0_data = src0.ptr<depth_t>();
|
||||
const depth_t* src1_data = src1.ptr<depth_t>();
|
||||
dst_data->re = src0_data[0];
|
||||
dst_data->im = 0;
|
||||
const int n = dst.cols + dst.rows - 1;
|
||||
const int n2 = (n+1) >> 1;
|
||||
|
||||
if( (n & 1) == 0 )
|
||||
{
|
||||
dst_data[n2*dststep].re = src0_data[(cn == 1 ? n-1 : n2)*srcstep];
|
||||
dst_data[n2*dststep].im = 0;
|
||||
}
|
||||
|
||||
int delta0 = srcstep;
|
||||
int delta1 = delta0 + (cn == 1 ? srcstep : 1);
|
||||
|
||||
if( cn == 1 )
|
||||
srcstep *= 2;
|
||||
|
||||
for( int i = 1; i < n2; i++, delta0 += srcstep, delta1 += srcstep )
|
||||
{
|
||||
depth_t t0 = src0_data[delta0];
|
||||
depth_t t1 = src0_data[delta1];
|
||||
|
||||
dst_data[i*dststep].re = t0;
|
||||
dst_data[i*dststep].im = t1;
|
||||
|
||||
t0 = src1_data[delta0];
|
||||
t1 = -src1_data[delta1];
|
||||
|
||||
dst_data[(n-i)*dststep].re = t0;
|
||||
dst_data[(n-i)*dststep].im = t1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper function to convert a ccs array into a complex matrix.
|
||||
static void convert_from_ccs( const Mat& src0, const Mat& src1, Mat& dst, const int flags )
|
||||
{
|
||||
if( dst.rows > 1 && (dst.cols > 1 || (flags & DFT_ROWS)) )
|
||||
{
|
||||
const int count = dst.rows;
|
||||
const int len = dst.cols;
|
||||
const bool is2d = (flags & DFT_ROWS) == 0;
|
||||
for( int i = 0; i < count; i++ )
|
||||
{
|
||||
const int j = !is2d || i == 0 ? i : count - i;
|
||||
const Mat& src0row = src0.row(i);
|
||||
const Mat& src1row = src1.row(j);
|
||||
Mat dstrow = dst.row(i);
|
||||
convert_from_ccs( src0row, src1row, dstrow, 0 );
|
||||
}
|
||||
|
||||
if( is2d )
|
||||
{
|
||||
const Mat& src0row = src0.col(0);
|
||||
Mat dstrow = dst.col(0);
|
||||
convert_from_ccs( src0row, src0row, dstrow, 0 );
|
||||
|
||||
if( (len & 1) == 0 )
|
||||
{
|
||||
const Mat& src0row_even = src0.col(src0.cols - 1);
|
||||
Mat dstrow_even = dst.col(len/2);
|
||||
convert_from_ccs( src0row_even, src0row_even, dstrow_even, 0 );
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( dst.depth() == CV_32F )
|
||||
{
|
||||
convert_from_ccs_helper<float>( src0, src1, dst );
|
||||
}
|
||||
else
|
||||
{
|
||||
convert_from_ccs_helper<double>( src0, src1, dst );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper function to compute complex number (nu_re + nu_im * i) / (de_re + de_im * i).
|
||||
static std::pair<double, double> divide_complex_numbers( const double nu_re, const double nu_im,
|
||||
const double de_re, const double de_im,
|
||||
const bool conj_de )
|
||||
{
|
||||
if ( conj_de )
|
||||
{
|
||||
return divide_complex_numbers( nu_re, nu_im, de_re, -de_im, false /* conj_de */ );
|
||||
}
|
||||
|
||||
const double result_de = de_re * de_re + de_im * de_im + DBL_EPSILON;
|
||||
const double result_re = nu_re * de_re + nu_im * de_im;
|
||||
const double result_im = nu_re * (-de_im) + nu_im * de_re;
|
||||
return std::pair<double, double>(result_re / result_de, result_im / result_de);
|
||||
};
|
||||
|
||||
/// Helper function to divide a DFT in src1 by a DFT in src2 with depths depth_t. The DFTs are
|
||||
/// complex matrices.
|
||||
template <typename depth_t>
|
||||
static void div_complex_helper( const Mat& src1, const Mat& src2, Mat& dst, int flags )
|
||||
{
|
||||
CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
|
||||
dst.create( src1.rows, src1.cols, src1.type() );
|
||||
const int cn = src1.channels();
|
||||
int cols = src1.cols * cn;
|
||||
|
||||
for( int i = 0; i < dst.rows; i++ )
|
||||
{
|
||||
const depth_t *src1_data = src1.ptr<depth_t>(i);
|
||||
const depth_t *src2_data = src2.ptr<depth_t>(i);
|
||||
depth_t *dst_data = dst.ptr<depth_t>(i);
|
||||
for( int j = 0; j < cols; j += 2 )
|
||||
{
|
||||
std::pair<double, double> result =
|
||||
divide_complex_numbers( src1_data[j], src1_data[j + 1],
|
||||
src2_data[j], src2_data[j + 1],
|
||||
(flags & CV_DXT_MUL_CONJ) != 0 );
|
||||
dst_data[j] = (depth_t)result.first;
|
||||
dst_data[j + 1] = (depth_t)result.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Helper function to divide a DFT in src1 by a DFT in src2. The DFTs are complex matrices.
|
||||
static void div_complex( const Mat& src1, const Mat& src2, Mat& dst, const int flags )
|
||||
{
|
||||
const int type = src1.type();
|
||||
CV_Assert( type == CV_32FC2 || type == CV_64FC2 );
|
||||
|
||||
if ( src1.depth() == CV_32F )
|
||||
{
|
||||
return div_complex_helper<float>( src1, src2, dst, flags );
|
||||
}
|
||||
else
|
||||
{
|
||||
return div_complex_helper<double>( src1, src2, dst, flags );
|
||||
}
|
||||
}
|
||||
|
||||
void CV_DivSpectrumsTest::prepare_to_validation( int /* test_case_idx */ )
|
||||
{
|
||||
Mat &src1 = test_mat[INPUT][0];
|
||||
Mat &src2 = test_mat[INPUT][1];
|
||||
Mat &ref_dst = test_mat[REF_OUTPUT][0];
|
||||
const int cn = src1.channels();
|
||||
// Inputs are CCS-packed arrays. Convert them to complex matrices and get the expected output
|
||||
// as a complex matrix.
|
||||
if( cn == 1 )
|
||||
{
|
||||
Mat &converted_src1 = test_mat[TEMP][0];
|
||||
Mat &converted_src2 = test_mat[TEMP][1];
|
||||
convert_from_ccs( src1, src1, converted_src1, flags );
|
||||
convert_from_ccs( src2, src2, converted_src2, flags );
|
||||
div_complex( converted_src1, converted_src2, ref_dst, flags );
|
||||
}
|
||||
// Inputs are complex matrices. Get the expected output as a complex matrix.
|
||||
else
|
||||
{
|
||||
div_complex( src1, src2, ref_dst, flags );
|
||||
}
|
||||
}
|
||||
|
||||
void CV_DivSpectrumsTest::run_func()
|
||||
{
|
||||
const Mat &src1 = test_mat[INPUT][0];
|
||||
const Mat &src2 = test_mat[INPUT][1];
|
||||
const int cn = src1.channels();
|
||||
|
||||
// Inputs are CCS-packed arrays. Get the output as a CCS-packed array and convert it to a
|
||||
// complex matrix.
|
||||
if ( cn == 1 )
|
||||
{
|
||||
Mat &dst = test_mat[TEMP][2];
|
||||
cv::divSpectrums( src1, src2, dst, flags, (flags & CV_DXT_MUL_CONJ) != 0 );
|
||||
Mat &converted_dst = test_mat[OUTPUT][0];
|
||||
convert_from_ccs( dst, dst, converted_dst, flags );
|
||||
}
|
||||
// Inputs are complex matrices. Get the output as a complex matrix.
|
||||
else
|
||||
{
|
||||
Mat &dst = test_mat[OUTPUT][0];
|
||||
cv::divSpectrums( src1, src2, dst, flags, (flags & CV_DXT_MUL_CONJ) != 0 );
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Imgproc_DivSpectrums, accuracy) { CV_DivSpectrumsTest test; test.safe_run(); }
|
||||
|
||||
}} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user