mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 11:40:44 +08:00
Merge pull request #19632 from l-bat:lb/ie_arm_target
Added OpenVINO ARM target * Added IE ARM target * Added OpenVINO ARM target * Delete ARM target * Detect ARM platform * Changed device name in ArmPlugin * Change ARM detection
This commit is contained in:
parent
1211a8b9cd
commit
c0dd82fb53
@ -49,6 +49,8 @@ CV_EXPORTS_W void resetMyriadDevice();
|
||||
#define CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 "Myriad2"
|
||||
/// Intel(R) Neural Compute Stick 2, NCS2 (USB 03e7:2485), MyriadX (https://software.intel.com/ru-ru/neural-compute-stick)
|
||||
#define CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X "MyriadX"
|
||||
#define CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE "ARM_COMPUTE"
|
||||
#define CV_DNN_INFERENCE_ENGINE_CPU_TYPE_X86 "X86"
|
||||
|
||||
|
||||
/** @brief Returns Inference Engine VPU type.
|
||||
@ -57,6 +59,11 @@ CV_EXPORTS_W void resetMyriadDevice();
|
||||
*/
|
||||
CV_EXPORTS_W cv::String getInferenceEngineVPUType();
|
||||
|
||||
/** @brief Returns Inference Engine CPU type.
|
||||
*
|
||||
* Specify OpenVINO plugin: CPU or ARM.
|
||||
*/
|
||||
CV_EXPORTS_W cv::String getInferenceEngineCPUType();
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace
|
||||
|
@ -1286,17 +1286,19 @@ struct Net::Impl : public detail::NetImplBase
|
||||
CV_Assert(preferableBackend != DNN_BACKEND_HALIDE ||
|
||||
preferableTarget == DNN_TARGET_CPU ||
|
||||
preferableTarget == DNN_TARGET_OPENCL);
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
||||
preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
CV_Assert(
|
||||
preferableTarget == DNN_TARGET_CPU ||
|
||||
(preferableTarget == DNN_TARGET_CPU && (!isArmComputePlugin() || preferableBackend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) ||
|
||||
preferableTarget == DNN_TARGET_OPENCL ||
|
||||
preferableTarget == DNN_TARGET_OPENCL_FP16 ||
|
||||
preferableTarget == DNN_TARGET_MYRIAD ||
|
||||
preferableTarget == DNN_TARGET_FPGA
|
||||
);
|
||||
}
|
||||
#endif
|
||||
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
|
||||
{
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
||||
@ -1972,8 +1974,8 @@ struct Net::Impl : public detail::NetImplBase
|
||||
return;
|
||||
}
|
||||
|
||||
bool supportsCPUFallback = preferableTarget == DNN_TARGET_CPU ||
|
||||
BackendRegistry::checkIETarget(DNN_TARGET_CPU);
|
||||
bool supportsCPUFallback = !isArmComputePlugin() && (preferableTarget == DNN_TARGET_CPU ||
|
||||
BackendRegistry::checkIETarget(DNN_TARGET_CPU));
|
||||
|
||||
// Build Inference Engine networks from sets of layers that support this
|
||||
// backend. Split a whole model on several Inference Engine networks if
|
||||
|
@ -382,7 +382,11 @@ public:
|
||||
shape[1] = weights_.total();
|
||||
auto weight = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), weights_.data);
|
||||
auto bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), bias_.data);
|
||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2021_2)
|
||||
auto scale_node = std::make_shared<ngraph::op::v1::Multiply>(ieInpNode, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#else
|
||||
auto scale_node = std::make_shared<ngraph::op::v0::Multiply>(ieInpNode, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#endif
|
||||
auto scale_shift = std::make_shared<ngraph::op::v1::Add>(scale_node, bias, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(scale_shift));
|
||||
}
|
||||
|
@ -273,10 +273,13 @@ public:
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
if (ksize == 1)
|
||||
bool isArmTarget = preferableTarget == DNN_TARGET_CPU && isArmComputePlugin();
|
||||
if (isArmTarget && blobs.empty())
|
||||
return false;
|
||||
if (ksize == 1)
|
||||
return isArmTarget;
|
||||
if (ksize == 3)
|
||||
return preferableTarget == DNN_TARGET_CPU;
|
||||
return preferableTarget != DNN_TARGET_MYRIAD && !isArmTarget;
|
||||
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || preferableTarget != DNN_TARGET_MYRIAD) && blobs.empty())
|
||||
return false;
|
||||
return (preferableTarget != DNN_TARGET_MYRIAD || dilation.width == dilation.height);
|
||||
@ -578,7 +581,7 @@ public:
|
||||
CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1);
|
||||
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
||||
std::vector<size_t> dims = ieInpNode->get_shape();
|
||||
CV_Assert(dims.size() == 4 || dims.size() == 5);
|
||||
CV_Check(dims.size(), dims.size() >= 3 && dims.size() <= 5, "");
|
||||
std::shared_ptr<ngraph::Node> ieWeights = nodes.size() > 1 ? nodes[1].dynamicCast<InfEngineNgraphNode>()->node : nullptr;
|
||||
if (nodes.size() > 1)
|
||||
CV_Assert(ieWeights); // dynamic_cast should not fail
|
||||
@ -616,7 +619,7 @@ public:
|
||||
else
|
||||
{
|
||||
auto shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{kernel_shape.size()}, kernel_shape.data());
|
||||
ngraph::Shape{kernel_shape.size()}, std::vector<int64_t>(kernel_shape.begin(), kernel_shape.end()));
|
||||
ieWeights = std::make_shared<ngraph::op::v1::Reshape>(ieWeights, shape, true);
|
||||
}
|
||||
|
||||
@ -651,7 +654,7 @@ public:
|
||||
if (nodes.size() == 3)
|
||||
{
|
||||
auto bias_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{shape.size()}, shape.data());
|
||||
ngraph::Shape{shape.size()}, std::vector<int64_t>(shape.begin(), shape.end()));
|
||||
bias = std::make_shared<ngraph::op::v1::Reshape>(nodes[2].dynamicCast<InfEngineNgraphNode>()->node, bias_shape, true);
|
||||
}
|
||||
else
|
||||
|
@ -1164,11 +1164,15 @@ struct PowerFunctor : public BaseFunctor
|
||||
ngraph::Shape{1}, &scale);
|
||||
auto shift_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape{1}, &shift);
|
||||
auto power_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape{1}, &power);
|
||||
|
||||
auto mul = std::make_shared<ngraph::op::v1::Multiply>(scale_node, node, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
auto scale_shift = std::make_shared<ngraph::op::v1::Add>(mul, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
|
||||
if (power == 1)
|
||||
return scale_shift;
|
||||
|
||||
auto power_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape{1}, &power);
|
||||
return std::make_shared<ngraph::op::v1::Power>(scale_shift, power_node, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
}
|
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
@ -324,8 +324,8 @@ public:
|
||||
if (!acrossSpatial) {
|
||||
axes_data.push_back(1);
|
||||
} else {
|
||||
axes_data.resize(ieInpNode->get_shape().size());
|
||||
std::iota(axes_data.begin(), axes_data.end(), 0);
|
||||
axes_data.resize(ieInpNode->get_shape().size() - 1);
|
||||
std::iota(axes_data.begin(), axes_data.end(), 1);
|
||||
}
|
||||
auto axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{axes_data.size()}, axes_data);
|
||||
auto norm = std::make_shared<ngraph::op::NormalizeL2>(ieInpNode, axes, epsilon, ngraph::op::EpsMode::ADD);
|
||||
@ -334,19 +334,18 @@ public:
|
||||
std::vector<size_t> shape(ieInpNode->get_shape().size(), 1);
|
||||
shape[0] = blobs.empty() ? 1 : batch;
|
||||
shape[1] = numChannels;
|
||||
std::shared_ptr<ngraph::op::Constant> weight;
|
||||
if (blobs.empty())
|
||||
if (!blobs.empty())
|
||||
{
|
||||
std::vector<float> ones(numChannels, 1);
|
||||
weight = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), ones.data());
|
||||
}
|
||||
else
|
||||
{
|
||||
weight = std::make_shared<ngraph::op::Constant>(
|
||||
auto weight = std::make_shared<ngraph::op::Constant>(
|
||||
ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);
|
||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2021_2)
|
||||
auto mul = std::make_shared<ngraph::op::v1::Multiply>(norm, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#else
|
||||
auto mul = std::make_shared<ngraph::op::v0::Multiply>(norm, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#endif
|
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(mul));
|
||||
}
|
||||
auto mul = std::make_shared<ngraph::op::v0::Multiply>(norm, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(mul));
|
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(norm));
|
||||
}
|
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
|
@ -97,9 +97,12 @@ public:
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) &&
|
||||
(preferableTarget != DNN_TARGET_MYRIAD ||
|
||||
(dstRanges.size() == 4 && paddings[0].first == 0 && paddings[0].second == 0));
|
||||
{
|
||||
if (INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) && preferableTarget == DNN_TARGET_MYRIAD)
|
||||
return dstRanges.size() == 4 && paddings[0].first == 0 && paddings[0].second == 0;
|
||||
|
||||
return (dstRanges.size() <= 4 || !isArmComputePlugin());
|
||||
}
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && dstRanges.size() == 4);
|
||||
|
@ -105,6 +105,10 @@ public:
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && preferableTarget == DNN_TARGET_CPU)
|
||||
return _order.size() <= 4 || !isArmComputePlugin();
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && haveInfEngine());
|
||||
}
|
||||
|
@ -205,7 +205,9 @@ public:
|
||||
#endif
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
return !computeMaxIdx && type != STOCHASTIC && kernel_size.size() > 1;
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
return !computeMaxIdx && type != STOCHASTIC && kernel_size.size() > 1 && (kernel_size.size() != 3 || !isArmComputePlugin());
|
||||
#endif
|
||||
}
|
||||
else if (backendId == DNN_BACKEND_OPENCV)
|
||||
{
|
||||
|
@ -393,8 +393,10 @@ public:
|
||||
std::vector<int64_t> mask(anchors, 1);
|
||||
region = std::make_shared<ngraph::op::RegionYolo>(tr_input, coords, classes, anchors, useSoftmax, mask, 1, 3, anchors_vec);
|
||||
|
||||
auto tr_shape = tr_input->get_shape();
|
||||
auto shape_as_inp = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
|
||||
ngraph::Shape{tr_input->get_shape().size()}, tr_input->get_shape().data());
|
||||
ngraph::Shape{tr_shape.size()},
|
||||
std::vector<int64_t>(tr_shape.begin(), tr_shape.end()));
|
||||
|
||||
region = std::make_shared<ngraph::op::v1::Reshape>(region, shape_as_inp, true);
|
||||
new_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{4}, std::vector<int64_t>{0, 2, 3, 1});
|
||||
@ -540,7 +542,7 @@ public:
|
||||
result = std::make_shared<ngraph::op::Transpose>(result, tr_axes);
|
||||
if (b > 1)
|
||||
{
|
||||
std::vector<size_t> sizes = {(size_t)b, result->get_shape()[0] / b, result->get_shape()[1]};
|
||||
std::vector<int64_t> sizes{b, static_cast<int64_t>(result->get_shape()[0]) / b, static_cast<int64_t>(result->get_shape()[1])};
|
||||
auto shape_node = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{sizes.size()}, sizes.data());
|
||||
result = std::make_shared<ngraph::op::v1::Reshape>(result, shape_node, true);
|
||||
}
|
||||
|
@ -249,7 +249,11 @@ public:
|
||||
auto weight = blobs.empty() ? ieInpNode1 :
|
||||
std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);
|
||||
|
||||
node = std::make_shared<ngraph::op::v0::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2021_2)
|
||||
node = std::make_shared<ngraph::op::v1::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#else
|
||||
node = std::make_shared<ngraph::op::v0::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
#endif
|
||||
}
|
||||
if (hasBias || !hasWeights)
|
||||
{
|
||||
|
@ -651,6 +651,22 @@ InferenceEngine::Core& getCore(const std::string& id)
|
||||
}
|
||||
#endif
|
||||
|
||||
static bool detectArmPlugin_()
|
||||
{
|
||||
InferenceEngine::Core& ie = getCore("CPU");
|
||||
const std::vector<std::string> devices = ie.GetAvailableDevices();
|
||||
for (std::vector<std::string>::const_iterator i = devices.begin(); i != devices.end(); ++i)
|
||||
{
|
||||
if (i->find("CPU") != std::string::npos)
|
||||
{
|
||||
const std::string name = ie.GetMetric(*i, METRIC_KEY(FULL_DEVICE_NAME)).as<std::string>();
|
||||
CV_LOG_INFO(NULL, "CPU plugin: " << name);
|
||||
return name.find("arm_compute::NEON") != std::string::npos;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
|
||||
static bool detectMyriadX_()
|
||||
{
|
||||
@ -1162,6 +1178,12 @@ bool isMyriadX()
|
||||
return myriadX;
|
||||
}
|
||||
|
||||
bool isArmComputePlugin()
|
||||
{
|
||||
static bool armPlugin = getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE;
|
||||
return armPlugin;
|
||||
}
|
||||
|
||||
static std::string getInferenceEngineVPUType_()
|
||||
{
|
||||
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", "");
|
||||
@ -1199,6 +1221,14 @@ cv::String getInferenceEngineVPUType()
|
||||
return vpu_type;
|
||||
}
|
||||
|
||||
cv::String getInferenceEngineCPUType()
|
||||
{
|
||||
static cv::String cpu_type = detectArmPlugin_() ?
|
||||
CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE :
|
||||
CV_DNN_INFERENCE_ENGINE_CPU_TYPE_X86;
|
||||
return cpu_type;
|
||||
}
|
||||
|
||||
#else // HAVE_INF_ENGINE
|
||||
|
||||
cv::String getInferenceEngineBackendType()
|
||||
@ -1214,6 +1244,11 @@ cv::String getInferenceEngineVPUType()
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
|
||||
}
|
||||
|
||||
cv::String getInferenceEngineCPUType()
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
|
||||
}
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
||||
|
||||
|
@ -254,6 +254,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
|
||||
bool isMyriadX();
|
||||
|
||||
bool isArmComputePlugin();
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
|
||||
InferenceEngine::Core& getCore(const std::string& id);
|
||||
|
@ -35,6 +35,7 @@
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 "dnn_skip_ie_myriad2"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X "dnn_skip_ie_myriadx"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU "dnn_skip_ie_arm_cpu"
|
||||
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
|
@ -144,6 +144,10 @@ TEST_P(Test_ONNX_layers, Convolution_variable_weight_bias)
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU &&
|
||||
getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
|
||||
String basename = "conv_variable_wb";
|
||||
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
||||
ASSERT_FALSE(net.empty());
|
||||
@ -717,6 +721,8 @@ TEST_P(Test_ONNX_layers, Conv1d_variable_weight_bias)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
if (target == DNN_TARGET_CPU && getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
}
|
||||
String basename = "conv1d_variable_wb";
|
||||
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
||||
|
Loading…
Reference in New Issue
Block a user