Eliminated all the calls to std::find()

This is done by keeping indexToRow vector, that keeps the information,
opposite to those kept by N and B. That is, while N and B help to
determine which variable corresponds to given column in column-vector c
or row in matrix b, indexToRow helps to determine the corresponding
row/column for a given variable.

At this point, I'm waiting for comments from pull request reviewer and
not working on any upgrades. Comments are appreciated, as usual.
This commit is contained in:
Alex Leontiev 2013-07-20 15:14:02 +03:00
parent 33e7640fb0
commit c123974f42
3 changed files with 40 additions and 42 deletions

View File

@ -47,7 +47,6 @@
namespace cv{namespace optim
{
using namespace std;
//!the return codes for solveLP() function
enum
{

View File

@ -3,11 +3,8 @@
#include <algorithm>
#include <cstdarg>
#define ALEX_DEBUG
namespace cv{namespace optim{
using std::vector;
using namespace std;
#ifdef ALEX_DEBUG
#define dprintf(x) printf x
@ -46,12 +43,14 @@ static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::ve
it also initializes N and B and does not make any assumptions about their init values
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
*/
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index);
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,int leaving_index,
int entering_index,vector<unsigned int>& indexToRow);
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
*/
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B);
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
static void swap_columns(Mat_<double>& A,int col1,int col2);
#define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;}
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
@ -75,15 +74,16 @@ int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1);
double v=0;
vector<int> N,B;
vector<unsigned int> indexToRow;
if(initialize_simplex(bigC,bigB,v,N,B)==SOLVELP_UNFEASIBLE){
if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){
return SOLVELP_UNFEASIBLE;
}
Mat_<double> c=bigC.colRange(1,bigC.cols),
b=bigB.colRange(1,bigB.cols);
int res=0;
if((res=inner_simplex(c,b,v,N,B))==SOLVELP_UNBOUNDED){
if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){
return SOLVELP_UNBOUNDED;
}
@ -92,17 +92,17 @@ int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
MatIterator_<double> it=z.begin<double>();
for(int i=1;i<=c.cols;i++,it++){
std::vector<int>::iterator pos=B.begin();
if((pos=std::find(B.begin(),B.end(),i))==B.end()){
if(indexToRow[i]<N.size()){
*it=0;
}else{
*it=b.at<double>(pos-B.begin(),b.cols-1);
*it=b.at<double>(indexToRow[i]-N.size(),b.cols-1);
}
}
return res;
}
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
N.resize(c.cols);
N[0]=0;
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
@ -113,6 +113,11 @@ static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
*it=it[-1]+1;
}
indexToRow.resize(c.cols+b.rows);
indexToRow[0]=0;
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
*it=it[-1]+1;
}
v=0;
int k=0;
@ -128,6 +133,9 @@ static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<
if(b(k,b.cols-1)>=0){
N.erase(N.begin());
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
--(*it);
}
return 0;
}
@ -141,28 +149,29 @@ static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<
print_simplex_state(c,b,v,N,B);
dprintf(("\tWE MAKE PIVOT\n"));
pivot(c,b,v,N,B,k,0);
pivot(c,b,v,N,B,k,0,indexToRow);
print_simplex_state(c,b,v,N,B);
inner_simplex(c,b,v,N,B);
inner_simplex(c,b,v,N,B,indexToRow);
dprintf(("\tAFTER INNER_SIMPLEX\n"));
print_simplex_state(c,b,v,N,B);
vector<int>::iterator iterator=std::find(B.begin(),B.end(),0);
if(iterator!=B.end()){
int iterator_offset=iterator-B.begin();
if(indexToRow[0]>=N.size()){
int iterator_offset=indexToRow[0]-N.size();
if(b(iterator_offset,b.cols-1)>0){
return SOLVELP_UNFEASIBLE;
}
pivot(c,b,v,N,B,iterator_offset,0);
pivot(c,b,v,N,B,iterator_offset,0,indexToRow);
}
vector<int>::iterator iterator;
{
iterator=std::find(N.begin(),N.end(),0);
int iterator_offset=iterator-N.begin();
int iterator_offset=indexToRow[0];
iterator=N.begin()+iterator_offset;
std::iter_swap(iterator,N.begin());
SWAP(int,indexToRow[*iterator],indexToRow[0]);
swap_columns(c,iterator_offset,0);
swap_columns(b,iterator_offset,0);
}
@ -174,14 +183,14 @@ static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<
c=0;
v=0;
for(int I=1;I<old_c.cols;I++){
if((iterator=std::find(N.begin(),N.end(),I))!=N.end()){
if(indexToRow[I]<N.size()){
dprintf(("I=%d from nonbasic\n",I));
int iterator_offset=iterator-N.begin();
int iterator_offset=indexToRow[I];
c(0,iterator_offset)+=old_c(0,I);
print_matrix(c);
}else{
dprintf(("I=%d from basic\n",I));
int iterator_offset=std::find(B.begin(),B.end(),I)-B.begin();
int iterator_offset=indexToRow[I]-N.size();
c-=old_c(0,I)*b.row(iterator_offset).colRange(0,b.cols-1);
v+=old_c(0,I)*b(iterator_offset,b.cols-1);
print_matrix(c);
@ -192,10 +201,13 @@ static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<
print_simplex_state(c,b,v,N,B);
N.erase(N.begin());
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
--(*it);
}
return 0;
}
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
int count=0;
while(1){
dprintf(("iteration #%d\n",count));
@ -248,7 +260,7 @@ static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>&
}
dprintf(("the tightest constraint is in row %d with %g\n",l,min));
pivot(c,b,v,N,B,l,e);
pivot(c,b,v,N,B,l,e,indexToRow);
dprintf(("objective, v=%g\n",v));
print_matrix(c);
@ -261,7 +273,8 @@ static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>&
}
}
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index){
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,
int leaving_index,int entering_index,vector<unsigned int>& indexToRow){
double Coef=b(leaving_index,entering_index);
for(int i=0;i<b.cols;i++){
if(i==entering_index){
@ -296,9 +309,8 @@ static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>&
dprintf(("v was %g\n",v));
v+=Coef*b(leaving_index,b.cols-1);
int tmp=N[entering_index];
N[entering_index]=B[leaving_index];
B[leaving_index]=tmp;
SWAP(int,N[entering_index],B[leaving_index]);
SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]);
}
static inline void swap_columns(Mat_<double>& A,int col1,int col2){

View File

@ -81,19 +81,6 @@ TEST(Optim_LpSolver, regression_multiple_solutions){
ASSERT_EQ(res,1);
ASSERT_EQ(z.dot(A),1);
}
if(false){
//cormen's example from chapter about initialize_simplex
//online solver told it has inf many solutions, but I'm not sure
A=(cv::Mat_<double>(2,1)<<2,-1);
B=(cv::Mat_<double>(2,3)<<2,-1,2,1,-5,-4);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
printf("res=%d\n",res);
printf("scalar %g\n",z.dot(A));
std::cout<<"here z goes\n"<<z<<"\n";
ASSERT_EQ(res,1);
}
}
TEST(Optim_LpSolver, regression_cycling){