mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Wrapped nldiffusion functions with details::kaze or details::amaze namespace to avoid collision of function names
This commit is contained in:
parent
c68cbfced3
commit
c1bf453266
@ -114,7 +114,7 @@ struct AKAZEOptions {
|
||||
|
||||
float kcontrast; ///< The contrast factor parameter
|
||||
float kcontrast_percentile; ///< Percentile level for the contrast factor
|
||||
size_t kcontrast_nbins; ///< Number of bins for the contrast factor histogram
|
||||
int kcontrast_nbins; ///< Number of bins for the contrast factor histogram
|
||||
|
||||
bool save_scale_space; ///< Set to true for saving the scale space images
|
||||
bool save_keypoints; ///< Set to true for saving the detected keypoints and descriptors
|
||||
|
@ -12,6 +12,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::details::akaze;
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
@ -110,8 +111,7 @@ int AKAZEFeatures::Create_Nonlinear_Scale_Space(const cv::Mat& img) {
|
||||
evolution_[0].Lt.copyTo(evolution_[0].Lsmooth);
|
||||
|
||||
// First compute the kcontrast factor
|
||||
options_.kcontrast = compute_k_percentile(img, options_.kcontrast_percentile,
|
||||
1.0f, options_.kcontrast_nbins, 0, 0);
|
||||
options_.kcontrast = compute_k_percentile(img, options_.kcontrast_percentile, 1.0f, options_.kcontrast_nbins, 0, 0);
|
||||
|
||||
//t2 = cv::getTickCount();
|
||||
//timing_.kcontrast = 1000.0*(t2 - t1) / cv::getTickFrequency();
|
||||
|
@ -19,368 +19,373 @@
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#include "nldiffusion_functions.h"
|
||||
#include "akaze/nldiffusion_functions.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param ksize_x Kernel size in X-direction (horizontal)
|
||||
* @param ksize_y Kernel size in Y-direction (vertical)
|
||||
* @param sigma Kernel standard deviation
|
||||
*/
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, const size_t& ksize_x,
|
||||
const size_t& ksize_y, const float& sigma) {
|
||||
namespace cv {
|
||||
namespace details {
|
||||
namespace akaze {
|
||||
|
||||
int ksize_x_ = 0, ksize_y_ = 0;
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param ksize_x Kernel size in X-direction (horizontal)
|
||||
* @param ksize_y Kernel size in Y-direction (vertical)
|
||||
* @param sigma Kernel standard deviation
|
||||
*/
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) {
|
||||
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
||||
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f)));
|
||||
ksize_y_ = ksize_x_;
|
||||
}
|
||||
int ksize_x_ = 0, ksize_y_ = 0;
|
||||
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) {
|
||||
ksize_x_ += 1;
|
||||
}
|
||||
|
||||
if ((ksize_y_ % 2) == 0) {
|
||||
ksize_y_ += 1;
|
||||
}
|
||||
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, BORDER_REPLICATE);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes image derivatives with Scharr kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @note Scharr operator approximates better rotation invariance than
|
||||
* other stencils such as Sobel. See Weickert and Scharr,
|
||||
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance,
|
||||
* Journal of Visual Communication and Image Representation 2002
|
||||
*/
|
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) {
|
||||
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1
|
||||
* g1 = exp(-|dL|^2/k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
exp(-(Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), dst);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2
|
||||
* g2 = 1 / (1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
dst = 1.0 / (1.0 + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient gw
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
Mat modg;
|
||||
pow((Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), 4, modg);
|
||||
cv::exp(-3.315 / modg, dst);
|
||||
dst = 1.0 - dst;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Charbonnier conductivity coefficient gc
|
||||
* gc = 1 / sqrt(1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
Mat den;
|
||||
cv::sqrt(1.0 + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), den);
|
||||
dst = 1.0 / den;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor
|
||||
* given an input image, the percentile (0-1), the gradient scale and the number of
|
||||
* bins in the histogram
|
||||
* @param img Input image
|
||||
* @param perc Percentile of the image gradient histogram (0-1)
|
||||
* @param gscale Scale for computing the image gradient histogram
|
||||
* @param nbins Number of histogram bins
|
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
|
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
|
||||
* @return k contrast factor
|
||||
*/
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
||||
size_t nbins, size_t ksize_x, size_t ksize_y) {
|
||||
|
||||
size_t nbin = 0, nelements = 0, nthreshold = 0, k = 0;
|
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
|
||||
float npoints = 0.0;
|
||||
float hmax = 0.0;
|
||||
|
||||
// Create the array for the histogram
|
||||
std::vector<size_t> hist(nbins, 0);
|
||||
|
||||
// Create the matrices
|
||||
cv::Mat gaussian = cv::Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
cv::Mat Lx = cv::Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
cv::Mat Ly = cv::Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale);
|
||||
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
image_derivatives_scharr(gaussian, Lx, 1, 0);
|
||||
image_derivatives_scharr(gaussian, Ly, 0, 1);
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Get the maximum
|
||||
if (modg > hmax) {
|
||||
hmax = modg;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) {
|
||||
nbin = (size_t)floor(nbins*(modg / hmax));
|
||||
|
||||
if (nbin == nbins) {
|
||||
nbin--;
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
||||
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f)));
|
||||
ksize_y_ = ksize_x_;
|
||||
}
|
||||
|
||||
hist[nbin]++;
|
||||
npoints++;
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) {
|
||||
ksize_x_ += 1;
|
||||
}
|
||||
|
||||
if ((ksize_y_ % 2) == 0) {
|
||||
ksize_y_ += 1;
|
||||
}
|
||||
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, BORDER_REPLICATE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (size_t)(npoints*perc);
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes image derivatives with Scharr kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @note Scharr operator approximates better rotation invariance than
|
||||
* other stencils such as Sobel. See Weickert and Scharr,
|
||||
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance,
|
||||
* Journal of Visual Communication and Image Representation 2002
|
||||
*/
|
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) {
|
||||
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT);
|
||||
}
|
||||
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) {
|
||||
nelements = nelements + hist[k];
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1
|
||||
* g1 = exp(-|dL|^2/k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
exp(-(Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), dst);
|
||||
}
|
||||
|
||||
if (nelements < nthreshold) {
|
||||
kperc = 0.03f;
|
||||
}
|
||||
else {
|
||||
kperc = hmax*((float)(k) / (float)nbins);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2
|
||||
* g2 = 1 / (1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
dst = 1.0 / (1.0 + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k));
|
||||
}
|
||||
|
||||
return kperc;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient gw
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
Mat modg;
|
||||
pow((Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), 4, modg);
|
||||
cv::exp(-3.315 / modg, dst);
|
||||
dst = 1.0 - dst;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @param scale Scale factor for the derivative size
|
||||
*/
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Charbonnier conductivity coefficient gc
|
||||
* gc = 1 / sqrt(1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) {
|
||||
Mat den;
|
||||
cv::sqrt(1.0 + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), den);
|
||||
dst = 1.0 / den;
|
||||
}
|
||||
|
||||
Mat kx, ky;
|
||||
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
|
||||
sepFilter2D(src, dst, CV_32F, kx, ky);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor
|
||||
* given an input image, the percentile (0-1), the gradient scale and the number of
|
||||
* bins in the histogram
|
||||
* @param img Input image
|
||||
* @param perc Percentile of the image gradient histogram (0-1)
|
||||
* @param gscale Scale for computing the image gradient histogram
|
||||
* @param nbins Number of histogram bins
|
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
|
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
|
||||
* @return k contrast factor
|
||||
*/
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) {
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step
|
||||
* @param Ld2 Output image in the evolution
|
||||
* @param c Conductivity image
|
||||
* @param Lstep Previous image in the evolution
|
||||
* @param stepsize The step size in time units
|
||||
* @note Forward Euler Scheme 3x3 stencil
|
||||
* The function c is a scalar value that depends on the gradient norm
|
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
|
||||
*/
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize) {
|
||||
int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
|
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
|
||||
float npoints = 0.0;
|
||||
float hmax = 0.0;
|
||||
|
||||
// Create the array for the histogram
|
||||
std::vector<int> hist(nbins, 0);
|
||||
|
||||
// Create the matrices
|
||||
cv::Mat gaussian = cv::Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
cv::Mat Lx = cv::Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
cv::Mat Ly = cv::Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale);
|
||||
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
image_derivatives_scharr(gaussian, Lx, 1, 0);
|
||||
image_derivatives_scharr(gaussian, Ly, 0, 1);
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Get the maximum
|
||||
if (modg > hmax) {
|
||||
hmax = modg;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) {
|
||||
nbin = (int)floor(nbins*(modg / hmax));
|
||||
|
||||
if (nbin == nbins) {
|
||||
nbin--;
|
||||
}
|
||||
|
||||
hist[nbin]++;
|
||||
npoints++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (int)(npoints*perc);
|
||||
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) {
|
||||
nelements = nelements + hist[k];
|
||||
}
|
||||
|
||||
if (nelements < nthreshold) {
|
||||
kperc = 0.03f;
|
||||
}
|
||||
else {
|
||||
kperc = hmax*((float)(k) / (float)nbins);
|
||||
}
|
||||
|
||||
return kperc;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @param scale Scale factor for the derivative size
|
||||
*/
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
|
||||
|
||||
Mat kx, ky;
|
||||
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
|
||||
sepFilter2D(src, dst, CV_32F, kx, ky);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step
|
||||
* @param Ld2 Output image in the evolution
|
||||
* @param c Conductivity image
|
||||
* @param Lstep Previous image in the evolution
|
||||
* @param stepsize The step size in time units
|
||||
* @note Forward Euler Scheme 3x3 stencil
|
||||
* The function c is a scalar value that depends on the gradient norm
|
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
|
||||
*/
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize) {
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for schedule(dynamic)
|
||||
#endif
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i)+j + 1)))*((*(Ld.ptr<float>(i)+j + 1)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float xneg = ((*(c.ptr<float>(i)+j - 1)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i)+j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i + 1) + j)))*((*(Ld.ptr<float>(i + 1) + j)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + j)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i - 1) + j)));
|
||||
*(Lstep.ptr<float>(i)+j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i)+j + 1)))*((*(Ld.ptr<float>(i)+j + 1)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float xneg = ((*(c.ptr<float>(i)+j - 1)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i)+j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i + 1) + j)))*((*(Ld.ptr<float>(i + 1) + j)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + j)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i - 1) + j)));
|
||||
*(Lstep.ptr<float>(i)+j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(0) + j + 1)))*((*(Ld.ptr<float>(0) + j + 1)) - (*(Ld.ptr<float>(0) + j)));
|
||||
float xneg = ((*(c.ptr<float>(0) + j - 1)) + (*(c.ptr<float>(0) + j)))*((*(Ld.ptr<float>(0) + j)) - (*(Ld.ptr<float>(0) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(1) + j)))*((*(Ld.ptr<float>(1) + j)) - (*(Ld.ptr<float>(0) + j)));
|
||||
*(Lstep.ptr<float>(0) + j) = 0.5f*stepsize*(xpos - xneg + ypos);
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j + 1)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j + 1)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float xneg = ((*(c.ptr<float>(Lstep.rows - 1) + j - 1)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float yneg = ((*(c.ptr<float>(Lstep.rows - 2) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 2) + j)));
|
||||
*(Lstep.ptr<float>(Lstep.rows - 1) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1)) - (*(Ld.ptr<float>(i))));
|
||||
float xneg = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i))));
|
||||
float ypos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i + 1))))*((*(Ld.ptr<float>(i + 1))) - (*(Ld.ptr<float>(i))));
|
||||
float yneg = ((*(c.ptr<float>(i - 1))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i - 1))));
|
||||
*(Lstep.ptr<float>(i)) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols - 2)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 2)));
|
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols - 1)) + (*(c.ptr<float>(i + 1) + Lstep.cols - 1)))*((*(Ld.ptr<float>(i + 1) + Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 1)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + Lstep.cols - 1)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i - 1) + Lstep.cols - 1)));
|
||||
*(Lstep.ptr<float>(i)+Lstep.cols - 1) = 0.5f*stepsize*(-xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
Ld = Ld + Lstep;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function downsamples the input image with the kernel [1/4,1/2,1/4]
|
||||
* @param img Input image to be downsampled
|
||||
* @param dst Output image with half of the resolution of the input image
|
||||
*/
|
||||
void downsample_image(const cv::Mat& src, cv::Mat& dst) {
|
||||
|
||||
int i1 = 0, j1 = 0, i2 = 0, j2 = 0;
|
||||
|
||||
for (i1 = 1; i1 < src.rows; i1 += 2) {
|
||||
j2 = 0;
|
||||
for (j1 = 1; j1 < src.cols; j1 += 2) {
|
||||
*(dst.ptr<float>(i2)+j2) = 0.5f*(*(src.ptr<float>(i1)+j1)) + 0.25f*(*(src.ptr<float>(i1)+j1 - 1) + *(src.ptr<float>(i1)+j1 + 1));
|
||||
j2++;
|
||||
}
|
||||
|
||||
i2++;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function downsamples the input image using OpenCV resize
|
||||
* @param img Input image to be downsampled
|
||||
* @param dst Output image with half of the resolution of the input image
|
||||
*/
|
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst) {
|
||||
|
||||
// Make sure the destination image is of the right size
|
||||
CV_Assert(src.cols / 2 == dst.cols);
|
||||
CV_Assert(src.rows / 2 == dst.rows);
|
||||
resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Compute Scharr derivative kernels for sizes different than 3
|
||||
* @param kx_ The derivative kernel in x-direction
|
||||
* @param ky_ The derivative kernel in y-direction
|
||||
* @param dx The derivative order in x-direction
|
||||
* @param dy The derivative order in y-direction
|
||||
* @param scale The kernel size
|
||||
*/
|
||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale) {
|
||||
|
||||
const int ksize = 3 + 2 * (scale - 1);
|
||||
|
||||
// The usual Scharr kernel
|
||||
if (scale == 1) {
|
||||
getDerivKernels(kx_, ky_, dx, dy, 0, true, CV_32F);
|
||||
return;
|
||||
}
|
||||
|
||||
kx_.create(ksize, 1, CV_32F, -1, true);
|
||||
ky_.create(ksize, 1, CV_32F, -1, true);
|
||||
Mat kx = kx_.getMat();
|
||||
Mat ky = ky_.getMat();
|
||||
|
||||
float w = 10.0f / 3.0f;
|
||||
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
|
||||
|
||||
for (int k = 0; k < 2; k++) {
|
||||
Mat* kernel = k == 0 ? &kx : &ky;
|
||||
int order = k == 0 ? dx : dy;
|
||||
float kerI[1000];
|
||||
|
||||
for (int t = 0; t < ksize; t++) {
|
||||
kerI[t] = 0;
|
||||
}
|
||||
|
||||
if (order == 0) {
|
||||
kerI[0] = norm;
|
||||
kerI[ksize / 2] = w*norm;
|
||||
kerI[ksize - 1] = norm;
|
||||
}
|
||||
else if (order == 1) {
|
||||
kerI[0] = -1;
|
||||
kerI[ksize / 2] = 0;
|
||||
kerI[ksize - 1] = 1;
|
||||
}
|
||||
|
||||
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
|
||||
temp.copyTo(*kernel);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(0) + j + 1)))*((*(Ld.ptr<float>(0) + j + 1)) - (*(Ld.ptr<float>(0) + j)));
|
||||
float xneg = ((*(c.ptr<float>(0) + j - 1)) + (*(c.ptr<float>(0) + j)))*((*(Ld.ptr<float>(0) + j)) - (*(Ld.ptr<float>(0) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(1) + j)))*((*(Ld.ptr<float>(1) + j)) - (*(Ld.ptr<float>(0) + j)));
|
||||
*(Lstep.ptr<float>(0) + j) = 0.5f*stepsize*(xpos - xneg + ypos);
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j + 1)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j + 1)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float xneg = ((*(c.ptr<float>(Lstep.rows - 1) + j - 1)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float yneg = ((*(c.ptr<float>(Lstep.rows - 2) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 2) + j)));
|
||||
*(Lstep.ptr<float>(Lstep.rows - 1) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1)) - (*(Ld.ptr<float>(i))));
|
||||
float xneg = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i))));
|
||||
float ypos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i + 1))))*((*(Ld.ptr<float>(i + 1))) - (*(Ld.ptr<float>(i))));
|
||||
float yneg = ((*(c.ptr<float>(i - 1))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i - 1))));
|
||||
*(Lstep.ptr<float>(i)) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols - 2)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 2)));
|
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols - 1)) + (*(c.ptr<float>(i + 1) + Lstep.cols - 1)))*((*(Ld.ptr<float>(i + 1) + Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 1)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + Lstep.cols - 1)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i - 1) + Lstep.cols - 1)));
|
||||
*(Lstep.ptr<float>(i)+Lstep.cols - 1) = 0.5f*stepsize*(-xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
Ld = Ld + Lstep;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function downsamples the input image with the kernel [1/4,1/2,1/4]
|
||||
* @param img Input image to be downsampled
|
||||
* @param dst Output image with half of the resolution of the input image
|
||||
*/
|
||||
void downsample_image(const cv::Mat& src, cv::Mat& dst) {
|
||||
|
||||
int i1 = 0, j1 = 0, i2 = 0, j2 = 0;
|
||||
|
||||
for (i1 = 1; i1 < src.rows; i1 += 2) {
|
||||
j2 = 0;
|
||||
for (j1 = 1; j1 < src.cols; j1 += 2) {
|
||||
*(dst.ptr<float>(i2)+j2) = 0.5f*(*(src.ptr<float>(i1)+j1)) + 0.25f*(*(src.ptr<float>(i1)+j1 - 1) + *(src.ptr<float>(i1)+j1 + 1));
|
||||
j2++;
|
||||
}
|
||||
|
||||
i2++;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief This function downsamples the input image using OpenCV resize
|
||||
* @param img Input image to be downsampled
|
||||
* @param dst Output image with half of the resolution of the input image
|
||||
*/
|
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst) {
|
||||
|
||||
// Make sure the destination image is of the right size
|
||||
CV_Assert(src.cols / 2 == dst.cols);
|
||||
CV_Assert(src.rows / 2 == dst.rows);
|
||||
resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Compute Scharr derivative kernels for sizes different than 3
|
||||
* @param kx_ The derivative kernel in x-direction
|
||||
* @param ky_ The derivative kernel in y-direction
|
||||
* @param dx The derivative order in x-direction
|
||||
* @param dy The derivative order in y-direction
|
||||
* @param scale The kernel size
|
||||
*/
|
||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale) {
|
||||
|
||||
const int ksize = 3 + 2 * (scale - 1);
|
||||
|
||||
// The usual Scharr kernel
|
||||
if (scale == 1) {
|
||||
getDerivKernels(kx_, ky_, dx, dy, 0, true, CV_32F);
|
||||
return;
|
||||
}
|
||||
|
||||
kx_.create(ksize, 1, CV_32F, -1, true);
|
||||
ky_.create(ksize, 1, CV_32F, -1, true);
|
||||
Mat kx = kx_.getMat();
|
||||
Mat ky = ky_.getMat();
|
||||
|
||||
float w = 10.0f / 3.0f;
|
||||
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
|
||||
|
||||
for (int k = 0; k < 2; k++) {
|
||||
Mat* kernel = k == 0 ? &kx : &ky;
|
||||
int order = k == 0 ? dx : dy;
|
||||
float kerI[1000];
|
||||
|
||||
for (int t = 0; t < ksize; t++) {
|
||||
kerI[t] = 0;
|
||||
}
|
||||
|
||||
if (order == 0) {
|
||||
kerI[0] = norm;
|
||||
kerI[ksize / 2] = w*norm;
|
||||
kerI[ksize - 1] = norm;
|
||||
}
|
||||
else if (order == 1) {
|
||||
kerI[0] = -1;
|
||||
kerI[ksize / 2] = 0;
|
||||
kerI[ksize - 1] = 1;
|
||||
}
|
||||
|
||||
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
|
||||
temp.copyTo(*kernel);
|
||||
}
|
||||
}
|
||||
}
|
@ -5,7 +5,8 @@
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#ifndef AKAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
#define AKAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Includes
|
||||
@ -13,20 +14,27 @@
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Declaration of functions
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, const size_t& ksize_x,
|
||||
const size_t& ksize_y, const float& sigma);
|
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst,
|
||||
const size_t& xorder, const size_t& yorder);
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
||||
size_t nbins, size_t ksize_x, size_t ksize_y);
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int, int scale);
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize);
|
||||
void downsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale);
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
|
||||
int row, int col, bool same_img);
|
||||
|
||||
namespace cv {
|
||||
namespace details {
|
||||
namespace akaze {
|
||||
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma);
|
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder);
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k);
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y);
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int, int scale);
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize);
|
||||
void downsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
|
||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale);
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -26,6 +26,7 @@
|
||||
// Namespaces
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::details::kaze;
|
||||
|
||||
//*******************************************************************************
|
||||
//*******************************************************************************
|
||||
|
@ -28,349 +28,355 @@
|
||||
// Namespaces
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::details::kaze;
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param ksize_x Kernel size in X-direction (horizontal)
|
||||
* @param ksize_y Kernel size in Y-direction (vertical)
|
||||
* @param sigma Kernel standard deviation
|
||||
*/
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
|
||||
int ksize_x, int ksize_y, float sigma) {
|
||||
namespace cv {
|
||||
namespace details {
|
||||
namespace kaze {
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param ksize_x Kernel size in X-direction (horizontal)
|
||||
* @param ksize_y Kernel size in Y-direction (vertical)
|
||||
* @param sigma Kernel standard deviation
|
||||
*/
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
|
||||
int ksize_x, int ksize_y, float sigma) {
|
||||
|
||||
int ksize_x_ = 0, ksize_y_ = 0;
|
||||
int ksize_x_ = 0, ksize_y_ = 0;
|
||||
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
||||
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma-0.8f)/(0.3f)));
|
||||
ksize_y_ = ksize_x_;
|
||||
}
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
|
||||
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f)));
|
||||
ksize_y_ = ksize_x_;
|
||||
}
|
||||
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) {
|
||||
ksize_x_ += 1;
|
||||
}
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) {
|
||||
ksize_x_ += 1;
|
||||
}
|
||||
|
||||
if ((ksize_y_ % 2) == 0) {
|
||||
ksize_y_ += 1;
|
||||
}
|
||||
if ((ksize_y_ % 2) == 0) {
|
||||
ksize_y_ += 1;
|
||||
}
|
||||
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src,dst,Size(ksize_x_,ksize_y_),sigma,sigma,cv::BORDER_REPLICATE);
|
||||
}
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, cv::BORDER_REPLICATE);
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1
|
||||
* g1 = exp(-|dL|^2/k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly))/(k*k),dst);
|
||||
}
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1
|
||||
* g1 = exp(-|dL|^2/k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), dst);
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2
|
||||
* g2 = 1 / (1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
dst = 1./(1. + (Lx.mul(Lx) + Ly.mul(Ly))/(k*k));
|
||||
}
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2
|
||||
* g2 = 1 / (1 + dL^2 / k^2)
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
*/
|
||||
void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
dst = 1. / (1. + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k));
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient g3
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
Mat modg;
|
||||
cv::pow((Lx.mul(Lx) + Ly.mul(Ly))/(k*k),4,modg);
|
||||
cv::exp(-3.315/modg, dst);
|
||||
dst = 1.0f - dst;
|
||||
}
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient g3
|
||||
* @param Lx First order image derivative in X-direction (horizontal)
|
||||
* @param Ly First order image derivative in Y-direction (vertical)
|
||||
* @param dst Output image
|
||||
* @param k Contrast factor parameter
|
||||
* @note For more information check the following paper: J. Weickert
|
||||
* Applications of nonlinear diffusion in image processing and computer vision,
|
||||
* Proceedings of Algorithmy 2000
|
||||
*/
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) {
|
||||
Mat modg;
|
||||
cv::pow((Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), 4, modg);
|
||||
cv::exp(-3.315 / modg, dst);
|
||||
dst = 1.0f - dst;
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor
|
||||
* given an input image, the percentile (0-1), the gradient scale and the number of
|
||||
* bins in the histogram
|
||||
* @param img Input image
|
||||
* @param perc Percentile of the image gradient histogram (0-1)
|
||||
* @param gscale Scale for computing the image gradient histogram
|
||||
* @param nbins Number of histogram bins
|
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
|
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
|
||||
* @return k contrast factor
|
||||
*/
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
||||
int nbins, int ksize_x, int ksize_y) {
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor
|
||||
* given an input image, the percentile (0-1), the gradient scale and the number of
|
||||
* bins in the histogram
|
||||
* @param img Input image
|
||||
* @param perc Percentile of the image gradient histogram (0-1)
|
||||
* @param gscale Scale for computing the image gradient histogram
|
||||
* @param nbins Number of histogram bins
|
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
|
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
|
||||
* @return k contrast factor
|
||||
*/
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) {
|
||||
|
||||
int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
|
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
|
||||
float npoints = 0.0;
|
||||
float hmax = 0.0;
|
||||
int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
|
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0;
|
||||
float npoints = 0.0;
|
||||
float hmax = 0.0;
|
||||
|
||||
// Create the array for the histogram
|
||||
std::vector<int> hist(nbins, 0);
|
||||
// Create the array for the histogram
|
||||
std::vector<int> hist(nbins, 0);
|
||||
|
||||
// Create the matrices
|
||||
Mat gaussian = Mat::zeros(img.rows,img.cols,CV_32F);
|
||||
Mat Lx = Mat::zeros(img.rows,img.cols,CV_32F);
|
||||
Mat Ly = Mat::zeros(img.rows,img.cols,CV_32F);
|
||||
// Create the matrices
|
||||
Mat gaussian = Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
Mat Lx = Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
Mat Ly = Mat::zeros(img.rows, img.cols, CV_32F);
|
||||
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img,gaussian,ksize_x,ksize_y,gscale);
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale);
|
||||
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
Scharr(gaussian,Lx,CV_32F,1,0,1,0,cv::BORDER_DEFAULT);
|
||||
Scharr(gaussian,Ly,CV_32F,0,1,1,0,cv::BORDER_DEFAULT);
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
Scharr(gaussian, Lx, CV_32F, 1, 0, 1, 0, cv::BORDER_DEFAULT);
|
||||
Scharr(gaussian, Ly, CV_32F, 0, 1, 1, 0, cv::BORDER_DEFAULT);
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows-1; i++) {
|
||||
for (int j = 1; j < gaussian.cols-1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Get the maximum
|
||||
if (modg > hmax) {
|
||||
hmax = modg;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Get the maximum
|
||||
if (modg > hmax) {
|
||||
hmax = modg;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows-1; i++) {
|
||||
for (int j = 1; j < gaussian.cols-1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows - 1; i++) {
|
||||
for (int j = 1; j < gaussian.cols - 1; j++) {
|
||||
lx = *(Lx.ptr<float>(i)+j);
|
||||
ly = *(Ly.ptr<float>(i)+j);
|
||||
modg = sqrt(lx*lx + ly*ly);
|
||||
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) {
|
||||
nbin = (int)floor(nbins*(modg/hmax));
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) {
|
||||
nbin = (int)floor(nbins*(modg / hmax));
|
||||
|
||||
if (nbin == nbins) {
|
||||
nbin--;
|
||||
}
|
||||
if (nbin == nbins) {
|
||||
nbin--;
|
||||
}
|
||||
|
||||
hist[nbin]++;
|
||||
npoints++;
|
||||
}
|
||||
}
|
||||
}
|
||||
hist[nbin]++;
|
||||
npoints++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (size_t)(npoints*perc);
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (size_t)(npoints*perc);
|
||||
|
||||
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) {
|
||||
nelements = nelements + hist[k];
|
||||
}
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) {
|
||||
nelements = nelements + hist[k];
|
||||
}
|
||||
|
||||
if (nelements < nthreshold) {
|
||||
kperc = 0.03f;
|
||||
}
|
||||
else {
|
||||
kperc = hmax*((float)(k)/(float)nbins);
|
||||
}
|
||||
if (nelements < nthreshold) {
|
||||
kperc = 0.03f;
|
||||
}
|
||||
else {
|
||||
kperc = hmax*((float)(k) / (float)nbins);
|
||||
}
|
||||
|
||||
return kperc;
|
||||
}
|
||||
return kperc;
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @param scale Scale factor or derivative size
|
||||
*/
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst,
|
||||
int xorder, int yorder, int scale) {
|
||||
Mat kx, ky;
|
||||
compute_derivative_kernels(kx,ky,xorder,yorder,scale);
|
||||
sepFilter2D(src,dst,CV_32F,kx,ky);
|
||||
}
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives
|
||||
* @param src Input image
|
||||
* @param dst Output image
|
||||
* @param xorder Derivative order in X-direction (horizontal)
|
||||
* @param yorder Derivative order in Y-direction (vertical)
|
||||
* @param scale Scale factor or derivative size
|
||||
*/
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst,
|
||||
int xorder, int yorder, int scale) {
|
||||
Mat kx, ky;
|
||||
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
|
||||
sepFilter2D(src, dst, CV_32F, kx, ky);
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief Compute derivative kernels for sizes different than 3
|
||||
* @param _kx Horizontal kernel values
|
||||
* @param _ky Vertical kernel values
|
||||
* @param dx Derivative order in X-direction (horizontal)
|
||||
* @param dy Derivative order in Y-direction (vertical)
|
||||
* @param scale_ Scale factor or derivative size
|
||||
*/
|
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky,
|
||||
int dx, int dy, int scale) {
|
||||
/**
|
||||
* @brief Compute derivative kernels for sizes different than 3
|
||||
* @param _kx Horizontal kernel values
|
||||
* @param _ky Vertical kernel values
|
||||
* @param dx Derivative order in X-direction (horizontal)
|
||||
* @param dy Derivative order in Y-direction (vertical)
|
||||
* @param scale_ Scale factor or derivative size
|
||||
*/
|
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky,
|
||||
int dx, int dy, int scale) {
|
||||
|
||||
int ksize = 3 + 2*(scale-1);
|
||||
int ksize = 3 + 2 * (scale - 1);
|
||||
|
||||
// The standard Scharr kernel
|
||||
if (scale == 1) {
|
||||
getDerivKernels(_kx,_ky,dx,dy,0,true,CV_32F);
|
||||
return;
|
||||
}
|
||||
// The standard Scharr kernel
|
||||
if (scale == 1) {
|
||||
getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F);
|
||||
return;
|
||||
}
|
||||
|
||||
_kx.create(ksize,1,CV_32F,-1,true);
|
||||
_ky.create(ksize,1,CV_32F,-1,true);
|
||||
Mat kx = _kx.getMat();
|
||||
Mat ky = _ky.getMat();
|
||||
_kx.create(ksize, 1, CV_32F, -1, true);
|
||||
_ky.create(ksize, 1, CV_32F, -1, true);
|
||||
Mat kx = _kx.getMat();
|
||||
Mat ky = _ky.getMat();
|
||||
|
||||
float w = 10.0f/3.0f;
|
||||
float norm = 1.0f/(2.0f*scale*(w+2.0f));
|
||||
float w = 10.0f / 3.0f;
|
||||
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
|
||||
|
||||
for (int k = 0; k < 2; k++) {
|
||||
Mat* kernel = k == 0 ? &kx : &ky;
|
||||
int order = k == 0 ? dx : dy;
|
||||
std::vector<float> kerI(ksize, 0.0f);
|
||||
for (int k = 0; k < 2; k++) {
|
||||
Mat* kernel = k == 0 ? &kx : &ky;
|
||||
int order = k == 0 ? dx : dy;
|
||||
std::vector<float> kerI(ksize, 0.0f);
|
||||
|
||||
if (order == 0) {
|
||||
kerI[0] = norm, kerI[ksize/2] = w*norm, kerI[ksize-1] = norm;
|
||||
}
|
||||
else if (order == 1) {
|
||||
kerI[0] = -1, kerI[ksize/2] = 0, kerI[ksize-1] = 1;
|
||||
}
|
||||
if (order == 0) {
|
||||
kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm;
|
||||
}
|
||||
else if (order == 1) {
|
||||
kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1;
|
||||
}
|
||||
|
||||
Mat temp(kernel->rows,kernel->cols,CV_32F,&kerI[0]);
|
||||
temp.copyTo(*kernel);
|
||||
}
|
||||
}
|
||||
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
|
||||
temp.copyTo(*kernel);
|
||||
}
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step
|
||||
* @param Ld2 Output image in the evolution
|
||||
* @param c Conductivity image
|
||||
* @param Lstep Previous image in the evolution
|
||||
* @param stepsize The step size in time units
|
||||
* @note Forward Euler Scheme 3x3 stencil
|
||||
* The function c is a scalar value that depends on the gradient norm
|
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
|
||||
*/
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) {
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step
|
||||
* @param Ld2 Output image in the evolution
|
||||
* @param c Conductivity image
|
||||
* @param Lstep Previous image in the evolution
|
||||
* @param stepsize The step size in time units
|
||||
* @note Forward Euler Scheme 3x3 stencil
|
||||
* The function c is a scalar value that depends on the gradient norm
|
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
|
||||
*/
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) {
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for schedule(dynamic)
|
||||
#endif
|
||||
for (int i = 1; i < Lstep.rows-1; i++) {
|
||||
for (int j = 1; j < Lstep.cols-1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i)+j+1)))*((*(Ld.ptr<float>(i)+j+1))-(*(Ld.ptr<float>(i)+j)));
|
||||
float xneg = ((*(c.ptr<float>(i)+j-1))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i)+j-1)));
|
||||
float ypos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i+1)+j)))*((*(Ld.ptr<float>(i+1)+j))-(*(Ld.ptr<float>(i)+j)));
|
||||
float yneg = ((*(c.ptr<float>(i-1)+j))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i-1)+j)));
|
||||
*(Lstep.ptr<float>(i)+j) = 0.5f*stepsize*(xpos-xneg + ypos-yneg);
|
||||
}
|
||||
}
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i)+j + 1)))*((*(Ld.ptr<float>(i)+j + 1)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float xneg = ((*(c.ptr<float>(i)+j - 1)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i)+j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(i)+j)) + (*(c.ptr<float>(i + 1) + j)))*((*(Ld.ptr<float>(i + 1) + j)) - (*(Ld.ptr<float>(i)+j)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + j)) + (*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j)) - (*(Ld.ptr<float>(i - 1) + j)));
|
||||
*(Lstep.ptr<float>(i)+j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols-1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j+1)))*((*(Ld.ptr<float>(0)+j+1))-(*(Ld.ptr<float>(0)+j)));
|
||||
float xneg = ((*(c.ptr<float>(0)+j-1))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j-1)));
|
||||
float ypos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(1)+j)))*((*(Ld.ptr<float>(1)+j))-(*(Ld.ptr<float>(0)+j)));
|
||||
float yneg = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j)));
|
||||
*(Lstep.ptr<float>(0)+j) = 0.5f*stepsize*(xpos-xneg + ypos-yneg);
|
||||
}
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(0) + j + 1)))*((*(Ld.ptr<float>(0) + j + 1)) - (*(Ld.ptr<float>(0) + j)));
|
||||
float xneg = ((*(c.ptr<float>(0) + j - 1)) + (*(c.ptr<float>(0) + j)))*((*(Ld.ptr<float>(0) + j)) - (*(Ld.ptr<float>(0) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(1) + j)))*((*(Ld.ptr<float>(1) + j)) - (*(Ld.ptr<float>(0) + j)));
|
||||
float yneg = ((*(c.ptr<float>(0) + j)) + (*(c.ptr<float>(0) + j)))*((*(Ld.ptr<float>(0) + j)) - (*(Ld.ptr<float>(0) + j)));
|
||||
*(Lstep.ptr<float>(0) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int j = 1; j < Lstep.cols-1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j+1)))*((*(Ld.ptr<float>(Lstep.rows-1)+j+1))-(*(Ld.ptr<float>(Lstep.rows-1)+j)));
|
||||
float xneg = ((*(c.ptr<float>(Lstep.rows-1)+j-1))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j-1)));
|
||||
float ypos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j)));
|
||||
float yneg = ((*(c.ptr<float>(Lstep.rows-2)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-2)+j)));
|
||||
*(Lstep.ptr<float>(Lstep.rows-1)+j) = 0.5f*stepsize*(xpos-xneg + ypos-yneg);
|
||||
}
|
||||
for (int j = 1; j < Lstep.cols - 1; j++) {
|
||||
float xpos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j + 1)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j + 1)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float xneg = ((*(c.ptr<float>(Lstep.rows - 1) + j - 1)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j - 1)));
|
||||
float ypos = ((*(c.ptr<float>(Lstep.rows - 1) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 1) + j)));
|
||||
float yneg = ((*(c.ptr<float>(Lstep.rows - 2) + j)) + (*(c.ptr<float>(Lstep.rows - 1) + j)))*((*(Ld.ptr<float>(Lstep.rows - 1) + j)) - (*(Ld.ptr<float>(Lstep.rows - 2) + j)));
|
||||
*(Lstep.ptr<float>(Lstep.rows - 1) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows-1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1))-(*(Ld.ptr<float>(i))));
|
||||
float xneg = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i))));
|
||||
float ypos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i+1))))*((*(Ld.ptr<float>(i+1)))-(*(Ld.ptr<float>(i))));
|
||||
float yneg = ((*(c.ptr<float>(i-1)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i-1))));
|
||||
*(Lstep.ptr<float>(i)) = 0.5f*stepsize*(xpos-xneg + ypos-yneg);
|
||||
}
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1)) - (*(Ld.ptr<float>(i))));
|
||||
float xneg = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i))));
|
||||
float ypos = ((*(c.ptr<float>(i))) + (*(c.ptr<float>(i + 1))))*((*(Ld.ptr<float>(i + 1))) - (*(Ld.ptr<float>(i))));
|
||||
float yneg = ((*(c.ptr<float>(i - 1))) + (*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i))) - (*(Ld.ptr<float>(i - 1))));
|
||||
*(Lstep.ptr<float>(i)) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
for (int i = 1; i < Lstep.rows-1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1)));
|
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols-2))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-2)));
|
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i+1)+Lstep.cols-1)))*((*(Ld.ptr<float>(i+1)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1)));
|
||||
float yneg = ((*(c.ptr<float>(i-1)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i-1)+Lstep.cols-1)));
|
||||
*(Lstep.ptr<float>(i)+Lstep.cols-1) = 0.5f*stepsize*(xpos-xneg + ypos-yneg);
|
||||
}
|
||||
for (int i = 1; i < Lstep.rows - 1; i++) {
|
||||
float xpos = ((*(c.ptr<float>(i)+Lstep.cols - 1)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 1)));
|
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols - 2)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 2)));
|
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols - 1)) + (*(c.ptr<float>(i + 1) + Lstep.cols - 1)))*((*(Ld.ptr<float>(i + 1) + Lstep.cols - 1)) - (*(Ld.ptr<float>(i)+Lstep.cols - 1)));
|
||||
float yneg = ((*(c.ptr<float>(i - 1) + Lstep.cols - 1)) + (*(c.ptr<float>(i)+Lstep.cols - 1)))*((*(Ld.ptr<float>(i)+Lstep.cols - 1)) - (*(Ld.ptr<float>(i - 1) + Lstep.cols - 1)));
|
||||
*(Lstep.ptr<float>(i)+Lstep.cols - 1) = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
|
||||
}
|
||||
|
||||
Ld = Ld + Lstep;
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function checks if a given pixel is a maximum in a local neighbourhood
|
||||
* @param img Input image where we will perform the maximum search
|
||||
* @param dsize Half size of the neighbourhood
|
||||
* @param value Response value at (x,y) position
|
||||
* @param row Image row coordinate
|
||||
* @param col Image column coordinate
|
||||
* @param same_img Flag to indicate if the image value at (x,y) is in the input image
|
||||
* @return 1->is maximum, 0->otherwise
|
||||
*/
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
|
||||
int row, int col, bool same_img) {
|
||||
|
||||
bool response = true;
|
||||
|
||||
for (int i = row-dsize; i <= row+dsize; i++) {
|
||||
for (int j = col-dsize; j <= col+dsize; j++) {
|
||||
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) {
|
||||
if (same_img == true) {
|
||||
if (i != row || j != col) {
|
||||
if ((*(img.ptr<float>(i)+j)) > value) {
|
||||
response = false;
|
||||
return response;
|
||||
Ld = Ld + Lstep;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((*(img.ptr<float>(i)+j)) > value) {
|
||||
response = false;
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return response;
|
||||
}
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function checks if a given pixel is a maximum in a local neighbourhood
|
||||
* @param img Input image where we will perform the maximum search
|
||||
* @param dsize Half size of the neighbourhood
|
||||
* @param value Response value at (x,y) position
|
||||
* @param row Image row coordinate
|
||||
* @param col Image column coordinate
|
||||
* @param same_img Flag to indicate if the image value at (x,y) is in the input image
|
||||
* @return 1->is maximum, 0->otherwise
|
||||
*/
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
|
||||
int row, int col, bool same_img) {
|
||||
|
||||
bool response = true;
|
||||
|
||||
for (int i = row - dsize; i <= row + dsize; i++) {
|
||||
for (int j = col - dsize; j <= col + dsize; j++) {
|
||||
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) {
|
||||
if (same_img == true) {
|
||||
if (i != row || j != col) {
|
||||
if ((*(img.ptr<float>(i)+j)) > value) {
|
||||
response = false;
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((*(img.ptr<float>(i)+j)) > value) {
|
||||
response = false;
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return response;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,4 +1,3 @@
|
||||
|
||||
/**
|
||||
* @file nldiffusion_functions.h
|
||||
* @brief Functions for non-linear diffusion applications:
|
||||
@ -9,43 +8,40 @@
|
||||
* @author Pablo F. Alcantarilla
|
||||
*/
|
||||
|
||||
#ifndef NLDIFFUSION_FUNCTIONS_H_
|
||||
#define NLDIFFUSION_FUNCTIONS_H_
|
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
#ifndef KAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
#define KAZE_NLDIFFUSION_FUNCTIONS_H
|
||||
|
||||
// Includes
|
||||
#include "config.h"
|
||||
#include "precomp.hpp"
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Gaussian 2D convolution
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
|
||||
int ksize_x, int ksize_y, float sigma);
|
||||
namespace cv {
|
||||
namespace details {
|
||||
namespace kaze {
|
||||
|
||||
// Diffusivity functions
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale,
|
||||
int nbins, int ksize_x, int ksize_y);
|
||||
// Gaussian 2D convolution
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma);
|
||||
|
||||
// Image derivatives
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst,
|
||||
int xorder, int yorder, int scale);
|
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky,
|
||||
int dx, int dy, int scale);
|
||||
// Diffusivity functions
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k);
|
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y);
|
||||
|
||||
// Nonlinear diffusion filtering scalar step
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize);
|
||||
// Image derivatives
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale);
|
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale);
|
||||
|
||||
// For non-maxima suppresion
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
|
||||
int row, int col, bool same_img);
|
||||
// Nonlinear diffusion filtering scalar step
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize);
|
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
// For non-maxima suppresion
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img);
|
||||
|
||||
#endif // NLDIFFUSION_FUNCTIONS_H_
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user